C(X)-algebras as noncommutative branched coverings

Ilja Gogić

Department of Mathematics, University of Zagreb

Masterclass on Classification, STructure, Amenability and Regularity Glasgow, August 25-29, 2014

joint work with Etienne Blanchard (Paris)

C*-algebras as noncommutative topology

- Let **CH** be the category whose objects are CH (compact Hausdorff) spaces, with continuous functions for morphisms.
- Let **UCC**^{*} be the category whose objects are unital commutative *C*^{*}-algebras with unital *-homomorphisms for morphisms.
- We define two contravariant functors

 $X : \mathbf{CH} \rightsquigarrow \mathbf{UCC}^*$ and $C : \mathbf{UCC}^* \rightsquigarrow \mathbf{CH}$

as follows:

- ▷ The functor *C* sends a CH space *X* to the unital commutative C^* -algebra C(X) of continuous complex-valued functions on *X*, and a continuous function $F : X \to Y$ to the unital *-homomorphism $C(F) : C(Y) \to C(X), C(F)(f) := f \circ F$.
- ▷ The functor X sends a unital commutative C*-algebra A to the space of characters X(A), and a unital *-homomorphism $\phi : A \to B$ to the continuous function $X(\phi) : X(B) \to X(A), X(\phi)(\chi) := \chi \circ \phi$.

Commutative Gelfand-Naimark theorem, 1943

 $X \circ C \cong id_{CH}$ i $C \circ X \cong id_{UCC^*}$ (natural isomorphism of functors). In particular, the categories **CH** and **UCC**^{*} are dual.

3 / 22

Commutative Gelfand-Naimark theorem, 1943

 $X \circ C \cong id_{CH}$ i $C \circ X \cong id_{UCC^*}$ (natural isomorphism of functors). In particular, the categories **CH** and **UCC**^{*} are dual.

In other words: By passing from the space X the function algebra C(X), no information is lost. In fact, X can be recovered from C(X).

3 / 22

Commutative Gelfand-Naimark theorem, 1943

 $X \circ C \cong id_{CH}$ i $C \circ X \cong id_{UCC^*}$ (natural isomorphism of functors). In particular, the categories **CH** and **UCC**^{*} are dual.

In other words: By passing from the space X the function algebra C(X), no information is lost. In fact, X can be recovered from C(X).

Thus, topological properties of X can be translated into algebraic properties of C(X), and vice versa, so the theory of C^* -algebras is often thought of as **noncommutative topology**.

C(X)-algebras

In the light of noncommutative topology it is natural to try to view a given unital C^* -algebra A as a set of sections of some sort of the bundle. For example, C(X) is the family of sections of trivial bundle over X.

C(X)-algebras

In the light of noncommutative topology it is natural to try to view a given unital C^* -algebra A as a set of sections of some sort of the bundle. For example, C(X) is the family of sections of trivial bundle over X.

The natural candidate for the base space X is Prim(A), the primitive spectrum of A. However, since the topology on Prim(A) can be awkward to deal with, a natural alternative is to find a compact Hausdorff space X (which will turn out to be a continuous image of Prim(A)) over which A fibres in a nice way.

4 / 22

C(X)-algebras

In the light of noncommutative topology it is natural to try to view a given unital C^* -algebra A as a set of sections of some sort of the bundle. For example, C(X) is the family of sections of trivial bundle over X.

The natural candidate for the base space X is Prim(A), the primitive spectrum of A. However, since the topology on Prim(A) can be awkward to deal with, a natural alternative is to find a compact Hausdorff space X (which will turn out to be a continuous image of Prim(A)) over which A fibres in a nice way.

Such algebras are known as C(X)-algebras and were introduced by G. Kasparov in 1988:

Definition

Suppose that X is a compact Hausdorff space. A unital C*-algebra A is said to be a C(X)-algebra if A is endowed with a unital *-homomorphism ψ_A from C(X) to the centre of A.

There is a natural connection between C(X)-algebras and upper semicontinuous C^* -bundles over X.

