When are the two-sided multiplication maps norm closed?

Ilja Gogić

TRINITY COLLEGE DUBLIN
 COLÁISTE NA TRÍONÓIDE, BAILE ÁTHA CLIATH

THE
UNIVERSITY
OF DUBLIN

> Canadian Operator Theory Symposium University of Waterloo, Ontario, Canada June 15-19, 2015
(joint work in progress with Richard M. Timoney)

Throughout, A will be a C^{*}-algebra with the multiplier algebra $M(A)$.

Throughout, A will be a C^{*}-algebra with the multiplier algebra $M(A)$.

Let $\operatorname{IB}(A)$ be the set of all bounded maps $\phi: A \rightarrow A$ that preserve (closed two-sided) ideals of A, i.e. $\phi(I) \subseteq I$ for all ideals I of A.

- For any ideal I of A, ϕ induces a map $\phi_{I}: A / I \rightarrow A / I$ which sends $a+I$ to $\phi(a)+I$.
- If S is any subset of ideals of A with zero intersection, the norm of ϕ can be computed by the formula $\|\phi\|=\sup \left\{\left\|\phi_{I}\right\|: I \in S\right\}$.

Throughout, A will be a C^{*}-algebra with the multiplier algebra $M(A)$.

Let $\operatorname{IB}(A)$ be the set of all bounded maps $\phi: A \rightarrow A$ that preserve (closed two-sided) ideals of A, i.e. $\phi(I) \subseteq I$ for all ideals I of A.

- For any ideal I of A, ϕ induces a map $\phi_{I}: A / I \rightarrow A / I$ which sends $a+I$ to $\phi(a)+I$.
- If S is any subset of ideals of A with zero intersection, the norm of ϕ can be computed by the formula $\|\phi\|=\sup \left\{\left\|\phi_{I}\right\|: I \in S\right\}$.

The most prominent class of maps $\phi \in \operatorname{IB}(A)$ are the elementary operators, i.e. those that can be expressed as finite sums of two-sided multiplication maps $M_{a, b}: x \mapsto a x b$, where a and b are elements of $M(A)$.

Throughout, A will be a C^{*}-algebra with the multiplier algebra $M(A)$.

Let $\operatorname{IB}(A)$ be the set of all bounded maps $\phi: A \rightarrow A$ that preserve (closed two-sided) ideals of A, i.e. $\phi(I) \subseteq I$ for all ideals I of A.

- For any ideal I of A, ϕ induces a map $\phi_{I}: A / I \rightarrow A / I$ which sends $a+I$ to $\phi(a)+I$.
- If S is any subset of ideals of A with zero intersection, the norm of ϕ can be computed by the formula $\|\phi\|=\sup \left\{\left\|\phi_{I}\right\|: I \in S\right\}$.

The most prominent class of maps $\phi \in \operatorname{IB}(A)$ are the elementary operators, i.e. those that can be expressed as finite sums of two-sided multiplication maps $M_{a, b}: x \mapsto a x b$, where a and b are elements of $M(A)$.

By $\operatorname{TM}(A)$ and $\mathcal{E} \ell(A)$ we denote, respectively, the set of all two-sided multiplication maps and all elementary operators on A.

In fact, elementary operators are completely bounded and

$$
\begin{equation*}
\left\|\sum_{i} M_{a_{i}, b_{i}}\right\|_{c b} \leq\left\|\sum_{i} a_{i} \otimes b_{i}\right\|_{h} \tag{1}
\end{equation*}
$$

where $\|\cdot\|_{h}$ is the Haagerup tensor norm on $M(A) \otimes M(A)$, i.e.

$$
\|t\|_{h}=\inf \left\{\left\|\sum_{i} a_{i} a_{i}^{*}\right\|^{\frac{1}{2}}\left\|\sum_{i} b_{i}^{*} b_{i}\right\|^{\frac{1}{2}}: t=\sum_{i} a_{i} \otimes b_{i}\right\}
$$

In fact, elementary operators are completely bounded and

$$
\begin{equation*}
\left\|\sum_{i} M_{a_{i}, b_{i}}\right\|_{c b} \leq\left\|\sum_{i} a_{i} \otimes b_{i}\right\|_{h} \tag{1}
\end{equation*}
$$

where $\|\cdot\|_{h}$ is the Haagerup tensor norm on $M(A) \otimes M(A)$, i.e.

