Elementary operators on *C**-algebras and Hilbert *C**-modules

Ilja Gogić

University of Zagreb

The 49th Canadian Operator Symposium (online) University of Guelph May 31 - June 4, 2021

based on joint work with Ljiljana Arambašić

Ilja Gogić (University of Zagreb)

Elementary operators

COSy 2021 1 / 14

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• Let A be a C^* -algebra with the multiplier algebra M(A).

- Let A be a C^* -algebra with the multiplier algebra M(A).
- An attractive and fairly large class of completely bounded linear maps $\phi : A \to A$ are **elementary operators**, that is, the maps that can be expressed as a finite sum $\phi = \sum_i M_{a_i,b_i}$ of two-sided multiplications $M_{a_i,b_i} : x \mapsto a_i x b_i$, where $a_i, b_i \in M(A)$.

(4回) (4回) (4回)

- Let A be a C^* -algebra with the multiplier algebra M(A).
- An attractive and fairly large class of completely bounded linear maps $\phi : A \to A$ are **elementary operators**, that is, the maps that can be expressed as a finite sum $\phi = \sum_{i} M_{a_i,b_i}$ of two-sided multiplications $M_{a_i,b_i} : x \mapsto a_i x b_i$, where $a_i, b_i \in M(A)$.
- Elementary operators provide ways to study the structure of C^* -algebras and they also play an important role in modern quantum information and quantum computation theory. In particular, maps $\phi: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ of the form $\phi = \sum_i M_{a_i^*,a_i}$ (where a_i are matrices such that $\sum_i a_i^* a_i = 1$) represent the (trace-duals of) quantum channels, which are mathematical models of the evolution of an 'open' quantum system.

イロト イヨト イヨト

- Let A be a C^* -algebra with the multiplier algebra M(A).
- An attractive and fairly large class of completely bounded linear maps $\phi : A \to A$ are **elementary operators**, that is, the maps that can be expressed as a finite sum $\phi = \sum_{i} M_{a_i,b_i}$ of two-sided multiplications $M_{a_i,b_i} : x \mapsto a_i x b_i$, where $a_i, b_i \in M(A)$.
- Elementary operators provide ways to study the structure of C^* -algebras and they also play an important role in modern quantum information and quantum computation theory. In particular, maps $\phi: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ of the form $\phi = \sum_i M_{a_i^*,a_i}$ (where a_i are matrices such that $\sum_i a_i^* a_i = 1$) represent the (trace-duals of) quantum channels, which are mathematical models of the evolution of an 'open' quantum system.
- We have the following estimate the cb-norm of elementary operators:

$$\left\|\sum_{i} M_{a_i,b_i}\right\|_{cb} \leq \left\|\sum_{i} a_i a_i^*\right\|^{\frac{1}{2}} \left\|\sum_{i} b_i^* b_i\right\|^{\frac{1}{2}}.$$

 In particular, if we endow M(A) ⊗ M(A) with the Haagerup tensor norm

$$\|t\|_h := \inf \left\{ \left\| \sum_i a_i a_i^* \right\|^{\frac{1}{2}} \left\| \sum_i b_i^* b_i \right\|^{\frac{1}{2}} : t = \sum_i a_i \otimes b_i \right\},\$$

then the natural map

$$(M(A) \otimes M(A), \|\cdot\|_h) \to (\operatorname{CB}(A), \|\cdot\|_{cb})$$

given by

$$\sum_i a_i \otimes b_i \mapsto \sum_i M_{a_i,b_i}.$$

is a well-defined contraction.

< ⊒ >

 In particular, if we endow M(A) ⊗ M(A) with the Haagerup tensor norm

$$\|t\|_h := \inf \left\{ \left\| \sum_i a_i a_i^* \right\|^{\frac{1}{2}} \left\| \sum_i b_i^* b_i \right\|^{\frac{1}{2}} : t = \sum_i a_i \otimes b_i \right\},\$$

then the natural map

$$(M(A) \otimes M(A), \|\cdot\|_h) \to (\operatorname{CB}(A), \|\cdot\|_{cb})$$

given by

$$\sum_i a_i \otimes b_i \mapsto \sum_i M_{a_i,b_i}.$$

is a well-defined contraction.

