When are the two-sided multiplication maps norm closed?

Ilja Gogić

Canadian Operator Theory Symposium University of Waterloo, Ontario, Canada June 15–19, 2015

(joint work in progress with Richard M. Timoney)

Let IB(A) be the set of all bounded maps $\phi : A \to A$ that preserve (closed two-sided) ideals of A, i.e. $\phi(I) \subseteq I$ for all ideals I of A.

- For any ideal *I* of *A*, φ induces a map φ_I : *A*/*I* → *A*/*I* which sends a + *I* to φ(a) + *I*.
- If S is any subset of ideals of A with zero intersection, the norm of φ can be computed by the formula ||φ|| = sup{||φ_I|| : I ∈ S}.

Let IB(A) be the set of all bounded maps $\phi : A \to A$ that preserve (closed two-sided) ideals of A, i.e. $\phi(I) \subseteq I$ for all ideals I of A.

- For any ideal *I* of *A*, φ induces a map φ_I : *A*/*I* → *A*/*I* which sends a + *I* to φ(a) + *I*.
- If S is any subset of ideals of A with zero intersection, the norm of φ can be computed by the formula ||φ|| = sup{||φ_I|| : I ∈ S}.

The most prominent class of maps $\phi \in IB(A)$ are the **elementary** operators, i.e. those that can be expressed as finite sums of **two-sided** multiplication maps $M_{a,b} : x \mapsto axb$, where *a* and *b* are elements of M(A).

Let IB(A) be the set of all bounded maps $\phi : A \to A$ that preserve (closed two-sided) ideals of A, i.e. $\phi(I) \subseteq I$ for all ideals I of A.

- For any ideal *I* of *A*, φ induces a map φ_I : *A*/*I* → *A*/*I* which sends a + *I* to φ(a) + *I*.
- If S is any subset of ideals of A with zero intersection, the norm of φ can be computed by the formula ||φ|| = sup{||φ_I|| : I ∈ S}.

The most prominent class of maps $\phi \in IB(A)$ are the **elementary** operators, i.e. those that can be expressed as finite sums of **two-sided** multiplication maps $M_{a,b} : x \mapsto axb$, where *a* and *b* are elements of M(A).

By TM(A) and $\mathcal{E}\ell(A)$ we denote, respectively, the set of all two-sided multiplication maps and all elementary operators on A.

Ilja Gogić (TCD)

Two-sided multiplication map

In fact, elementary operators are completely bounded and

$$\left\|\sum_{i} M_{a_{i},b_{i}}\right\|_{cb} \leq \left\|\sum_{i} a_{i} \otimes b_{i}\right\|_{h},$$
(1)

where $\|\cdot\|_h$ is the Haagerup tensor norm on $M(A)\otimes M(A)$, i.e.

$$||t||_h = \inf \left\{ \left\| \sum_i a_i a_i^* \right\|^{\frac{1}{2}} \left\| \sum_i b_i^* b_i \right\|^{\frac{1}{2}} : t = \sum_i a_i \otimes b_i \right\}.$$

In fact, elementary operators are completely bounded and

$$\left\|\sum_{i} M_{a_{i},b_{i}}\right\|_{cb} \leq \left\|\sum_{i} a_{i} \otimes b_{i}\right\|_{h}, \qquad (1)$$

where $\|\cdot\|_h$ is the Haagerup tensor norm on $M(A) \otimes M(A)$, i.e.

$$\|t\|_{h} = \inf \left\{ \left\| \sum_{i} a_{i}a_{i}^{*} \right\|^{\frac{1}{2}} \left\| \sum_{i} b_{i}^{*}b_{i} \right\|^{\frac{1}{2}} : t = \sum_{i} a_{i} \otimes b_{i} \right\}.$$

Theorem (Haagerup 1980, Chatterjee-Sinclair 1992, Mathieu 2003) The equality in (1) holds true for all elementary operators $\phi = \sum_{i} M_{a_i,b_i}$ if and only if A is a prime C*-algebra. In fact, elementary operators are completely bounded and

$$\left\|\sum_{i} M_{a_{i},b_{i}}\right\|_{cb} \leq \left\|\sum_{i} a_{i} \otimes b_{i}\right\|_{h}, \qquad (1)$$

where $\|\cdot\|_h$ is the Haagerup tensor norm on $M(A) \otimes M(A)$, i.e.

$$\|t\|_{h} = \inf \left\{ \left\| \sum_{i} a_{i} a_{i}^{*} \right\|^{\frac{1}{2}} \left\| \sum_{i} b_{i}^{*} b_{i} \right\|^{\frac{1}{2}} : t = \sum_{i} a_{i} \otimes b_{i} \right\}.$$

Theorem (Haagerup 1980, Chatterjee-Sinclair 1992, Mathieu 2003) The equality in (1) holds true for all elementary operators $\phi = \sum_{i} M_{a_i,b_i}$ if and only if A is a prime C*-algebra.