$$
\|t\|_{h}=\inf \left\{\left\|\sum_{i} a_{i} a_{i}^{*}\right\|^{\frac{1}{2}}\left\|\sum_{i} b_{i}^{*} b_{i}\right\|^{\frac{1}{2}}: t=\sum_{i} a_{i} \otimes b_{i}\right\}
$$

Theorem (Haagerup 1980, Chatterjee-Sinclair 1992, Mathieu 2003)
The equality in (1) holds true for all elementary operators $\phi=\sum_{i} M_{a_{i}, b_{i}}$ if and only if A is a prime C^{*}-algebra.

In fact, elementary operators are completely bounded and

$$
\begin{equation*}
\left\|\sum_{i} M_{a_{i}, b_{i}}\right\|_{c b} \leq\left\|\sum_{i} a_{i} \otimes b_{i}\right\|_{h}, \tag{1}
\end{equation*}
$$

where $\|\cdot\|_{h}$ is the Haagerup tensor norm on $M(A) \otimes M(A)$, i.e.

$$
\|t\|_{h}=\inf \left\{\left\|\sum_{i} a_{i} a_{i}^{*}\right\|^{\frac{1}{2}}\left\|\sum_{i} b_{i}^{*} b_{i}\right\|^{\frac{1}{2}}: t=\sum_{i} a_{i} \otimes b_{i}\right\}
$$

Theorem (Haagerup 1980, Chatterjee-Sinclair 1992, Mathieu 2003)
The equality in (1) holds true for all elementary operators $\phi=\sum_{i} M_{a_{i}, b_{i}}$ if and only if A is a prime C^{*}-algebra.

Remark

If the algebra A is not prime, then the map $a \otimes b \mapsto M_{a, b}$ is not even injective.

The length of an elementary operator $\phi \neq 0$ is the smallest positive integer $\ell=\ell(\phi)$ such that $\phi=\sum_{i=1}^{\ell} M_{a_{i}, b_{i}}$ for some $a_{i}, b_{i} \in M(A)$. We also define $\ell(0)=0$.

The length of an elementary operator $\phi \neq 0$ is the smallest positive integer $\ell=\ell(\phi)$ such that $\phi=\sum_{i=1}^{\ell} M_{a_{i}, b_{i}}$ for some $a_{i}, b_{i} \in M(A)$. We also define $\ell(0)=0$.

We write $\mathcal{E} \ell_{k}(A)$ for the set of all $\phi \in \mathcal{E} \ell(A)$ with $\ell(\phi) \leq k$. Thus $\mathcal{E} \ell_{1}(A)=\operatorname{TM}(A)$.

The length of an elementary operator $\phi \neq 0$ is the smallest positive integer $\ell=\ell(\phi)$ such that $\phi=\sum_{i=1}^{\ell} M_{a_{i}, b_{i}}$ for some $a_{i}, b_{i} \in M(A)$. We also define $\ell(0)=0$.

We write $\mathcal{E} \ell_{k}(A)$ for the set of all $\phi \in \mathcal{E} \ell(A)$ with $\ell(\phi) \leq k$. Thus $\mathcal{E} \ell_{1}(A)=\operatorname{TM}(A)$.

Theorem (Timoney 2003, 2007)
For every $\phi \in \mathcal{E} \ell(A)$ we have

$$
\|\phi\|_{c b}=\left\|\phi \otimes \mathrm{id}_{\mathbb{M}_{\ell(\phi)}}\right\| \leq \sqrt{\ell(\phi)}\|\phi\|
$$

The length of an elementary operator $\phi \neq 0$ is the smallest positive integer $\ell=\ell(\phi)$ such that $\phi=\sum_{i=1}^{\ell} M_{a_{i}, b_{i}}$ for some $a_{i}, b_{i} \in M(A)$. We also define $\ell(0)=0$.

We write $\mathcal{E} \ell_{k}(A)$ for the set of all $\phi \in \mathcal{E} \ell(A)$ with $\ell(\phi) \leq k$. Thus $\mathcal{E} \ell_{1}(A)=\operatorname{TM}(A)$.

