Elementary operators on C^{*}-algebras and Hilbert C^{*}-modules

Ilja Gogić

University of Zagreb

The 49th Canadian Operator Symposium (online)
University of Guelph
May 31 - June 4, 2021
based on joint work with Ljiljana Arambašić

Introduction

- Let A be a C^{*}-algebra with the multiplier algebra $M(A)$.

Introduction

- Let A be a C^{*}-algebra with the multiplier algebra $M(A)$.
- An attractive and fairly large class of completely bounded linear maps $\phi: A \rightarrow A$ are elementary operators, that is, the maps that can be expressed as a finite sum $\phi=\sum_{i} M_{a_{i}, b_{i}}$ of two-sided multiplications $M_{a_{i}, b_{i}}: x \mapsto a_{i} x b_{i}$, where $a_{i}, b_{i} \in M(A)$.

Introduction

- Let A be a C^{*}-algebra with the multiplier algebra $M(A)$.
- An attractive and fairly large class of completely bounded linear maps $\phi: A \rightarrow A$ are elementary operators, that is, the maps that can be expressed as a finite sum $\phi=\sum_{i} M_{a_{i}, b_{i}}$ of two-sided multiplications $M_{a_{i}, b_{i}}: x \mapsto a_{i} x b_{i}$, where $a_{i}, b_{i} \in M(A)$.
- Elementary operators provide ways to study the structure of C^{*}-algebras and they also play an important role in modern quantum information and quantum computation theory. In particular, maps $\phi: \mathrm{M}_{n}(\mathbb{C}) \rightarrow \mathrm{M}_{n}(\mathbb{C})$ of the form $\phi=\sum_{i} M_{a_{i}^{*}, a_{i}}$ (where a_{i} are matrices such that $\sum_{i} a_{i}^{*} a_{i}=1$) represent the (trace-duals of) quantum channels, which are mathematical models of the evolution of an 'open' quantum system.

Introduction

- Let A be a C^{*}-algebra with the multiplier algebra $M(A)$.
- An attractive and fairly large class of completely bounded linear maps $\phi: A \rightarrow A$ are elementary operators, that is, the maps that can be expressed as a finite sum $\phi=\sum_{i} M_{a_{i}, b_{i}}$ of two-sided multiplications $M_{a_{i}, b_{i}}: x \mapsto a_{i} x b_{i}$, where $a_{i}, b_{i} \in M(A)$.
- Elementary operators provide ways to study the structure of C^{*}-algebras and they also play an important role in modern quantum information and quantum computation theory. In particular, maps $\phi: \mathrm{M}_{n}(\mathbb{C}) \rightarrow \mathrm{M}_{n}(\mathbb{C})$ of the form $\phi=\sum_{i} M_{a_{i}^{*}, a_{i}}$ (where a_{i} are matrices such that $\sum_{i} a_{i}^{*} a_{i}=1$) represent the (trace-duals of) quantum channels, which are mathematical models of the evolution of an 'open' quantum system.
- We have the following estimate the cb-norm of elementary operators:

$$
\left\|\sum_{i} M_{a_{i}, b_{i}}\right\|_{c b} \leq\left\|\sum_{i} a_{i} a_{i}^{*}\right\|^{\frac{1}{2}}\left\|\sum_{i} b_{i}^{*} b_{i}\right\|^{\frac{1}{2}}
$$

- In particular, if we endow $M(A) \otimes M(A)$ with the Haagerup tensor norm

$$
\|t\|_{h}:=\inf \left\{\left\|\sum_{i} a_{i} a_{i}^{*}\right\|^{\frac{1}{2}}\left\|\sum_{i} b_{i}^{*} b_{i}\right\|^{\frac{1}{2}}: t=\sum_{i} a_{i} \otimes b_{i}\right\}
$$

then the natural map

$$
\left(M(A) \otimes M(A),\|\cdot\|_{h}\right) \rightarrow\left(\mathrm{CB}(A),\|\cdot\|_{c b}\right)
$$

given by

$$
\sum_{i} a_{i} \otimes b_{i} \mapsto \sum_{i} M_{a_{i}, b_{i}}
$$

is a well-defined contraction.