Definition

An **upper semicontinuous** C^* -bundle is a triple $\mathfrak{A} = (p, \mathcal{A}, X)$ where \mathcal{A} is a topological space with a continuous open surjection $p : \mathcal{A} \to X$, together with operations and norms making each fibre $\mathcal{A}_x := p^{-1}(x)$ into a C^* -algebra, such that the following conditions are satisfied:

- (A1) The maps C × A → A, A ×_X A → A, A ×_X A → A and A → A given in each fibre by scalar multiplication, addition, multiplication and involution, respectively, are continuous (A ×_X A denotes the Whitney sum over X).
- (A2) The map $\mathcal{A} \to \mathbb{R}$, defined by norm on each fibre, is upper semicontinuous.
- (A3) If $x \in X$ and if (a_i) is a net in A such that $||a_i|| \to 0$ and $p(a_i) \to x$ in X, then $a_i \to 0_x$ in A $(0_x$ denotes the zero-element of A_x).

If "upper semicontinuous" in (A2) is replaced by "continuous", then we say that \mathfrak{A} is a **continuous** C^* -bundle.

6 / 22

If "upper semicontinuous" in (A2) is replaced by "continuous", then we say that \mathfrak{A} is a **continuous** C^* -bundle.

Example

If A is a C^* -algebra, then the simplest example of a continuous C^* -bundle is the **product bundle** over X with fibre A,

$$\epsilon(X,A) := (\pi_1, X \times A, A).$$

where π_1 is a projection on the first coordinate.

If "upper semicontinuous" in (A2) is replaced by "continuous", then we say that \mathfrak{A} is a **continuous** C^* -bundle.

Example

If A is a C^* -algebra, then the simplest example of a continuous C^* -bundle is the **product bundle** over X with fibre A,

$$\epsilon(X,A) := (\pi_1, X \times A, A).$$

where π_1 is a projection on the first coordinate.

By a **section** of an upper semicontinuous C^* -bundle \mathfrak{A} we mean a map $s : X \to \mathcal{A}$ such that p(s(x)) = x for all $x \in X$. We denote by $\Gamma(\mathfrak{A})$ the set of all continuous sections of \mathfrak{A} . Then $\Gamma(\mathfrak{A})$ becomes a C(X)-algebra with respect to the natural pointwise operations and sup-norm.

On the other hand, given a C(X)-algebra A, one can always associate an upper semicontinuous C^* -bundle \mathfrak{A} over X such that $A \cong \Gamma(\mathfrak{A})$, as follows:

Set J_x := C₀(X \ {x}) ⋅ A and note that J_x is a closed two-sided ideal in A (by Cohen factorization theorem). The quotient A_x := A/J_x is called the **fibre** at the point x.

Let

$$\mathcal{A}:=\bigsqcup_{x\in X}A_x,$$

and let $p : \mathcal{A} \to X$ be the canonical associated projection.

- If $a \in A$, let a_x be the image of a in A_x . We define the map $\hat{a}: X \to \mathcal{A}$ by $\hat{a}(x) := a_x$. Let $\Omega := \{\hat{a} : a \in A\}$.
- For each a ∈ A we have

$$||a_x|| = \inf\{||[1 - f + f(x)] \cdot a|| : f \in C(X)\}.$$

In particular, all norm functions $x \mapsto ||a_x||$ $(a \in A)$ are upper semicontinuous on X.

Ilja Gogić (University of Zagreb)

Theorem (Fell & Lee)

There exists a unique topology on \mathcal{A} for which $\mathfrak{A} := (p, \mathcal{A}, X)$ becomes an upper semicontinuous C^* -bundle such that $\Omega = \Gamma(\mathfrak{A})$. Moreover, the **generalized Gelfand transform** $\mathcal{G} : a \mapsto \hat{a}, \mathcal{G} : A \to \Gamma(\mathfrak{A})$, defines an isomorphism of C(X)-algebras.