Theorem (Timoney 2003, 2007)
For every $\phi \in \mathcal{E} \ell(A)$ we have

$$
\|\phi\|_{c b}=\left\|\phi \otimes \mathrm{id}_{\mathbb{M}_{\ell(\phi)}}\right\| \leq \sqrt{\ell(\phi)}\|\phi\|
$$

Corollary

On each set $\mathcal{E} \ell_{k}(A)$ the cb-norm is equivalent to the operator norm.

Question

Which operators $\phi \in \operatorname{IB}(A)$ can be approximated by elementary operators in the operator norm?

Question

Which operators $\phi \in \operatorname{IB}(A)$ can be approximated by elementary operators in the operator norm?

Theorem (Magajna 2009)

If A is a separable C^{*}-algebra A, then $\mathcal{E} \ell(A)$ is operator norm dense in $\operatorname{IB}(A)$ if and only if A can be decomposed as a finite direct sum $A=A_{1} \oplus \cdots \oplus A_{n}$, where each summand A_{i} is homogeneous with the finite type property. In particular, in this case we have $\operatorname{IB}(A)=\mathcal{E} \ell(A)$.

Question

Which operators $\phi \in \operatorname{IB}(A)$ can be approximated by elementary operators in the operator norm?

Theorem (Magajna 2009)

If A is a separable C^{*}-algebra A, then $\mathcal{E} \ell(A)$ is operator norm dense in $\operatorname{IB}(A)$ if and only if A can be decomposed as a finite direct sum $A=A_{1} \oplus \cdots \oplus A_{n}$, where each summand A_{i} is homogeneous with the finite type property. In particular, in this case we have $\operatorname{IB}(A)=\mathcal{E} \ell(A)$.

Remark

- Recall that a well-known theorem of Fell and Tomiyama-Takesaki asserts that for any n-homogeneous C^{*}-algebra A with (primitive) spectrum X there is a locally trivial bundle \mathcal{E} over X with fibre \mathbb{M}_{n} and structure group $P U(n)=\operatorname{Aut}\left(\mathbb{M}_{n}\right)$ such that A is isomorphic to the algebra $\Gamma_{0}(\mathcal{E})$ of sections of \mathcal{E} which vanish at infinity.

Remark (continuation)

- Moreover, any two such algebras $A_{i}=\Gamma_{0}\left(\mathcal{E}_{i}\right)$ with spectra X_{i} are isomorphic if and only if there is a homeomorphism $f: X_{1} \rightarrow X_{2}$ such that $\mathcal{E}_{1} \cong f^{*}\left(\mathcal{E}_{2}\right)$ as bundles over X_{1}.
- An n-homogeneous C^{*}-algebra $\Gamma_{0}(\mathcal{E})$ with spectrum X is said to have the finite type property if \mathcal{E} can be trivialized over some finite open cover of X.

Remark (continuation)

- Moreover, any two such algebras $A_{i}=\Gamma_{0}\left(\mathcal{E}_{i}\right)$ with spectra X_{i} are isomorphic if and only if there is a homeomorphism $f: X_{1} \rightarrow X_{2}$ such that $\mathcal{E}_{1} \cong f^{*}\left(\mathcal{E}_{2}\right)$ as bundles over X_{1}.
- An n-homogeneous C^{*}-algebra $\Gamma_{0}(\mathcal{E})$ with spectrum X is said to have the finite type property if \mathcal{E} can be trivialized over some finite open cover of X.

Theorem (G. 2011)

Let A be a separable C^{*}-algebra.
(a) If $\mathcal{E} \ell(A)$ is norm closed, then A is necessarily subhomogeneous and each homogeneous sub-quotient of A has the finite type property.
(b) The converse is also true if $\operatorname{Prim}(A)$ is Hausdorff.
(c) There exists a compact subset X of \mathbb{R} and a unital C^{*}-subalgebra A of $C\left(X, \mathbb{M}_{2}\right)$ with trivial homogeneous sub-quotients such that $\mathcal{E} \ell(A)$ is not norm closed.

Problem

Describe the operator norm closure $\overline{\operatorname{TM}(A)}$.

Problem

Describe the operator norm closure $\overline{\overline{\operatorname{TM}(A)}}$.