- In particular, if we endow $M(A) \otimes M(A)$ with the Haagerup tensor norm

$$
\|t\|_{h}:=\inf \left\{\left\|\sum_{i} a_{i} a_{i}^{*}\right\|^{\frac{1}{2}}\left\|\sum_{i} b_{i}^{*} b_{i}\right\|^{\frac{1}{2}}: t=\sum_{i} a_{i} \otimes b_{i}\right\}
$$

then the natural map

$$
\left(M(A) \otimes M(A),\|\cdot\|_{h}\right) \rightarrow\left(\mathrm{CB}(A),\|\cdot\|_{c b}\right)
$$

given by

$$
\sum_{i} a_{i} \otimes b_{i} \mapsto \sum_{i} M_{a_{i}, b_{i}}
$$

is a well-defined contraction.

- Its continuous extension to the completed Haagerup tensor product $M(A) \otimes_{h} M(A)$ is known as a canonical contraction from $M(A) \otimes_{h} M(A)$ to $\mathrm{CB}(A)$ and is denoted by Θ_{A}.
- In particular, if we endow $M(A) \otimes M(A)$ with the Haagerup tensor norm

$$
\|t\|_{h}:=\inf \left\{\left\|\sum_{i} a_{i} a_{i}^{*}\right\|^{\frac{1}{2}}\left\|\sum_{i} b_{i}^{*} b_{i}\right\|^{\frac{1}{2}}: t=\sum_{i} a_{i} \otimes b_{i}\right\}
$$

then the natural map

$$
\left(M(A) \otimes M(A),\|\cdot\|_{h}\right) \rightarrow\left(\mathrm{CB}(A),\|\cdot\|_{c b}\right)
$$

given by

$$
\sum_{i} a_{i} \otimes b_{i} \mapsto \sum_{i} M_{a_{i}, b_{i}}
$$

is a well-defined contraction.

- Its continuous extension to the completed Haagerup tensor product $M(A) \otimes_{h} M(A)$ is known as a canonical contraction from $M(A) \otimes_{h} M(A)$ to $\mathrm{CB}(A)$ and is denoted by Θ_{A}.

Problem

When is Θ_{A} isometric or injective?

Remark

A necessary condition for the injectivity of Θ_{A} is that A is a prime C^{*}-algebra. Indeed, if A is not prime, then there are two non-zero ideals I and J of A such that $I J=\{0\}$. Choose any non-zero elements $a \in I$ and $b \in J$. Then $a \otimes b \neq 0$ in $M(A) \otimes_{h} M(A)$, while $\Theta_{A}(a \otimes b)=0$.

Remark

A necessary condition for the injectivity of Θ_{A} is that A is a prime C^{*}-algebra. Indeed, if A is not prime, then there are two non-zero ideals I and J of A such that $I J=\{0\}$. Choose any non-zero elements $a \in I$ and $b \in J$. Then $a \otimes b \neq 0$ in $M(A) \otimes_{h} M(A)$, while $\Theta_{A}(a \otimes b)=0$.

Theorem (Haagerup 1980)

Θ_{A} is isometric if $A=\mathrm{B}(\mathcal{H})$.

Remark

A necessary condition for the injectivity of Θ_{A} is that A is a prime C^{*}-algebra. Indeed, if A is not prime, then there are two non-zero ideals I and J of A such that $I J=\{0\}$. Choose any non-zero elements $a \in I$ and $b \in J$. Then $a \otimes b \neq 0$ in $M(A) \otimes_{h} M(A)$, while $\Theta_{A}(a \otimes b)=0$.

Theorem (Haagerup 1980)

Θ_{A} is isometric if $A=\mathrm{B}(\mathcal{H})$.

Theorem (Chatterjee-Sinclair 1992)

Θ_{A} is isometric if A is a separably-acting von Neumann factor.

Remark

A necessary condition for the injectivity of Θ_{A} is that A is a prime C^{*}-algebra. Indeed, if A is not prime, then there are two non-zero ideals I and J of A such that $I J=\{0\}$. Choose any non-zero elements $a \in I$ and $b \in J$. Then $a \otimes b \neq 0$ in $M(A) \otimes_{h} M(A)$, while $\Theta_{A}(a \otimes b)=0$.

Theorem (Haagerup 1980)

Θ_{A} is isometric if $A=\mathrm{B}(\mathcal{H})$.