Theorem (Fell & Lee)

There exists a unique topology on \mathcal{A} for which $\mathfrak{A} := (p, \mathcal{A}, X)$ becomes an upper semicontinuous C^* -bundle such that $\Omega = \Gamma(\mathfrak{A})$. Moreover, the **generalized Gelfand transform** $\mathcal{G} : a \mapsto \hat{a}, \mathcal{G} : A \to \Gamma(\mathfrak{A})$, defines an isomorphism of C(X)-algebras.

Definition

If all norm functions $x \mapsto ||a_x||$ $(a \in A)$ are continuous on X, we say that A is a **continuous** C(X)-algebra. This is equivalent to say that the associated bundle \mathfrak{A} is continuous.

Example

Let D be any unital C*-algebra. Then A := C(X, D) becomes a continuous C(X)-algebra in a natural way:

$$\psi_A(f)(x) := f(x) \cdot 1_A \qquad (f \in C(X)).$$

In this case, each fibre A_x is easily identified with D.

Example

Let D be any unital C*-algebra. Then A := C(X, D) becomes a continuous C(X)-algebra in a natural way:

$$\psi_A(f)(x) := f(x) \cdot 1_A \qquad (f \in C(X)).$$

In this case, each fibre A_x is easily identified with D.

Example (Degenerate example)

Let A be any unital C^* -algebra and let us fix a point $x_0 \in X$. Then A becomes a C(X)-algebra via the map

$$\psi_A(f) := f(x_0) \cdot 1_A \qquad (f \in C(X)).$$

In this example, every fibre A_x is zero, except for $x = x_0$, where $A_{x_0} = A$.

Remark

To avoid such pathological examples, we shall always assume that the *-homomorphism ψ_A is injective. Then we may identify C(X) with the C^* -subalgebra $\psi_A(C(X))$ of Z(A).

Remark

To avoid such pathological examples, we shall always assume that the *-homomorphism ψ_A is injective. Then we may identify C(X) with the C^* -subalgebra $\psi_A(C(X))$ of Z(A).

Example

Let X and Y be two CH spaces. If $F : Y \to X$ is any continuous function, then C(Y) becomes a C(X)-algebra with

$$\psi_{\mathcal{C}(Y)}(f) := f \circ F.$$

• For each $x \in X$, every fibre $C(Y)_x$ is *-isomorphic to $C(F^{-1}(x))$.

• C(Y) is a continuous C(X)-algebra if and only if F is an open map.

In fact, the previous example is not nearly as specialized as it might seem at first:

Theorem

Let A be a unital C^* -algebra and let X be a CH space.

• If there exists a continuous map F_A : $Prim(A) \rightarrow X$, then A becomes a C(X)-algebra with

$$\psi_A(f) := \Phi_A \circ f \circ F_A \qquad (f \in C(X)),$$

where $\Phi_A : C(\operatorname{Prim}(A)) \cong Z(A)$ is the Dauns-Hofmann isomorphism.

- Moreover, every unital C(X)-algebra arises is this way.
- A C(X)-algebra A is continuous if end only if the associated map $F_A : Prim(A) \to X$ is open.

We will be particularly interested in the following classes of C(X)-algebras:

Definition

A unital C(X)-algebra A is said to be:

- homogeneous all fibres of A are *-isomorphic to the same finite-dimensional C*-algebra.
- subhomogeneous if there exists a positive integer N such that every fibre A_x of A is finite-dimensional with dim $A_x \leq N$.

We will be particularly interested in the following classes of C(X)-algebras:

Definition

A unital C(X)-algebra A is said to be:

- homogeneous all fibres of A are *-isomorphic to the same finite-dimensional C*-algebra.
- subhomogeneous if there exists a positive integer N such that every fibre A_x of A is finite-dimensional with dim $A_x \leq N$.

Example

• $C(X, \mathbb{M}_n)$ is a (continuous) homogeneous C(X)-algebra with fibre \mathbb{M}_n .