Lemma (G., Timoney 2015)
Let a, b, c and d be norm-one elements of an operator space V. If

$$
\|a \otimes b-c \otimes d\|_{h}<\varepsilon \leq 1 / 9
$$

then there exists a complex number λ such that $|\lambda|=1$ and

$$
\max \{\|a-\lambda c\|,\|b-\bar{\lambda} d\|\}<9 \varepsilon
$$

Problem

Describe the operator norm closure $\overline{\overline{\mathrm{TM}(A)}}$.

Lemma (G., Timoney 2015)
Let a, b, c and d be norm-one elements of an operator space V. If

$$
\|a \otimes b-c \otimes d\|_{h}<\varepsilon \leq 1 / 9
$$

then there exists a complex number λ such that $|\lambda|=1$ and

$$
\max \{\|a-\lambda c\|,\|b-\bar{\lambda} d\|\}<9 \varepsilon
$$

Corollary

If A is a prime C^{*}-algebra, then $\operatorname{TM}(A)$ is norm closed.

Let us now consider what happens when $A=C_{0}\left(X, \mathbb{M}_{n}\right)$, where X is a locally compact Hausdorff space.

- In this case $\operatorname{Prim}(A)=X\left(\operatorname{via} x \leftrightarrow C_{0}\left(X \backslash\{x\}, \mathbb{M}_{n}\right)\right.$. As usual we write A_{x} for $A /\left(C_{0}\left(X \backslash\{x\}, \mathbb{M}_{n}\right) \cong \mathbb{M}_{n}\right.$ and q_{x} for the corresponding quotient map.
- $\operatorname{IB}(A)=\mathcal{E} \ell(A)$ can be identified with $C_{b}\left(X, \mathrm{~B}\left(\mathbb{M}_{n}\right)\right)$ by mapping which sends $\phi \in \operatorname{IB}(A)$ to $x \mapsto \phi_{x}=q_{x} \circ \phi$.

Let us now consider what happens when $A=C_{0}\left(X, \mathbb{M}_{n}\right)$, where X is a locally compact Hausdorff space.

- In this case $\operatorname{Prim}(A)=X\left(\operatorname{via} x \leftrightarrow C_{0}\left(X \backslash\{x\}, \mathbb{M}_{n}\right)\right.$. As usual we write A_{x} for $A /\left(C_{0}\left(X \backslash\{x\}, \mathbb{M}_{n}\right) \cong \mathbb{M}_{n}\right.$ and q_{x} for the corresponding quotient map.
- $\operatorname{IB}(A)=\mathcal{E} \ell(A)$ can be identified with $C_{b}\left(X, \mathrm{~B}\left(\mathbb{M}_{n}\right)\right)$ by mapping which sends $\phi \in \operatorname{IB}(A)$ to $x \mapsto \phi_{x}=q_{x} \circ \phi$.

Notation

- $\operatorname{IB}_{1}(A):=\left\{\phi \in \operatorname{IB}(A): \phi_{x} \in \operatorname{TM}\left(A_{x}\right)\right.$ for all $\left.x \in X\right\}$.
- $\operatorname{IB}_{1}^{\text {nv }}(A):=\left\{\phi \in \operatorname{IB}_{1}(A): \phi_{x} \neq 0\right.$ for all $\left.x \in X\right\}$.

Let us now consider what happens when $A=C_{0}\left(X, \mathbb{M}_{n}\right)$, where X is a locally compact Hausdorff space.

- In this case $\operatorname{Prim}(A)=X\left(\operatorname{via} x \leftrightarrow C_{0}\left(X \backslash\{x\}, \mathbb{M}_{n}\right)\right.$. As usual we write A_{x} for $A /\left(C_{0}\left(X \backslash\{x\}, \mathbb{M}_{n}\right) \cong \mathbb{M}_{n}\right.$ and q_{x} for the corresponding quotient map.
- $\operatorname{IB}(A)=\mathcal{E} \ell(A)$ can be identified with $C_{b}\left(X, \mathrm{~B}\left(\mathbb{M}_{n}\right)\right)$ by mapping which sends $\phi \in \operatorname{IB}(A)$ to $x \mapsto \phi_{x}=q_{x} \circ \phi$.