 Its continuous extension to the completed Haagerup tensor product M(A) ⊗_h M(A) is known as a canonical contraction from M(A) ⊗_h M(A) to CB(A) and is denoted by Θ_A. In particular, if we endow M(A) ⊗ M(A) with the Haagerup tensor norm

$$\|t\|_h := \inf \left\{ \left\| \sum_i a_i a_i^* \right\|^{\frac{1}{2}} \left\| \sum_i b_i^* b_i \right\|^{\frac{1}{2}} : t = \sum_i a_i \otimes b_i \right\},\$$

then the natural map

$$(M(A) \otimes M(A), \|\cdot\|_h) \to (\operatorname{CB}(A), \|\cdot\|_{cb})$$

given by

$$\sum_i a_i \otimes b_i \mapsto \sum_i M_{a_i,b_i}.$$

is a well-defined contraction.

 Its continuous extension to the completed Haagerup tensor product M(A) ⊗_h M(A) is known as a canonical contraction from M(A) ⊗_h M(A) to CB(A) and is denoted by Θ_A.

Problem

When is Θ_A isometric or injective?

A necessary condition for the injectivity of Θ_A is that A is a prime C^* -algebra. Indeed, if A is not prime, then there are two non-zero ideals I and J of A such that $IJ = \{0\}$. Choose any non-zero elements $a \in I$ and $b \in J$. Then $a \otimes b \neq 0$ in $M(A) \otimes_h M(A)$, while $\Theta_A(a \otimes b) = 0$.

< □ > < □ > < □ > < □ > < □ > < □ >

A necessary condition for the injectivity of Θ_A is that A is a prime C^* -algebra. Indeed, if A is not prime, then there are two non-zero ideals I and J of A such that $IJ = \{0\}$. Choose any non-zero elements $a \in I$ and $b \in J$. Then $a \otimes b \neq 0$ in $M(A) \otimes_h M(A)$, while $\Theta_A(a \otimes b) = 0$.

Theorem (Haagerup 1980)

 Θ_A is isometric if $A = B(\mathcal{H})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A necessary condition for the injectivity of Θ_A is that A is a prime C^* -algebra. Indeed, if A is not prime, then there are two non-zero ideals I and J of A such that $IJ = \{0\}$. Choose any non-zero elements $a \in I$ and $b \in J$. Then $a \otimes b \neq 0$ in $M(A) \otimes_h M(A)$, while $\Theta_A(a \otimes b) = 0$.

Theorem (Haagerup 1980)

 Θ_A is isometric if $A = B(\mathcal{H})$.

Theorem (Chatterjee-Sinclair 1992)

 Θ_A is isometric if A is a separably-acting von Neumann factor.

イロト 不得下 イヨト イヨト 二日

A necessary condition for the injectivity of Θ_A is that A is a prime C^* -algebra. Indeed, if A is not prime, then there are two non-zero ideals I and J of A such that $IJ = \{0\}$. Choose any non-zero elements $a \in I$ and $b \in J$. Then $a \otimes b \neq 0$ in $M(A) \otimes_h M(A)$, while $\Theta_A(a \otimes b) = 0$.

Theorem (Haagerup 1980)

 Θ_A is isometric if $A = B(\mathcal{H})$.

Theorem (Chatterjee-Sinclair 1992)

 Θ_A is isometric if A is a separably-acting von Neumann factor.

Theorem (Mathieu 2003)

Let A be a C*-algebra. TFAE:

- (i) Θ_A is isometric.
- (ii) Θ_A is injective.
- (iii) A is a prime C*-algebra.

• Throughout, X will be a (right) Hilbert module over a C^* -algebra A.