Theorem (Chatterjee-Sinclair 1992)

Θ_{A} is isometric if A is a separably-acting von Neumann factor.
Theorem (Mathieu 2003)
Let A be a C^{*}-algebra. TFAE:
(i) Θ_{A} is isometric.
(ii) Θ_{A} is injective.
(iii) A is a prime C^{*}-algebra.

Preliminaries

- Throughout, X will be a (right) Hilbert module over a C^{*}-algebra A.

Preliminaries

- Throughout, X will be a (right) Hilbert module over a C^{*}-algebra A.
- By $\langle X, X\rangle$ we denote the closed linear span of the set $\{\langle x, y\rangle: x, y \in X\}$. Clearly, $\langle X, X\rangle$ is an ideal of A. If $\langle X, X\rangle=A, X$ is said to be full and if $\langle X, X\rangle$ is an essential ideal of A we say that X is essentially full.

Preliminaries

- Throughout, X will be a (right) Hilbert module over a C^{*}-algebra A.
- By $\langle X, X\rangle$ we denote the closed linear span of the set $\{\langle x, y\rangle: x, y \in X\}$. Clearly, $\langle X, X\rangle$ is an ideal of A. If $\langle X, X\rangle=A, X$ is said to be full and if $\langle X, X\rangle$ is an essential ideal of A we say that X is essentially full.
- if Y is another Hilbert A-module, by $\mathbb{B}(X, Y)$ we denote the set of all adjointable operators from X to Y, that is those $u: X \rightarrow Y$ for which there is $u^{*}: Y \rightarrow X$ with the property

$$
\langle u x, y\rangle=\left\langle x, u^{*} y\right\rangle \quad \forall x \in X, y \in Y
$$

It is well-known that all adjointable operators are bounded and A-linear (i.e. $u(x a)=(u x) a$ for all $x \in X$ and $a \in A)$.

Preliminaries

- Throughout, X will be a (right) Hilbert module over a C^{*}-algebra A.
- By $\langle X, X\rangle$ we denote the closed linear span of the set $\{\langle x, y\rangle: x, y \in X\}$. Clearly, $\langle X, X\rangle$ is an ideal of A. If $\langle X, X\rangle=A, X$ is said to be full and if $\langle X, X\rangle$ is an essential ideal of A we say that X is essentially full.
- if Y is another Hilbert A-module, by $\mathbb{B}(X, Y)$ we denote the set of all adjointable operators from X to Y, that is those $u: X \rightarrow Y$ for which there is $u^{*}: Y \rightarrow X$ with the property

$$
\langle u x, y\rangle=\left\langle x, u^{*} y\right\rangle \quad \forall x \in X, y \in Y
$$

It is well-known that all adjointable operators are bounded and A-linear (i.e. $u(x a)=(u x) a$ for all $x \in X$ and $a \in A$).

- By $\mathbb{K}(X, Y)$ we denote the closed linear subspace of $\mathbb{B}(X, Y)$ generated by the maps $z \mapsto y\langle x, z\rangle(x \in X, y \in Y)$.

Preliminaries

- Throughout, X will be a (right) Hilbert module over a C^{*}-algebra A.
- By $\langle X, X\rangle$ we denote the closed linear span of the set $\{\langle x, y\rangle: x, y \in X\}$. Clearly, $\langle X, X\rangle$ is an ideal of A. If $\langle X, X\rangle=A, X$ is said to be full and if $\langle X, X\rangle$ is an essential ideal of A we say that X is essentially full.
- if Y is another Hilbert A-module, by $\mathbb{B}(X, Y)$ we denote the set of all adjointable operators from X to Y, that is those $u: X \rightarrow Y$ for which there is $u^{*}: Y \rightarrow X$ with the property

$$
\langle u x, y\rangle=\left\langle x, u^{*} y\right\rangle \quad \forall x \in X, y \in Y
$$

It is well-known that all adjointable operators are bounded and A-linear (i.e. $u(x a)=(u x) a$ for all $x \in X$ and $a \in A$).

- By $\mathbb{K}(X, Y)$ we denote the closed linear subspace of $\mathbb{B}(X, Y)$ generated by the maps $z \mapsto y\langle x, z\rangle(x \in X, y \in Y)$.
- If $X=Y$ we write $\mathbb{B}(X)$ (or $\left.\mathbb{B}_{A}(X)\right)$ and $\mathbb{K}(X)$ (or $\mathbb{K}_{A}(X)$). Then $\mathbb{B}(X)$ is a C^{*}-algebra and $\mathbb{K}(X)$ is an essential ideal of $\mathbb{B}(X)$. Moreover, $\mathbb{B}(X)=M(\mathbb{K}(X))$.