Notation

- $\operatorname{IB}_{1}(A):=\left\{\phi \in \operatorname{IB}(A): \phi_{x} \in \operatorname{TM}\left(A_{x}\right)\right.$ for all $\left.x \in X\right\}$.
- $\operatorname{IB}_{1}^{\text {nv }}(A):=\left\{\phi \in \operatorname{IB}_{1}(A): \phi_{x} \neq 0\right.$ for all $\left.x \in X\right\}$.

Corollary

If $A=C_{0}\left(X, \mathbb{M}_{n}\right)$, then $\overline{\overline{\operatorname{TM}(A)}} \subseteq \operatorname{IB}_{1}(A)$.

Let us now consider what happens when $A=C_{0}\left(X, \mathbb{M}_{n}\right)$, where X is a locally compact Hausdorff space.

- In this case $\operatorname{Prim}(A)=X\left(\operatorname{via} x \leftrightarrow C_{0}\left(X \backslash\{x\}, \mathbb{M}_{n}\right)\right.$. As usual we write A_{x} for $A /\left(C_{0}\left(X \backslash\{x\}, \mathbb{M}_{n}\right) \cong \mathbb{M}_{n}\right.$ and q_{x} for the corresponding quotient map.
- $\operatorname{IB}(A)=\mathcal{E} \ell(A)$ can be identified with $C_{b}\left(X, \mathrm{~B}\left(\mathbb{M}_{n}\right)\right)$ by mapping which sends $\phi \in \operatorname{IB}(A)$ to $x \mapsto \phi_{x}=q_{x} \circ \phi$.

Notation

- $\operatorname{IB}_{1}(A):=\left\{\phi \in \operatorname{IB}(A): \phi_{x} \in \operatorname{TM}\left(A_{x}\right)\right.$ for all $\left.x \in X\right\}$.
- $\operatorname{IB}_{1}^{\mathrm{nv}}(A):=\left\{\phi \in \mathrm{IB}_{1}(A): \phi_{x} \neq 0\right.$ for all $\left.x \in X\right\}$.

Corollary

If $A=C_{0}\left(X, \mathbb{M}_{n}\right)$, then $\overline{\overline{\operatorname{TM}(A)}} \subseteq \operatorname{IB}_{1}(A)$.

Question

Do we always have $\overline{\overline{\operatorname{TM}(A)}}=\mathrm{IB}_{1}(A)$?

Theorem (G., Timoney 2015)

Let $A=C_{0}\left(X, \mathbb{M}_{n}\right)$, where X is a locally compact Hausdorff space.
(a) To every operator $\phi \in \operatorname{IB}_{1}^{\text {nv }}(A)$ we can associate a complex line subbundle \mathcal{L}_{ϕ} of $X \times \mathbb{M}_{n}$ with the property that $\phi \in \mathrm{TM}(A)$ if and only if \mathcal{L}_{ϕ} is a trivial bundle.
(b) To every complex line subbundle \mathcal{E} of $X \times \mathbb{M}_{n}$ we can associate an operator $\phi_{\mathcal{E}} \in \mathrm{IB}_{1}^{\text {nv }}(A)$ such that $\mathcal{L}_{\phi_{\mathcal{E}}} \cong \mathcal{E}$.

Theorem (G., Timoney 2015)

Let $A=C_{0}\left(X, \mathbb{M}_{n}\right)$, where X is a locally compact Hausdorff space.
(a) To every operator $\phi \in \operatorname{IB}_{1}^{\text {nv }}(A)$ we can associate a complex line subbundle \mathcal{L}_{ϕ} of $X \times \mathbb{M}_{n}$ with the property that $\phi \in \operatorname{TM}(A)$ if and only if \mathcal{L}_{ϕ} is a trivial bundle.
(b) To every complex line subbundle \mathcal{E} of $X \times \mathbb{M}_{n}$ we can associate an operator $\phi_{\mathcal{E}} \in \operatorname{IB}_{1}^{\text {nv }}(A)$ such that $\mathcal{L}_{\phi_{\mathcal{E}}} \cong \mathcal{E}$.

Corollary

If X is a paracompact (locally compact Hausdorff) space such that $H^{2}(X ; \mathbb{Z})=0$ (the second Čech cohomology), then for $A=C_{0}\left(X, \mathbb{M}_{n}\right)$ we have the inclusion $\operatorname{IB}_{1}^{\mathrm{nv}}(A) \subseteq \operatorname{TM}(A)$.