Let

$$A:=\{f\in C([0,1],\mathbb{M}_n)\ :\ f(0) \text{ is a diagonal matrix}\}.$$

Then A is a (continuous) C([0, 1])-algebra with $A_0 = \mathbb{C}^n$ and $A_x = \mathbb{M}_n$ for $0 < x \le 1$.

If D is a finite-dimensional C^{*}-algebra, recall that A is isomorphic to the finite direct sums of matrix algebras \mathbb{M}_{n_i} . We define the **rank** of D as

$$r(D):=\sum_i n_i.$$

If D is a finite-dimensional C*-algebra, recall that A is isomorphic to the finite direct sums of matrix algebras \mathbb{M}_{n_i} . We define the **rank** of D as

$$r(D):=\sum_i n_i.$$

Let A be a unital C(X)-algebra.

• A is subhomogeneous if and only if

$$r(A) := \sup\{r(A_x) : x \in X\} < \infty.$$

As in the finite-dimensional case, we call this number as rank of A.

If A is continuous and homogeneous with fibre D, then by an important result of J. Fell from 1961, A is automatically locally trivial. This intuitively means that for every point x ∈ X there exists a compact neighborhood U of x such that the restriction of A on U looks like C(U, D).

Let $B \subseteq A$ be two C^* -algebras with common identity element. A **conditional expectation** (abbreviated C.E.) from A onto B is a completely positive (c.p.) contraction $E : A \rightarrow B$ which satisfies the following conditions:

- E(b) = b for all $b \in B$.
- E is ${}_BA_B$ -linear, i.e. $E(b_1ab_2) = b_1E(a)b_2$ for all $a \in A$ and $b_1, b_2 \in B$.

Let $B \subseteq A$ be two C*-algebras with common identity element. A **conditional expectation** (abbreviated C.E.) from A onto B is a completely positive (c.p.) contraction $E : A \rightarrow B$ which satisfies the following conditions:

- E(b) = b for all $b \in B$.
- E is ${}_BA_B$ -linear, i.e. $E(b_1ab_2) = b_1E(a)b_2$ for all $a \in A$ and $b_1, b_2 \in B$.

Remark

The C^* -algebraic conditional expectations are the noncommutative analogues of classical conditional expectations from probability theory.

Let $B \subseteq A$ be two C*-algebras with common identity element. A **conditional expectation** (abbreviated C.E.) from A onto B is a completely positive (c.p.) contraction $E : A \rightarrow B$ which satisfies the following conditions:

- E(b) = b for all $b \in B$.
- E is ${}_BA_B$ -linear, i.e. $E(b_1ab_2) = b_1E(a)b_2$ for all $a \in A$ and $b_1, b_2 \in B$.

Remark

The C^* -algebraic conditional expectations are the noncommutative analogues of classical conditional expectations from probability theory.

Theorem (Y. Tomiyama, 1957)

A map $E : A \rightarrow B$ is a C.E. if and only if E is a projection of norm one.

A C.E. $E : A \to B$ is said to be of finite index (abbreviated C.E.F.I.) if there exists a constant $K \ge 1$ such that the map $(K \cdot E - id_A) : A \to A$ is positive.

A C.E. $E : A \to B$ is said to be of **finite index** (abbreviated C.E.F.I.) if there exists a constant $K \ge 1$ such that the map $(K \cdot E - id_A) : A \to A$ is positive.

A first definition for conditional expectations to be of finite index was given by M. Pimsner and S. Popa in the context of W^* -algebras generalizing results of H. Kosaki and V. F. R. Jones.

A C.E. $E : A \to B$ is said to be of **finite index** (abbreviated C.E.F.I.) if there exists a constant $K \ge 1$ such that the map $(K \cdot E - id_A) : A \to A$ is positive.

A first definition for conditional expectations to be of finite index was given by M. Pimsner and S. Popa in the context of W^* -algebras generalizing results of H. Kosaki and V. F. R. Jones.