Remark

If the algebra A is not prime, then the map $a \otimes b \mapsto M_{a,b}$ is not even injective.

Ilja Gogić (TCD)

Two-sided multiplication map

We write $\mathcal{E}\ell_k(A)$ for the set of all $\phi \in \mathcal{E}\ell(A)$ with $\ell(\phi) \leq k$. Thus $\mathcal{E}\ell_1(A) = \mathrm{TM}(A)$.

We write $\mathcal{E}\ell_k(A)$ for the set of all $\phi \in \mathcal{E}\ell(A)$ with $\ell(\phi) \leq k$. Thus $\mathcal{E}\ell_1(A) = \mathrm{TM}(A)$.

Theorem (Timoney 2003, 2007)

For every $\phi \in \mathcal{E}\ell(A)$ we have

$$\|\phi\|_{cb} = \|\phi \otimes \mathrm{id}_{\mathbb{M}_{\ell(\phi)}}\| \le \sqrt{\ell(\phi)} \|\phi\|.$$

We write $\mathcal{E}\ell_k(A)$ for the set of all $\phi \in \mathcal{E}\ell(A)$ with $\ell(\phi) \leq k$. Thus $\mathcal{E}\ell_1(A) = \mathrm{TM}(A)$.

Theorem (Timoney 2003, 2007)

For every $\phi \in \mathcal{E}\ell(A)$ we have

$$\|\phi\|_{cb} = \|\phi \otimes \mathrm{id}_{\mathbb{M}_{\ell(\phi)}}\| \le \sqrt{\ell(\phi)} \|\phi\|.$$

Corollary

On each set $\mathcal{E}\ell_k(A)$ the cb-norm is equivalent to the operator norm.

Question

Which operators $\phi \in IB(A)$ can be approximated by elementary operators in the operator norm?

Question

Which operators $\phi \in IB(A)$ can be approximated by elementary operators in the operator norm?

Theorem (Magajna 2009)

If A is a separable C*-algebra A, then $\mathcal{E}\ell(A)$ is operator norm dense in IB(A) if and only if A can be decomposed as a finite direct sum $A = A_1 \oplus \cdots \oplus A_n$, where each summand A_i is homogeneous with the finite type property. In particular, in this case we have $IB(A) = \mathcal{E}\ell(A)$.

Question

Which operators $\phi \in IB(A)$ can be approximated by elementary operators in the operator norm?

Theorem (Magajna 2009)

If A is a separable C^* -algebra A, then $\mathcal{E}\ell(A)$ is operator norm dense in $\mathrm{IB}(A)$ if and only if A can be decomposed as a finite direct sum $A = A_1 \oplus \cdots \oplus A_n$, where each summand A_i is homogeneous with the finite type property. In particular, in this case we have $\mathrm{IB}(A) = \mathcal{E}\ell(A)$.

Remark

Recall that a well-known theorem of Fell and Tomiyama-Takesaki asserts that for any *n*-homogeneous C*-algebra A with (primitive) spectrum X there is a locally trivial bundle E over X with fibre M_n and structure group PU(n) = Aut(M_n) such that A is isomorphic to the algebra Γ₀(E) of sections of E which vanish at infinity.

Remark (continuation)

- Moreover, any two such algebras A_i = Γ₀(E_i) with spectra X_i are isomorphic if and only if there is a homeomorphism f : X₁ → X₂ such that E₁ ≅ f^{*}(E₂) as bundles over X₁.
- An *n*-homogeneous C*-algebra Γ₀(E) with spectrum X is said to have the **finite type property** if E can be trivialized over some finite open cover of X.

Remark (continuation)

- Moreover, any two such algebras A_i = Γ₀(E_i) with spectra X_i are isomorphic if and only if there is a homeomorphism f : X₁ → X₂ such that E₁ ≅ f^{*}(E₂) as bundles over X₁.
- An n-homogeneous C*-algebra Γ₀(E) with spectrum X is said to have the finite type property if E can be trivialized over some finite open cover of X.

Theorem (G. 2011)

Let A be a separable C^* -algebra.