Example

Let \mathcal{E} be the Hopf fibration $\mathbb{S}^{1} \hookrightarrow \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}$ and let $n \geq 2$. We consider \mathbb{S}^{2} as the unit sphere in \mathbb{C}^{2} (where \mathbb{C}^{2} is equipped with the standard euclidian metric) and we realise $\mathbb{S}^{3} \subset \mathbb{M}_{n}$ as $\left\{z_{1} e_{11}+z_{2} e_{12}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}$. For a local section $e: U \rightarrow \mathbb{S}^{3}$ of the bundle $\mathcal{E}\left(U\right.$ is an open subset of $\left.\mathbb{S}^{2}\right)$ and $x \in X$ we define $\phi_{x} \in \mathcal{E} \ell_{1}\left(\mathbb{M}_{n}\right)$ by

$$
\phi_{x}(y):=e(x) y e(x)^{*} \quad\left(y \in \mathbb{M}_{n}\right) .
$$

Then $\phi \in \operatorname{IB}_{1}^{\mathrm{nv}}(A) \backslash \operatorname{TM}(A)$.

Example

Let \mathcal{E} be the Hopf fibration $\mathbb{S}^{1} \hookrightarrow \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}$ and let $n \geq 2$. We consider \mathbb{S}^{2} as the unit sphere in \mathbb{C}^{2} (where \mathbb{C}^{2} is equipped with the standard euclidian metric) and we realise $\mathbb{S}^{3} \subset \mathbb{M}_{n}$ as $\left\{z_{1} e_{11}+z_{2} e_{12}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}$. For a local section $e: U \rightarrow \mathbb{S}^{3}$ of the bundle $\mathcal{E}\left(U\right.$ is an open subset of $\left.\mathbb{S}^{2}\right)$ and $x \in X$ we define $\phi_{x} \in \mathcal{E} \ell_{1}\left(\mathbb{M}_{n}\right)$ by

$$
\phi_{x}(y):=e(x) y e(x)^{*} \quad\left(y \in \mathbb{M}_{n}\right) .
$$

Then $\phi \in \operatorname{IB}_{1}^{\mathrm{nv}}(A) \backslash \operatorname{TM}(A)$.

Corollary

If X is a second countable locally compact Hausdorff space, then for $A=C_{0}\left(X, \mathbb{M}_{n}\right)$ the following conditions are equivalent:
(a) $\mathrm{IB}_{1}(A)=\mathrm{TM}(A)$.
(b) For every open subset U, each complex line subbundle of $U \times \mathbb{M}_{n}$ is trival.

Theorem (G., Timoney 2015)

Let X be a second countable locally compact Hausdorff space and let $A=C_{0}\left(X, \mathbb{M}_{n}\right)$. For an operator $\phi \in \operatorname{IB}(A)$ the following two conditions are equivalent:
(a) $\phi \in \overline{\overline{\operatorname{TM}(A)}}$.
(b) If $U=\left\{x \in X: \phi_{x} \neq 0\right\}$, then $\mathcal{L}_{\phi \mid U}$ is trivial on each compact subset of U.

Theorem (G., Timoney 2015)

Let X be a second countable locally compact Hausdorff space and let $A=C_{0}\left(X, \mathbb{M}_{n}\right)$. For an operator $\phi \in \operatorname{IB}(A)$ the following two conditions are equivalent:
(a) $\phi \in \overline{\overline{\operatorname{TM}(A)}}$.
(b) If $U=\left\{x \in X: \phi_{x} \neq 0\right\}$, then $\mathcal{L}_{\phi \mid U}$ is trivial on each compact subset of U.

Definition

A locally trivial fibre bundle \mathcal{F} over a locally compact Hausdorff space X is said to be a phantom bundle if \mathcal{F} is not globally trivial, but is trivial on each compact subset of X.

Theorem (G., Timoney 2015)

Let X be a second countable locally compact Hausdorff space and let $A=C_{0}\left(X, \mathbb{M}_{n}\right)$. For an operator $\phi \in \operatorname{IB}(A)$ the following two conditions are equivalent:
(a) $\phi \in \overline{\overline{\operatorname{TM}(A)}}$.
(b) If $U=\left\{x \in X: \phi_{x} \neq 0\right\}$, then $\mathcal{L}_{\phi \mid U}$ is trivial on each compact subset of U.