A D N A B N A B N A B N

- Throughout, X will be a (right) Hilbert module over a C^* -algebra A.
- By ⟨X, X⟩ we denote the closed linear span of the set {⟨x, y⟩ : x, y ∈ X}. Clearly, ⟨X, X⟩ is an ideal of A. If ⟨X, X⟩ = A, X is said to be full and if ⟨X, X⟩ is an essential ideal of A we say that X is essentially full.

< □ > < □ > < □ > < □ > < □ > < □ >

- Throughout, X will be a (right) Hilbert module over a C^* -algebra A.
- By $\langle X, X \rangle$ we denote the closed linear span of the set $\{\langle x, y \rangle : x, y \in X\}$. Clearly, $\langle X, X \rangle$ is an ideal of A. If $\langle X, X \rangle = A$, X is said to be **full** and if $\langle X, X \rangle$ is an essential ideal of A we say that X is **essentially full**.
- if Y is another Hilbert A-module, by B(X, Y) we denote the set of all adjointable operators from X to Y, that is those u : X → Y for which there is u* : Y → X with the property

$$\langle ux, y \rangle = \langle x, u^*y \rangle \quad \forall x \in X, y \in Y.$$

It is well-known that all adjointable operators are bounded and A-linear (i.e. u(xa) = (ux)a for all $x \in X$ and $a \in A$).

< □ > < □ > < □ > < □ > < □ > < □ >

- Throughout, X will be a (right) Hilbert module over a C^* -algebra A.
- By $\langle X, X \rangle$ we denote the closed linear span of the set $\{\langle x, y \rangle : x, y \in X\}$. Clearly, $\langle X, X \rangle$ is an ideal of A. If $\langle X, X \rangle = A$, X is said to be **full** and if $\langle X, X \rangle$ is an essential ideal of A we say that X is **essentially full**.
- if Y is another Hilbert A-module, by B(X, Y) we denote the set of all adjointable operators from X to Y, that is those u : X → Y for which there is u* : Y → X with the property

$$\langle ux, y \rangle = \langle x, u^*y \rangle \quad \forall x \in X, y \in Y.$$

It is well-known that all adjointable operators are bounded and A-linear (i.e. u(xa) = (ux)a for all $x \in X$ and $a \in A$).

By K(X, Y) we denote the closed linear subspace of B(X, Y) generated by the maps z → y⟨x, z⟩ (x ∈ X, y ∈ Y).

イロト 不得 トイヨト イヨト

- Throughout, X will be a (right) Hilbert module over a C^* -algebra A.
- By $\langle X, X \rangle$ we denote the closed linear span of the set $\{\langle x, y \rangle : x, y \in X\}$. Clearly, $\langle X, X \rangle$ is an ideal of A. If $\langle X, X \rangle = A$, X is said to be **full** and if $\langle X, X \rangle$ is an essential ideal of A we say that X is **essentially full**.
- if Y is another Hilbert A-module, by B(X, Y) we denote the set of all adjointable operators from X to Y, that is those u : X → Y for which there is u* : Y → X with the property

$$\langle ux, y \rangle = \langle x, u^*y \rangle \quad \forall x \in X, y \in Y.$$

It is well-known that all adjointable operators are bounded and A-linear (i.e. u(xa) = (ux)a for all $x \in X$ and $a \in A$).

- By K(X, Y) we denote the closed linear subspace of B(X, Y) generated by the maps z → y⟨x, z⟩ (x ∈ X, y ∈ Y).
- If X = Y we write $\mathbb{B}(X)$ (or $\mathbb{B}_A(X)$) and $\mathbb{K}(X)$ (or $\mathbb{K}_A(X)$). Then $\mathbb{B}(X)$ is a *C**-algebra and $\mathbb{K}(X)$ is an essential ideal of $\mathbb{B}(X)$. Moreover, $\mathbb{B}(X) = M(\mathbb{K}(X))$.