However, attempts to describe the more general situation of conditional expectations on C^* -algebras with arbitrary centers to be "of finite index" in some sense(s) went into difficulties. In fact, M. Baillet, Y. Denizeau and J.-F. Havet showed that even in the case of normal faithful conditional expectations E on W^* -algebras M with non-trivial centres, the index value can be calculated only in situations when there exists a number $L \ge 1$ such that the mapping $(L \cdot E - id_A)$ is completely positive.

However, the following important result resolved this issue, and consequently justified the given definition for C.E. on general C^* -algebras to be of finite index:

Theorem (M. Frank and E. Kirchberg, 1998)

For a C.E. $E : A \rightarrow B$ the following conditions are equivalent:

- (a) There exists $K \ge 1$ such that the map $K \cdot E id_A$ is positive.
- (b) There exists $L \ge 1$ such that the map $L \cdot E id_A$ is c.p.
- (c) A becomes a (complete) Hilbert B-module when equipped with the inner product ⟨a₁, a₂⟩ := E(a₁^{*}a₂).

Moreover, if

$$K(E) := \inf\{K \ge 1 : K \cdot E - \operatorname{id}_A \text{ is positive}\},\$$

 $L(E) := \inf\{L \ge 1 : L \cdot E - \operatorname{id}_A \text{ is } c.p.\},\$

with $K(E) = \infty$ or $L(E) = \infty$ if no such number K or L exists, then

 $K(E) \leq L(E) \leq \lfloor K(E) \rfloor K(E).$

The number K(E) is sometimes called the weak index of E.

The number K(E) is sometimes called the weak index of E.

For a unital inclusion $A \subseteq B$ of unital C^* -algebras we can now introduce the following constant, which plays an important role in our research:

```
K(A,B) := \inf\{K(E) : E : A \to B \text{ is C.E.F.I.}\},\
```

with $K(A, B) = \infty$, if no such E exists.

The number K(E) is sometimes called the weak index of E.

For a unital inclusion $A \subseteq B$ of unital C^* -algebras we can now introduce the following constant, which plays an important role in our research:

```
K(A,B) := \inf\{K(E) : E : A \to B \text{ is C.E.F.I.}\},\
```

with $K(A, B) = \infty$, if no such E exists.

Example

Let A be a homogeneous C(X)-algebra $C(X, \mathbb{M}_n)$ and let $tr(\cdot)$ be the standard trace on \mathbb{M}_n . Then

$$E(f)(x) := \frac{1}{n} \operatorname{tr}(f(x))$$

defines a C.E.F.I. from A onto C(X). In this case we have K(A, C(X)) = K(E) = n.

Noncommutative branched coverings

Definition

Let X and Y be two CH spaces. A branched coverings is an open continuous surjection $\sigma : Y \to X$ with uniformly bounded number of pre-images, i.e.

$$\sup_{x\in X} |\sigma^{-1}(x)| < \infty.$$

Noncommutative branched coverings

Definition

Let X and Y be two CH spaces. A **branched coverings** is an open continuous surjection $\sigma : Y \to X$ with uniformly bounded number of pre-images, i.e.

$$\sup_{x\in X} |\sigma^{-1}(x)| < \infty.$$

Problem

Find an equivalent formulation of the existence of a branched covering $\sigma: Y \to X$ in terms of their associated C^* -algebras C(X) i C(Y).

Noncommutative branched coverings

Definition

Let X and Y be two CH spaces. A **branched coverings** is an open continuous surjection $\sigma : Y \to X$ with uniformly bounded number of pre-images, i.e.

$$\sup_{x\in X} |\sigma^{-1}(x)| < \infty.$$

Problem

Find an equivalent formulation of the existence of a branched covering $\sigma: Y \to X$ in terms of their associated C^* -algebras C(X) i C(Y).

Theorem (A. Pavlov i E. Troitsky, 2011)

A pair (X, Y) admits a branched covering $\sigma : Y \to X$ if and only if there exists a C.E.F.I. $E : C(Y) \to C(X)$.

In light of noncommutative topology, A. Pavlov and E. Troitsky introduced the following definition:

Definition

A noncommutative branched covering is a pair (A, B) consisting of a C^* -algebra A and its C^* -subalgebra B with common identity element, such that there exists a C.E.F.I. from A onto B.