Definition

A locally trivial fibre bundle \mathcal{F} over a locally compact Hausdorff space X is said to be a phantom bundle if \mathcal{F} is not globally trivial, but is trivial on each compact subset of X.

Corollary

If $A=C_{0}\left(X, \mathbb{M}_{n}\right)$ as above, then $\operatorname{TM}(A)$ is not uniformly closed if and only if there exists an open subset U of X and a phantom complex line subbundle of $U \times \mathbb{M}_{n}$.

Example

If $A=C\left(\mathbb{S}^{2}, \mathbb{M}_{n}\right)(n \geq 2)$, then the operator ϕ defined by the Hopf fibration shows that in general $\overline{\overline{\mathrm{TM}}(A)} \subsetneq \mathrm{IB}_{1}(A)$.

Example

If $A=C\left(\mathbb{S}^{2}, \mathbb{M}_{n}\right)(n \geq 2)$, then the operator ϕ defined by the Hopf fibration shows that in general $\overline{\overline{\mathrm{TM}(A)}} \subsetneq \mathrm{IB}_{1}(A)$.

Example

Let X be the Eilenberg-MacLane space $K(\mathbb{Q}, 1)$.

- The standard model of X is a mapping telescope of the sequence

$$
\mathbb{S}^{1} \xrightarrow{z} \mathbb{S}^{1} \xrightarrow{z^{2}} \mathbb{S}^{1} \xrightarrow{z^{3}} \cdots
$$

- Applying $H_{1}(-; \mathbb{Z})$ to the levels of this mapping telescope gives the system

$$
\mathbb{Z} \xrightarrow{\times 1} \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\times 3} \cdots
$$

The colimit of this system is $H_{1}(X ; \mathbb{Z})=\mathbb{Q}$ and all other (integral) homology is trivial.

- By the universal coefficient theorem, each integral cohomology group of X is trivial except for $H^{2}(X ; \mathbb{Z})$ which is isomorphic to $\operatorname{Ext}(\mathbb{Q}, \mathbb{Z})$.

Example (continuation)

- In particular, $H^{2}(X ; \mathbb{Z})$ is non-trivial. Let \mathcal{E} be a line bundle defined by some non-zero class of $H^{2}(X ; \mathbb{Z})$. Then \mathcal{E} is a phantom bundle, since the restriction of \mathcal{E} to each finite subcomplex of X is trivial.
- Since (the standard model of) X is a 2-complex, \mathcal{E} is a direct summand of a trivial bundle $X \times \mathbb{C}^{2}$. Hence, $\operatorname{TM}\left(C_{0}\left(X, \mathbb{M}_{2}\right)\right)$ is not uniformly closed.

Example (continuation)

- In particular, $H^{2}(X ; \mathbb{Z})$ is non-trivial. Let \mathcal{E} be a line bundle defined by some non-zero class of $H^{2}(X ; \mathbb{Z})$. Then \mathcal{E} is a phantom bundle, since the restriction of \mathcal{E} to each finite subcomplex of X is trivial.
- Since (the standard model of) X is a 2-complex, \mathcal{E} is a direct summand of a trivial bundle $X \times \mathbb{C}^{2}$. Hence, $\operatorname{TM}\left(C_{0}\left(X, \mathbb{M}_{2}\right)\right)$ is not uniformly closed.

Moreover, Prof. Mladen Bestvina (University of Utah) informed us that $K(\mathbb{Q}, 1)$ is homotopy equivalent to an open subset of \mathbb{R}^{3}. As a consequence of this we get:

Corollary

(a) For any open subset U of $\mathbb{R}^{3}, \operatorname{TM}\left(C_{0}\left(U, \mathbb{M}_{2}\right)\right)$ is not uniformly closed.
(b) In fact, $d=3$ is the smallest possible dimension with the following property: there exists an open subset U of \mathbb{R}^{d} such that $\mathrm{TM}\left(C_{0}\left(U, \mathbb{M}_{n}\right)\right)$ is not uniformly closed for some n.