The linking algebra of X is defined as $\mathcal{L}(X):=\mathbb{K}(A \oplus X)$. We can write $\mathcal{L}(X)=\left[\begin{array}{cc}\mathbb{K}(A) & \mathbb{K}(X, A) \\ \mathbb{K}(A, X) & \mathbb{K}(X)\end{array}\right]=\left\{\left[\begin{array}{cc}T_{a} & I_{y} \\ r_{x} & u\end{array}\right]: a \in A, x, y \in X, u \in \mathbb{K}(X)\right\}$, where $T_{a}(b)=a b$ and $r_{x}(b)=x b$ for all $b \in A$, while $l_{y}(z)=\langle y, z\rangle$ for all $z \in X$. Thereby, $a \mapsto T_{a}$ is an isomorphism of C^{*}-algebras A and $\mathbb{K}(A)$, $y \mapsto I_{y}$ is an isometric conjugate linear isomorphism between Banach spaces X and $\mathbb{K}(X, A)$, and $x \mapsto r_{x}$ is an isometric linear isomorphism between Banach spaces X and $\mathbb{K}(A, X)$.

The linking algebra of X is defined as $\mathcal{L}(X):=\mathbb{K}(A \oplus X)$. We can write $\mathcal{L}(X)=\left[\begin{array}{cc}\mathbb{K}(A) & \mathbb{K}(X, A) \\ \mathbb{K}(A, X) & \mathbb{K}(X)\end{array}\right]=\left\{\left[\begin{array}{cc}T_{a} & I_{y} \\ r_{x} & u\end{array}\right]: a \in A, x, y \in X, u \in \mathbb{K}(X)\right\}$, where $T_{a}(b)=a b$ and $r_{x}(b)=x b$ for all $b \in A$, while $I_{y}(z)=\langle y, z\rangle$ for all $z \in X$. Thereby, $a \mapsto T_{a}$ is an isomorphism of C^{*}-algebras A and $\mathbb{K}(A)$, $y \mapsto I_{y}$ is an isometric conjugate linear isomorphism between Banach spaces X and $\mathbb{K}(X, A)$, and $x \mapsto r_{X}$ is an isometric linear isomorphism between Banach spaces X and $\mathbb{K}(A, X)$.
Besides $\mathcal{L}(X)$, we need another subalgebra of $\mathbb{B}(A \oplus X)$, larger than $\mathcal{L}(X)$. We define an extended linking algebra of X as

$$
\begin{aligned}
\mathcal{L}_{\mathrm{ext}}(X) & =\left[\begin{array}{cc}
\mathbb{B}(A) & \mathbb{K}(X, A) \\
\mathbb{K}(A, X) & \mathbb{B}(X)
\end{array}\right] \\
& =\left\{\left[\begin{array}{ll}
T_{v} & l_{y} \\
r_{x} & u
\end{array}\right]: v \in M(A), x, y \in X, u \in \mathbb{B}(X)\right\}
\end{aligned}
$$

where, similarly as before, for $v \in M(A), T_{v}: A \rightarrow A$ is defined by $T_{v}(a)=v a$. It is easy to see that $\mathcal{L}_{\text {ext }}(X)$ is a C^{*}-subalgebra of $\mathbb{B}(A \oplus X)$ which contains $\mathcal{L}(X)$ as an essential ideal.

If X is a Hilbert A-module, we can introduce the operator space structure on X via the operator space structure of its linking algebra $\mathcal{L}(X)$ (or extended linking algebra $\mathcal{L}_{\text {ext }}(X)$), after identifying X as the $2-1$ corner in $\mathcal{L}(X)$ (or $\mathcal{L}_{\text {ext }}(X)$), via the isometric isomorphism $X \cong \mathbb{K}(A, X)$, $x \mapsto r_{x}$. That is, for all $n \in \mathbb{N}$ and $\left[x_{i j}\right] \in \mathrm{M}_{n}(X)$ we define