The **linking algebra** of X is defined as $\mathcal{L}(X) := \mathbb{K}(A \oplus X)$. We can write

$$\mathcal{L}(X) = \begin{bmatrix} \mathbb{K}(A) & \mathbb{K}(X,A) \\ \mathbb{K}(A,X) & \mathbb{K}(X) \end{bmatrix} = \left\{ \begin{bmatrix} T_a & l_y \\ r_x & u \end{bmatrix} : a \in A, x, y \in X, u \in \mathbb{K}(X) \right\},\$$

where $T_a(b) = ab$ and $r_x(b) = xb$ for all $b \in A$, while $l_y(z) = \langle y, z \rangle$ for all $z \in X$. Thereby, $a \mapsto T_a$ is an isomorphism of C^* -algebras A and $\mathbb{K}(A)$, $y \mapsto l_y$ is an isometric conjugate linear isomorphism between Banach spaces X and $\mathbb{K}(X, A)$, and $x \mapsto r_x$ is an isometric linear isomorphism between Banach spaces X and $\mathbb{K}(A, X)$.

< □ > < 同 > < 回 > < 回 > < 回 >

The **linking algebra** of X is defined as $\mathcal{L}(X) := \mathbb{K}(A \oplus X)$. We can write

$$\mathcal{L}(X) = \begin{bmatrix} \mathbb{K}(A) & \mathbb{K}(X,A) \\ \mathbb{K}(A,X) & \mathbb{K}(X) \end{bmatrix} = \left\{ \begin{bmatrix} T_a & l_y \\ r_x & u \end{bmatrix} : a \in A, x, y \in X, u \in \mathbb{K}(X) \right\},\$$

where $T_a(b) = ab$ and $r_x(b) = xb$ for all $b \in A$, while $l_y(z) = \langle y, z \rangle$ for all $z \in X$. Thereby, $a \mapsto T_a$ is an isomorphism of C^* -algebras A and $\mathbb{K}(A)$, $y \mapsto l_y$ is an isometric conjugate linear isomorphism between Banach spaces X and $\mathbb{K}(X, A)$, and $x \mapsto r_x$ is an isometric linear isomorphism between Banach spaces X and $\mathbb{K}(A, X)$.

Besides $\mathcal{L}(X)$, we need another subalgebra of $\mathbb{B}(A \oplus X)$, larger than $\mathcal{L}(X)$. We define an **extended linking algebra** of X as

$$\begin{aligned} \mathcal{L}_{\mathrm{ext}}(X) &= \begin{bmatrix} \mathbb{B}(A) & \mathbb{K}(X,A) \\ \mathbb{K}(A,X) & \mathbb{B}(X) \end{bmatrix} \\ &= \left\{ \begin{bmatrix} T_v & l_y \\ r_x & u \end{bmatrix} : v \in M(A), \, x, y \in X, \, u \in \mathbb{B}(X) \right\}, \end{aligned}$$

where, similarly as before, for $v \in M(A)$, $T_v : A \to A$ is defined by $T_v(a) = va$. It is easy to see that $\mathcal{L}_{ext}(X)$ is a C^* -subalgebra of $\mathbb{B}(A \oplus X)$ which contains $\mathcal{L}(X)$ as an essential ideal.

Ilja Gogić (University of Zagreb)

If X is a Hilbert A-module, we can introduce the operator space structure on X via the operator space structure of its linking algebra $\mathcal{L}(X)$ (or extended linking algebra $\mathcal{L}_{ext}(X)$), after identifying X as the 2 – 1 corner in $\mathcal{L}(X)$ (or $\mathcal{L}_{ext}(X)$), via the isometric isomorphism $X \cong \mathbb{K}(A, X)$, $x \mapsto r_x$. That is, for all $n \in \mathbb{N}$ and $[x_{ij}] \in M_n(X)$ we define

$$\left\|\begin{bmatrix}x_{ij}\end{bmatrix}\right\|_{\mathrm{M}_n(X)} := \left\|\begin{bmatrix}\begin{bmatrix}0 & 0\\r_{x_{ij}} & 0\end{bmatrix}\right]\right\|_{\mathrm{M}_n(\mathcal{L}(X))} = \left\|\begin{bmatrix}\begin{bmatrix}0 & 0\\r_{x_{ij}} & 0\end{bmatrix}\right]\right\|_{\mathrm{M}_n(\mathcal{L}_{\mathrm{ext}}(X))},$$

so that the canonical embedding

$$\iota_X: X \hookrightarrow \mathcal{L}_{\mathrm{ext}}(X), \qquad \iota_X: x \mapsto \begin{bmatrix} 0 & 0 \\ r_x & 0 \end{bmatrix}$$

becomes a complete isometry. This structure is called the **canonical operator space structure** on X.