- (a) If *El*(A) is norm closed, then A is necessarily subhomogeneous and each homogeneous sub-quotient of A has the finite type property.
- (b) The converse is also true if Prim(A) is Hausdorff.
- (c) There exists a compact subset X of \mathbb{R} and a unital C*-subalgebra A of $C(X, \mathbb{M}_2)$ with trivial homogeneous sub-quotients such that $\mathcal{E}\ell(A)$ is not norm closed.

Problem

Describe the operator norm closure $\overline{TM(A)}$.

Problem

Describe the operator norm closure $\overline{TM(A)}$.

Lemma (G., Timoney 2015)

Let a, b, c and d be norm-one elements of an operator space V. If

$$\|a \otimes b - c \otimes d\|_h < \varepsilon \le 1/9,$$

then there exists a complex number λ such that $|\lambda| = 1$ and

$$\max\{\|\boldsymbol{a}-\boldsymbol{\lambda}\boldsymbol{c}\|,\|\boldsymbol{b}-\overline{\boldsymbol{\lambda}}\boldsymbol{d}\|\}<9\varepsilon.$$

Problem

Describe the operator norm closure $\overline{TM(A)}$.

Lemma (G., Timoney 2015)

Let a, b, c and d be norm-one elements of an operator space V. If

 $\|\mathbf{a}\otimes\mathbf{b}-\mathbf{c}\otimes\mathbf{d}\|_{h}<\varepsilon\leq1/9,$

then there exists a complex number λ such that $|\lambda| = 1$ and

$$\max\{\|\boldsymbol{a}-\boldsymbol{\lambda}\boldsymbol{c}\|,\|\boldsymbol{b}-\overline{\boldsymbol{\lambda}}\boldsymbol{d}\|\}<9\varepsilon.$$

Corollary

If A is a prime C^* -algebra, then TM(A) is norm closed.

- In this case Prim(A) = X (via $x \leftrightarrow C_0(X \setminus \{x\}, \mathbb{M}_n)$). As usual we write A_x for $A/(C_0(X \setminus \{x\}, \mathbb{M}_n) \cong \mathbb{M}_n$ and q_x for the corresponding quotient map.
- $\operatorname{IB}(A) = \mathcal{E}\ell(A)$ can be identified with $C_b(X, \operatorname{B}(\mathbb{M}_n))$ by mapping which sends $\phi \in \operatorname{IB}(A)$ to $x \mapsto \phi_x = q_x \circ \phi$.

- In this case $\operatorname{Prim}(A) = X$ (via $x \leftrightarrow C_0(X \setminus \{x\}, \mathbb{M}_n)$). As usual we write A_x for $A/(C_0(X \setminus \{x\}, \mathbb{M}_n) \cong \mathbb{M}_n$ and q_x for the corresponding quotient map.
- $\operatorname{IB}(A) = \mathcal{E}\ell(A)$ can be identified with $C_b(X, \operatorname{B}(\mathbb{M}_n))$ by mapping which sends $\phi \in \operatorname{IB}(A)$ to $x \mapsto \phi_x = q_x \circ \phi$.

Notation

- $\operatorname{IB}_1(A) := \{ \phi \in \operatorname{IB}(A) : \phi_x \in \operatorname{TM}(A_x) \text{ for all } x \in X \}.$
- $\operatorname{IB}_1^{\operatorname{nv}}(A) := \{ \phi \in \operatorname{IB}_1(A) : \phi_x \neq 0 \text{ for all } x \in X \}.$

- In this case Prim(A) = X (via $x \leftrightarrow C_0(X \setminus \{x\}, \mathbb{M}_n)$). As usual we write A_x for $A/(C_0(X \setminus \{x\}, \mathbb{M}_n) \cong \mathbb{M}_n$ and q_x for the corresponding quotient map.
- $\operatorname{IB}(A) = \mathcal{E}\ell(A)$ can be identified with $C_b(X, \operatorname{B}(\mathbb{M}_n))$ by mapping which sends $\phi \in \operatorname{IB}(A)$ to $x \mapsto \phi_x = q_x \circ \phi$.

Notation

•
$$\operatorname{IB}_1(A) := \{ \phi \in \operatorname{IB}(A) : \phi_x \in \operatorname{TM}(A_x) \text{ for all } x \in X \}.$$

•
$$\operatorname{IB}_{1}^{\operatorname{nv}}(A) := \{ \phi \in \operatorname{IB}_{1}(A) : \phi_{x} \neq 0 \text{ for all } x \in X \}.$$

Corollary

If
$$A = C_0(X, \mathbb{M}_n)$$
, then $\overline{\mathrm{TM}(A)} \subseteq \mathrm{IB}_1(A)$.