$$
\left.\left\|\left[x_{i j}\right]\right\|_{\mathrm{M}_{n}(X)}:=\left\|\left[\left[\begin{array}{cc}
0 & 0 \\
r_{x_{i j}} & 0
\end{array}\right]\right]\right\|_{\mathrm{M}_{n}(\mathcal{L}(X))}=\|\left[\begin{array}{cc}
0 & 0 \\
r_{x_{i j}} & 0
\end{array}\right]\right] \|_{\mathrm{M}_{n}\left(\mathcal{L}_{\mathrm{ext}}(X)\right)}
$$

so that the canonical embedding

$$
\iota_{X}: X \hookrightarrow \mathcal{L}_{\mathrm{ext}}(X), \quad \iota_{X}: x \mapsto\left[\begin{array}{cc}
0 & 0 \\
r_{X} & 0
\end{array}\right]
$$

becomes a complete isometry. This structure is called the canonical operator space structure on X.

Remark

- If B is any C^{*}-algebra that contains A as an ideal, then X can be also regarded as a Hilbert B-module with respect to the same inner product (which takes values in $A \subseteq B$), while the right action of B on X is defined as follows. For $x \in X, a \in A$ and $b \in B$, set

$$
(x a) b:=x(a b)
$$

Obviously, $\mathbb{B}_{B}(X)=\mathbb{B}_{A}(X)$ and $\mathbb{K}_{A}(X)=\mathbb{K}_{B}(X)$, so all $u \in \mathbb{B}_{A}(X)$ are also B-linear.

- In particular, by taking $B=M(A)$, any Hilbert A-module X can be regarded as a Hilbert $M(A)$-module. Now for all $u \in \mathbb{B}(X), x \in X$ and $v \in M(A)$ we have $u(x v)=(u x) v$, so in this way X becomes a Banach $\mathbb{B}(X)-M(A)$-bimodule (in particular, the product $u x v$ is unambiguously defined).
- Moreover, it is straightforward to check that each matrix space $\mathrm{M}_{n}(X)$ is a Banach $\mathrm{M}_{n}(\mathbb{B}(X))-\mathrm{M}_{n}(M(A))$-bimodule in the canonical way.

Elementary operators on Hilbert C^{*}-modules

We now extend the notion of elementary operators to Hilbert C^{*}-modules.
First of all, following the C^{*}-algebraic case, for each $u \in \mathbb{B}(X)$ and $v \in M(A)$ we define a map

$$
M_{u, v}: X \rightarrow X \quad \text { by } \quad M_{u, v}: x \mapsto u x v .
$$

Elementary operators on Hilbert C^{*}-modules

We now extend the notion of elementary operators to Hilbert C^{*}-modules.
First of all, following the C^{*}-algebraic case, for each $u \in \mathbb{B}(X)$ and $v \in M(A)$ we define a map

$$
M_{u, v}: X \rightarrow X \quad \text { by } \quad M_{u, v}: x \mapsto u x v .
$$

Definition

By an elementary operator on a Hilbert A-module X we mean a map
$\phi: X \rightarrow X$ for which there exists a finite number of elements $u_{1}, \ldots, u_{k} \in \mathbb{B}(X)$ and $v_{1}, \ldots, v_{k} \in M(A)$ such that

$$
\phi=\sum_{i=1}^{k} M_{u_{i}, v_{i}}
$$

Remark

If a C^{*}-algebra A is considered as a Hilbert A-module in the standard way, then $\mathbb{B}(A)$ and $M(A)$ coincide, so elementary operators on A, as a Hilbert A-module, agree with the usual notion of elementary operators on A.

Remark

If a C^{*}-algebra A is considered as a Hilbert A-module in the standard way, then $\mathbb{B}(A)$ and $M(A)$ coincide, so elementary operators on A, as a Hilbert A-module, agree with the usual notion of elementary operators on A.

As in the C^{*}-algebraic case it is easy to see that any elementary operator ϕ on X is completely bounded. Moreover, if ϕ is represented as $\phi=\sum_{i} M_{u_{i}, v_{i}}$, then

$$
\|\phi\|_{c b} \leq\left\|\sum_{i} u_{i} \otimes v_{i}\right\|_{h}
$$

Remark

If a C^{*}-algebra A is considered as a Hilbert A-module in the standard way, then $\mathbb{B}(A)$ and $M(A)$ coincide, so elementary operators on A, as a Hilbert A-module, agree with the usual notion of elementary operators on A.