<ロト <部ト <注入 < 注入 = 二 =

If B is any C*-algebra that contains A as an ideal, then X can be also regarded as a Hilbert B-module with respect to the same inner product (which takes values in A ⊆ B), while the right action of B on X is defined as follows. For x ∈ X, a ∈ A and b ∈ B, set

$$(xa)b := x(ab).$$

Obviously, $\mathbb{B}_B(X) = \mathbb{B}_A(X)$ and $\mathbb{K}_A(X) = \mathbb{K}_B(X)$, so all $u \in \mathbb{B}_A(X)$ are also *B*-linear.

- In particular, by taking B = M(A), any Hilbert A-module X can be regarded as a Hilbert M(A)-module. Now for all u ∈ B(X), x ∈ X and v ∈ M(A) we have u(xv) = (ux)v, so in this way X becomes a Banach B(X) M(A)-bimodule (in particular, the product uxv is unambiguously defined).
- Moreover, it is straightforward to check that each matrix space $M_n(X)$ is a Banach $M_n(\mathbb{B}(X)) M_n(M(A))$ -bimodule in the canonical way.

Elementary operators on Hilbert C*-modules

We now extend the notion of elementary operators to Hilbert C^* -modules. First of all, following the C^* -algebraic case, for each $u \in \mathbb{B}(X)$ and $v \in M(A)$ we define a map

$$M_{u,v}: X \to X$$
 by $M_{u,v}: x \mapsto uxv$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Elementary operators on Hilbert C*-modules

We now extend the notion of elementary operators to Hilbert C^* -modules. First of all, following the C^* -algebraic case, for each $u \in \mathbb{B}(X)$ and $v \in M(A)$ we define a map

$$M_{u,v}: X \to X$$
 by $M_{u,v}: x \mapsto uxv$.

Definition

By an **elementary operator** on a Hilbert *A*-module *X* we mean a map $\phi : X \to X$ for which there exists a finite number of elements $u_1, \ldots, u_k \in \mathbb{B}(X)$ and $v_1, \ldots, v_k \in M(A)$ such that

$$\phi = \sum_{i=1}^{k} M_{u_i, v_i}.$$

・ 何 ト ・ ヨ ト ・ ヨ ト

If a C^* -algebra A is considered as a Hilbert A-module in the standard way, then $\mathbb{B}(A)$ and M(A) coincide, so elementary operators on A, as a Hilbert A-module, agree with the usual notion of elementary operators on A.

< □ > < □ > < □ > < □ > < □ > < □ >

If a C^* -algebra A is considered as a Hilbert A-module in the standard way, then $\mathbb{B}(A)$ and M(A) coincide, so elementary operators on A, as a Hilbert A-module, agree with the usual notion of elementary operators on A.

As in the C*-algebraic case it is easy to see that any elementary operator ϕ on X is completely bounded. Moreover, if ϕ is represented as $\phi = \sum_{i} M_{u_i,v_i}$, then

$$\|\phi\|_{cb} \leq \left\|\sum_{i} u_{i} \otimes v_{i}\right\|_{h}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

If a C^* -algebra A is considered as a Hilbert A-module in the standard way, then $\mathbb{B}(A)$ and M(A) coincide, so elementary operators on A, as a Hilbert A-module, agree with the usual notion of elementary operators on A.