- In this case Prim(A) = X (via $x \leftrightarrow C_0(X \setminus \{x\}, \mathbb{M}_n)$). As usual we write A_x for $A/(C_0(X \setminus \{x\}, \mathbb{M}_n) \cong \mathbb{M}_n$ and q_x for the corresponding quotient map.
- $\operatorname{IB}(A) = \mathcal{E}\ell(A)$ can be identified with $C_b(X, \operatorname{B}(\mathbb{M}_n))$ by mapping which sends $\phi \in \operatorname{IB}(A)$ to $x \mapsto \phi_x = q_x \circ \phi$.

Notation

•
$$\operatorname{IB}_1(A) := \{ \phi \in \operatorname{IB}(A) : \phi_x \in \operatorname{TM}(A_x) \text{ for all } x \in X \}.$$

•
$$\operatorname{IB}_1^{\operatorname{nv}}(A) := \{ \phi \in \operatorname{IB}_1(A) : \phi_x \neq 0 \text{ for all } x \in X \}.$$

Corollary

If
$$A = C_0(X, \mathbb{M}_n)$$
, then $\overline{\mathrm{TM}(A)} \subseteq \mathrm{IB}_1(A)$.

Question

Do we always have
$$\overline{\mathrm{TM}(A)} = \mathrm{IB}_1(A)$$
?

Let $A = C_0(X, \mathbb{M}_n)$, where X is a locally compact Hausdorff space.

- (a) To every operator φ ∈ IB₁^{nv}(A) we can associate a complex line subbundle L_φ of X × M_n with the property that φ ∈ TM(A) if and only if L_φ is a trivial bundle.
- (b) To every complex line subbundle \mathcal{E} of $X \times \mathbb{M}_n$ we can associate an operator $\phi_{\mathcal{E}} \in \operatorname{IB}_1^{\operatorname{nv}}(A)$ such that $\mathcal{L}_{\phi_{\mathcal{E}}} \cong \mathcal{E}$.

Let $A = C_0(X, \mathbb{M}_n)$, where X is a locally compact Hausdorff space.

- (a) To every operator $\phi \in \operatorname{IB}_1^{\operatorname{nv}}(A)$ we can associate a complex line subbundle \mathcal{L}_{ϕ} of $X \times \mathbb{M}_n$ with the property that $\phi \in \operatorname{TM}(A)$ if and only if \mathcal{L}_{ϕ} is a trivial bundle.
- (b) To every complex line subbundle ε of X × M_n we can associate an operator φ_ε ∈ IB^{nv}₁(A) such that L_{φ_ε} ≅ ε.

Corollary

If X is a paracompact (locally compact Hausdorff) space such that $H^2(X; \mathbb{Z}) = 0$ (the second Čech cohomology), then for $A = C_0(X, \mathbb{M}_n)$ we have the inclusion $\mathrm{IB}_1^{\mathrm{nv}}(A) \subseteq \mathrm{TM}(A)$.

Example

Let \mathcal{E} be the Hopf fibration $\mathbb{S}^1 \hookrightarrow \mathbb{S}^3 \twoheadrightarrow \mathbb{S}^2$ and let $n \ge 2$. We consider \mathbb{S}^2 as the unit sphere in \mathbb{C}^2 (where \mathbb{C}^2 is equipped with the standard euclidian metric) and we realise $\mathbb{S}^3 \subset \mathbb{M}_n$ as $\{z_1e_{11} + z_2e_{12} : |z_1|^2 + |z_2|^2 = 1\}$. For a local section $e: U \to \mathbb{S}^3$ of the bundle \mathcal{E} (U is an open subset of \mathbb{S}^2) and $x \in X$ we define $\phi_x \in \mathcal{E}\ell_1(\mathbb{M}_n)$ by

$$\phi_x(y) := e(x)ye(x)^* \quad (y \in \mathbb{M}_n).$$

Then $\phi \in \operatorname{IB}_1^{\operatorname{nv}}(A) \setminus \operatorname{TM}(A)$.