As in the C^{*}-algebraic case it is easy to see that any elementary operator ϕ on X is completely bounded. Moreover, if ϕ is represented as
$\phi=\sum_{i} M_{u_{i}, v_{i}}$, then

$$
\|\phi\|_{c b} \leq\left\|\sum_{i} u_{i} \otimes v_{i}\right\|_{h}
$$

Therefore, the mapping
$\left(\mathbb{B}(X) \otimes M(A),\|\cdot\|_{h}\right) \rightarrow\left(\mathrm{CB}(X),\|\cdot\|_{c b}\right) \quad$ given by $\quad \sum_{i} u_{i} \otimes v_{i} \mapsto \sum_{i} M_{u_{i}, v_{i}}$, is a well-defined contraction, so we can continuously extend it to the map

$$
\Theta_{X}:\left(\mathbb{B}(X) \otimes_{h} M(A),\|\cdot\|_{h}\right) \rightarrow\left(\operatorname{CB}(X),\|\cdot\|_{c b}\right)
$$

Theorem (Arambašić-G. 2020)

Let X be a non-zero Hilbert A-module. TFAE:
(i) Θ_{X} is isometric.
(ii) Θ_{x} is injective.
(iii) A is a prime C^{*}-algebra.

Theorem (Arambašić-G. 2020)

Let X be a non-zero Hilbert A-module. TFAE:
(i) Θ_{X} is isometric.
(ii) Θ_{x} is injective.
(iii) A is a prime C^{*}-algebra.

Lemma

For each map $\phi: X \rightarrow X$ we define a map

$$
\widetilde{\phi}: \mathcal{L}_{\text {ext }}(X) \rightarrow \mathcal{L}_{\text {ext }}(X) \quad \text { by } \quad \tilde{\phi}\left(\left[\begin{array}{ll}
T_{v} & I_{y} \\
r_{x} & u
\end{array}\right]\right):=\left[\begin{array}{cc}
0 & 0 \\
r_{\phi(x)} & 0
\end{array}\right] .
$$

(a) If $\phi \in \operatorname{CB}(X)$ then $\tilde{\phi} \in \operatorname{CB}\left(\mathcal{L}_{\text {ext }}(X)\right)$ and $\|\widetilde{\phi}\|_{c b}=\|\phi\|_{c b}$.
(b) For each $t \in \mathbb{B}(X) \otimes_{h} M(A)$ we have

$$
\widetilde{\Theta_{X}(t)}=\Theta_{\mathcal{L}_{\text {ext }}(X)}\left(\left(\iota_{\mathbb{B}(X)} \otimes \iota_{M(A)}\right)(t)\right) .
$$

We shall also need the following characterisations of Hilbert C^{*}-modules over prime C^{*}-algebras:

Proposition

Let X be a non-zero Hilbert A-module. TFAE:
(i) A is prime.
(ii) X is essentially full and $\mathbb{K}(X)$ is prime.
(iii) The linking algebra $\mathcal{L}(X)$ is prime.
(iv) The extended linking algebra $\mathcal{L}_{\text {ext }}(X)$ is prime.
(v) If $a \in A$ and $u \in \mathbb{K}(X)$ are such that $u x a=0$ for all $x \in X$, then $a=0$ or $u=0$.
(vi) X is essentially full and if $x_{1}, x_{2} \in X$ are such that $x_{1}\left\langle x, x_{2}\right\rangle=0$ for all $x \in X$, then $x_{1}=0$ or $x_{2}=0$.

We shall also need the following characterisations of Hilbert C^{*}-modules over prime C^{*}-algebras:

Proposition

Let X be a non-zero Hilbert A-module. TFAE:
(i) A is prime.
(ii) X is essentially full and $\mathbb{K}(X)$ is prime.
(iii) The linking algebra $\mathcal{L}(X)$ is prime.
(iv) The extended linking algebra $\mathcal{L}_{\text {ext }}(X)$ is prime.
(v) If $a \in A$ and $u \in \mathbb{K}(X)$ are such that $u x a=0$ for all $x \in X$, then $a=0$ or $u=0$.
(vi) X is essentially full and if $x_{1}, x_{2} \in X$ are such that $x_{1}\left\langle x, x_{2}\right\rangle=0$ for all $x \in X$, then $x_{1}=0$ or $x_{2}=0$.