As in the C*-algebraic case it is easy to see that any elementary operator ϕ on X is completely bounded. Moreover, if ϕ is represented as $\phi = \sum_{i} M_{u_i,v_i}$, then

$$\|\phi\|_{cb} \leq \left\|\sum_{i} u_{i} \otimes v_{i}\right\|_{h}$$

Therefore, the mapping

$$(\mathbb{B}(X)\otimes M(A), \|\cdot\|_h) \to (\operatorname{CB}(X), \|\cdot\|_{cb})$$
 given by $\sum_i u_i \otimes v_i \mapsto \sum_i M_{u_i, v_i},$

is a well-defined contraction, so we can continuously extend it to the map

$$\Theta_X : (\mathbb{B}(X) \otimes_h M(A), \|\cdot\|_h) \to (\mathrm{CB}(X), \|\cdot\|_{cb}).$$

イロト 不得下 イヨト イヨト 二日

Theorem (Arambašić-G. 2020)

Let X be a non-zero Hilbert A-module. TFAE:

(i) Θ_X is isometric.

(ii) Θ_X is injective.

(iii) A is a prime C^* -algebra.

(日) (四) (日) (日) (日)

Theorem (Arambašić-G. 2020)

Let X be a non-zero Hilbert A-module. TFAE:

(i) Θ_X is isometric.

(ii) Θ_X is injective.

(iii) A is a prime C^* -algebra.

Lemma

For each map $\phi: X \to X$ we define a map

$$\widetilde{\phi} : \mathcal{L}_{\mathrm{ext}}(X) \to \mathcal{L}_{\mathrm{ext}}(X) \qquad by \qquad \widetilde{\phi}\left(\begin{bmatrix} T_v & l_y \\ r_x & u \end{bmatrix} \right) := \begin{bmatrix} 0 & 0 \\ r_{\phi(x)} & 0 \end{bmatrix}$$

(a) If φ ∈ CB(X) then φ̃ ∈ CB(Lext(X)) and ||φ̃||_{cb} = ||φ||_{cb}.
(b) For each t ∈ B(X) ⊗_h M(A) we have

$$\widetilde{\Theta_X(t)} = \Theta_{\mathcal{L}_{\mathrm{ext}}(X)}((\iota_{\mathbb{B}(X)}\otimes\iota_{\mathcal{M}(\mathcal{A})})(t)).$$

Ilja Gogić (University of Zagreb)

We shall also need the following characterisations of Hilbert C^* -modules over prime C^* -algebras:

Proposition

Let X be a non-zero Hilbert A-module. TFAE:

- (i) A is prime.
- (ii) X is essentially full and $\mathbb{K}(X)$ is prime.
- (iii) The linking algebra $\mathcal{L}(X)$ is prime.
- (iv) The extended linking algebra $\mathcal{L}_{ext}(X)$ is prime.
- (v) If $a \in A$ and $u \in \mathbb{K}(X)$ are such that uxa = 0 for all $x \in X$, then a = 0 or u = 0.
- (vi) X is essentially full and if $x_1, x_2 \in X$ are such that $x_1\langle x, x_2 \rangle = 0$ for all $x \in X$, then $x_1 = 0$ or $x_2 = 0$.

• • = • • = •

We shall also need the following characterisations of Hilbert C^* -modules over prime C^* -algebras:

Proposition

Let X be a non-zero Hilbert A-module. TFAE:

- (i) A is prime.
- (ii) X is essentially full and $\mathbb{K}(X)$ is prime.
- (iii) The linking algebra $\mathcal{L}(X)$ is prime.
- (iv) The extended linking algebra $\mathcal{L}_{ext}(X)$ is prime.
- (v) If $a \in A$ and $u \in \mathbb{K}(X)$ are such that uxa = 0 for all $x \in X$, then a = 0 or u = 0.
- (vi) X is essentially full and if $x_1, x_2 \in X$ are such that $x_1\langle x, x_2 \rangle = 0$ for all $x \in X$, then $x_1 = 0$ or $x_2 = 0$.

Corollary

The primeness is an invariant property under Morita equivalence.

Ilja Gogić (University of Zagreb)

< ロ > < 同 > < 回 > < 回 >

Proof of Theorem. (i) \implies (ii). This is trivial.

<ロ> <四> <四> <四> <四> <四</p>

Proof of Theorem. (i) \implies (ii). This is trivial.