In light of noncommutative topology, A. Pavlov and E. Troitsky introduced the following definition:

Definition

A noncommutative branched covering is a pair (A, B) consisting of a C^* -algebra A and its C^* -subalgebra B with common identity element, such that there exists a C.E.F.I. from A onto B.

Reinterpretation in terms of C(X)-algebras

If $\sigma: Y \to X$ is a continuous surjection, then (as already described) C(Y) becomes a C(X)-algebra via

$$\psi_A(f) = f \circ \sigma \qquad (f \in C(X)).$$

Then:

- σ is an open map if and only if C(Y) is a continuous C(X)-algebra.
- $\sup_{x \in X} |\sigma^{-1}(x)| < \infty$ if and only if C(Y) is a subhomogeneous C(X)-algebra.

Therefore, if A is a unital commutative C(X)-algebra, then a pair (A, C(X)) defines a noncommutative branched covering if and only if A is a continuous subhomogeneous C(X)-algebra.

Therefore, if A is a unital commutative C(X)-algebra, then a pair (A, C(X)) defines a noncommutative branched covering if and only if A is a continuous subhomogeneous C(X)-algebra.

Problem

- Is the above result also valid for noncommutative C(X)-algebras A?
- What can be said about the weak index K(A, C(X))?

Therefore, if A is a unital commutative C(X)-algebra, then a pair (A, C(X)) defines a noncommutative branched covering if and only if A is a continuous subhomogeneous C(X)-algebra.

Problem

- Is the above result also valid for noncommutative C(X)-algebras A?
- What can be said about the weak index K(A, C(X))?

We managed to prove one direction:

Theorem (E. Blanchard & I.G., 2013)

Let A be a unital C(X)-algebra. If a pair (A, C(X)) defines a noncommutative branched covering, then A is necessarily a continuous subhomogeneous C(X)-algebra. Moreover, in this case we have $K(A, C(X)) \ge r(A)$.

We also established the partial converse when:

- (A) A is a homogeneous C(X)-algebra (our proof essentially relies on the local triviality of the underlying bundle of A).
- (B) A is a subhomogeneous C(X)-algebra of rank 2 (our proof cannot be generalized for subhomogeneous C(X)-algebras of higher rank).

Moreover, in both this cases the equality K(A, C(X)) = r(A) is achieved.

We also established the partial converse when:

- (A) A is a homogeneous C(X)-algebra (our proof essentially relies on the local triviality of the underlying bundle of A).
- (B) A is a subhomogeneous C(X)-algebra of rank 2 (our proof cannot be generalized for subhomogeneous C(X)-algebras of higher rank).

Moreover, in both this cases the equality K(A, C(X)) = r(A) is achieved.

As a direct consequence of part (A), we get:

Corollary

If a unital C(X)-algebra A admits a C(X)-linear embedding into some unital continuous homogeneous unital C(X)-algebra A', then (A, C(X))defines a noncommutative branched covering with $K(A, C(X)) \leq K(A', C(X)).$ This leads to the following question:

Problem

If a pair (A, C(X)) defines a noncommutative branched covering, is it possible to embed A as a C(X)-subalgebra of some unital continuous homogeneous C(X)-algebra?

This leads to the following question:

Problem

If a pair (A, C(X)) defines a noncommutative branched covering, is it possible to embed A as a C(X)-subalgebra of some unital continuous homogeneous C(X)-algebra?

The answer is (unfortunately) negative. In fact:

- We exhibited an example of a continuous C(X)-algebra A with fibres M₂ i C, where X is the Alexandroff compactification of the disjoint union U[∞]_{n=1} CPⁿ of complex projective *n*-dimensional spaces, which does not admit a C(X)-linear embedding into any unital continuous homogeneous C(X)-algebra.
- On the other hand, since A is of rank 2, the part (B) implies that the pair (A, C(X)) defines a noncommutative branched covering, with K(A, C(X)) = 2.