Corollary

The primeness is an invariant property under Morita equivalence.

Proof of Theorem. (i) \Longrightarrow (ii). This is trivial.

Proof of Theorem. (i) \Longrightarrow (ii). This is trivial.
(ii) \Longrightarrow (iii). Assume that A is not prime. Then there are non-zero elements $u \in \mathbb{K}(X)$ and $a \in A$ such that $u x a=0$ for all $x \in X$. Then $u \otimes a$ is a non-zero tensor in $\mathbb{K}(X) \otimes A \subseteq \mathbb{B}(X) \otimes M(A)$ but $\Theta_{X}(u \otimes a)(x)=u x a=0$ for all $x \in X$.

Proof of Theorem. (i) \Longrightarrow (ii). This is trivial.
(ii) \Longrightarrow (iii). Assume that A is not prime. Then there are non-zero elements $u \in \mathbb{K}(X)$ and $a \in A$ such that $u x a=0$ for all $x \in X$. Then $u \otimes a$ is a non-zero tensor in $\mathbb{K}(X) \otimes A \subseteq \mathbb{B}(X) \otimes M(A)$ but $\Theta_{X}(u \otimes a)(x)=u x a=0$ for all $x \in X$.
(iii) \Longrightarrow (i). Since the canonical embeddings $\iota_{\mathbb{B}}(X): \mathbb{B}(X) \hookrightarrow \mathcal{L}_{\text {ext }}(X)$ and ${ }^{\iota} M(A): M(A) \hookrightarrow \mathcal{L}_{\text {ext }}(X)$ are completely isometric, the injectivity of the Haagerup tensor product implies

$$
\left\|\left(\iota_{\mathbb{B}}(X) \otimes \iota_{M(A)}\right)(t)\right\|_{h}=\|t\|_{h} \quad \forall t \in \mathbb{B}(X) \otimes_{h} M(A)
$$

If A is a prime C^{*}-algebra, then $\mathcal{L}_{\text {ext }}(X)$ is also prime, so Mathieu's theorem implies

$$
\left\|\Theta_{\mathcal{L}_{\mathrm{ext}}(X)}\left(t^{\prime}\right)\right\|_{c b}=\left\|t^{\prime}\right\|_{h} \quad \forall t^{\prime} \in \mathcal{L}_{\mathrm{ext}}(X) \otimes_{h} \mathcal{L}_{\mathrm{ext}}(X)
$$

Hence, for all $t \in \mathbb{B}(X) \otimes_{h} M(A)$ we have

$$
\begin{aligned}
\left\|\Theta_{X}(t)\right\|_{c b} & =\left\|\widetilde{\Theta_{X}(t)}\right\|_{c b}=\left\|\Theta_{\mathcal{L}_{\text {ext }}(X)}\left(\left(\iota_{\mathbb{B}(X)} \otimes \iota_{M(A)}\right)(t)\right)\right\|_{c b} \\
& =\left\|\left(\iota_{\mathbb{B}(X)} \otimes \iota_{M(A)}\right)(t)\right\|_{h}=\|t\|_{h} .
\end{aligned}
$$

Thus, Θ_{X} is isometric.

Some open problems

Problem

If the underlying C^{*}-algebra A of X is not prime (so that Θ_{X} is non-injective), can we describe the kernel of Θ_{x} ?

Some open problems

Problem

If the underlying C^{*}-algebra A of X is not prime (so that Θ_{X} is non-injective), can we describe the kernel of Θ_{x} ?

Problem

When is the set of elementary operators on X closed as a subset of $\mathrm{CB}(X)$? (Comment: this is still not completely solved in the C^{*}-algebraic case.)

Some open problems

Problem

If the underlying C^{*}-algebra A of X is not prime (so that Θ_{X} is non-injective), can we describe the kernel of Θ_{x} ?

Problem

When is the set of elementary operators on X closed as a subset of $\mathrm{CB}(X)$? (Comment: this is still not completely solved in the C^{*}-algebraic case.)

Problem

By a beautiful result due to Archbold, Mathieu and Somerset from 1999 we know that for any elementary operator ϕ on a C^{*}-algebra A we have $\|\phi\|_{c b}=\|\phi\|$ if and only if A is an extension of an antiliminal C^{*}-algebra by an abelian one. Can we generalize this result in the context of Hilbert C^{*}-modules?