(ii) \Longrightarrow (iii). Assume that A is not prime. Then there are non-zero elements $u \in \mathbb{K}(X)$ and $a \in A$ such that uxa = 0 for all $x \in X$. Then $u \otimes a$ is a non-zero tensor in $\mathbb{K}(X) \otimes A \subseteq \mathbb{B}(X) \otimes M(A)$ but $\Theta_X(u \otimes a)(x) = uxa = 0$ for all $x \in X$.

< □ > < 同 > < 回 > < 回 > < 回 >

Proof of Theorem. (i) \Longrightarrow (ii). This is trivial.

(ii) \Longrightarrow (iii). Assume that A is not prime. Then there are non-zero elements $u \in \mathbb{K}(X)$ and $a \in A$ such that uxa = 0 for all $x \in X$. Then $u \otimes a$ is a non-zero tensor in $\mathbb{K}(X) \otimes A \subseteq \mathbb{B}(X) \otimes M(A)$ but $\Theta_X(u \otimes a)(x) = uxa = 0$ for all $x \in X$. (iii) \Longrightarrow (i). Since the canonical embeddings $\iota_{\mathbb{B}(X)} : \mathbb{B}(X) \hookrightarrow \mathcal{L}_{\text{ext}}(X)$ and

 $\iota_{M(A)}: M(A) \hookrightarrow \mathcal{L}_{ext}(X)$ are completely isometric, the injectivity of the Haagerup tensor product implies

$$\|(\iota_{\mathbb{B}(X)}\otimes\iota_{\mathcal{M}(\mathcal{A})})(t)\|_{h}=\|t\|_{h}\qquad\forall t\in\mathbb{B}(X)\otimes_{h}\mathcal{M}(\mathcal{A}).$$

If A is a prime C*-algebra, then $\mathcal{L}_{ext}(X)$ is also prime, so Mathieu's theorem implies

$$\|\Theta_{\mathcal{L}_{\mathrm{ext}}(X)}(t')\|_{cb} = \|t'\|_{h} \qquad \forall t' \in \mathcal{L}_{\mathrm{ext}}(X) \otimes_{h} \mathcal{L}_{\mathrm{ext}}(X).$$

Hence, for all $t \in \mathbb{B}(X) \otimes_h M(A)$ we have

$$\begin{split} \|\Theta_X(t)\|_{cb} &= \|\widetilde{\Theta_X(t)}\|_{cb} = \|\Theta_{\mathcal{L}_{ext}(X)}((\iota_{\mathbb{B}(X)} \otimes \iota_{M(A)})(t))\|_{cb} \\ &= \|(\iota_{\mathbb{B}(X)} \otimes \iota_{M(A)})(t)\|_h = \|t\|_h. \end{split}$$

Thus, Θ_X is isometric.

Ilja Gogić (University of Zagreb)

Some open problems

Problem

If the underlying C^* -algebra A of X is not prime (so that Θ_X is non-injective), can we describe the kernel of Θ_X ?

(4) (日本)

Some open problems

Problem

If the underlying C^* -algebra A of X is not prime (so that Θ_X is non-injective), can we describe the kernel of Θ_X ?

Problem

When is the set of elementary operators on X closed as a subset of CB(X)? (Comment: this is still not completely solved in the C^{*}-algebraic case.)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Some open problems

Problem

If the underlying C^* -algebra A of X is not prime (so that Θ_X is non-injective), can we describe the kernel of Θ_X ?

Problem

When is the set of elementary operators on X closed as a subset of CB(X)? (Comment: this is still not completely solved in the C^{*}-algebraic case.)

Problem

By a beautiful result due to Archbold, Mathieu and Somerset from 1999 we know that for any elementary operator ϕ on a C^* -algebra A we have $\|\phi\|_{cb} = \|\phi\|$ if and only if A is an extension of an antiliminal C^* -algebra by an abelian one. Can we generalize this result in the context of Hilbert C^* -modules?

イロト イポト イヨト イヨト