Example

Let \mathcal{E} be the Hopf fibration $\mathbb{S}^1 \hookrightarrow \mathbb{S}^3 \twoheadrightarrow \mathbb{S}^2$ and let $n \ge 2$. We consider \mathbb{S}^2 as the unit sphere in \mathbb{C}^2 (where \mathbb{C}^2 is equipped with the standard euclidian metric) and we realise $\mathbb{S}^3 \subset \mathbb{M}_n$ as $\{z_1e_{11} + z_2e_{12} : |z_1|^2 + |z_2|^2 = 1\}$. For a local section $e: U \to \mathbb{S}^3$ of the bundle \mathcal{E} (U is an open subset of \mathbb{S}^2) and $x \in X$ we define $\phi_x \in \mathcal{E}\ell_1(\mathbb{M}_n)$ by

$$\phi_x(y) := e(x)ye(x)^* \quad (y \in \mathbb{M}_n).$$

Then $\phi \in \operatorname{IB}_1^{\operatorname{nv}}(A) \setminus \operatorname{TM}(A)$.

Corollary

If X is a second countable locally compact Hausdorff space, then for $A = C_0(X, \mathbb{M}_n)$ the following conditions are equivalent:

(a) $IB_1(A) = TM(A)$.

(b) For every open subset U, each complex line subbundle of $U \times \mathbb{M}_n$ is trival.

Let X be a second countable locally compact Hausdorff space and let $A = C_0(X, \mathbb{M}_n)$. For an operator $\phi \in IB(A)$ the following two conditions are equivalent:

- (a) $\phi \in \overline{\mathrm{TM}(A)}$.
- (b) If $U = \{x \in X : \phi_x \neq 0\}$, then $\mathcal{L}_{\phi|_U}$ is trivial on each compact subset of U.

Let X be a second countable locally compact Hausdorff space and let $A = C_0(X, \mathbb{M}_n)$. For an operator $\phi \in IB(A)$ the following two conditions are equivalent:

- (a) $\phi \in \overline{\mathrm{TM}(A)}$.
- (b) If $U = \{x \in X : \phi_x \neq 0\}$, then $\mathcal{L}_{\phi|_U}$ is trivial on each compact subset of U.

Definition

A locally trivial fibre bundle \mathcal{F} over a locally compact Hausdorff space X is said to be a **phantom bundle** if \mathcal{F} is not globally trivial, but is trivial on each compact subset of X.

Let X be a second countable locally compact Hausdorff space and let $A = C_0(X, \mathbb{M}_n)$. For an operator $\phi \in IB(A)$ the following two conditions are equivalent:

- (a) $\phi \in \overline{\mathrm{TM}(A)}$.
- (b) If $U = \{x \in X : \phi_x \neq 0\}$, then $\mathcal{L}_{\phi|_U}$ is trivial on each compact subset of U.

Definition

A locally trivial fibre bundle \mathcal{F} over a locally compact Hausdorff space X is said to be a **phantom bundle** if \mathcal{F} is not globally trivial, but is trivial on each compact subset of X.

Corollary

If $A = C_0(X, \mathbb{M}_n)$ as above, then TM(A) is not uniformly closed if and only if there exists an open subset U of X and a phantom complex line subbundle of $U \times \mathbb{M}_n$.

Ilja Gogić (TCD)

Example

If $A = C(\mathbb{S}^2, \mathbb{M}_n)$ $(n \ge 2)$, then the operator ϕ defined by the Hopf fibration shows that in general $\overline{\overline{\mathrm{TM}(A)}} \subsetneq \mathrm{IB}_1(A)$.

Example

If $A = C(\mathbb{S}^2, \mathbb{M}_n)$ $(n \ge 2)$, then the operator ϕ defined by the Hopf fibration shows that in general $\overline{\overline{\mathrm{TM}(A)}} \subsetneq \mathrm{IB}_1(A)$.

Example

Let X be the Eilenberg-MacLane space $K(\mathbb{Q}, 1)$.

• The standard model of X is a mapping telescope of the sequence

$$\mathbb{S}^1 \xrightarrow{z} \mathbb{S}^1 \xrightarrow{z^2} \mathbb{S}^1 \xrightarrow{z^3} \cdots$$

Applying H₁(−; Z) to the levels of this mapping telescope gives the system

$$\mathbb{Z} \xrightarrow{\times 1} \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\times 3} \cdots$$

The colimit of this system is $H_1(X; \mathbb{Z}) = \mathbb{Q}$ and all other (integral) homology is trivial.

 By the universal coefficient theorem, each integral cohomology group of X is trivial except for H²(X; Z) which is isomorphic to Ext(Q, Z).

Example (continuation)

- In particular, H²(X; Z) is non-trivial. Let E be a line bundle defined by some non-zero class of H²(X; Z). Then E is a phantom bundle, since the restriction of E to each finite subcomplex of X is trivial.
- Since (the standard model of) X is a 2-complex, E is a direct summand of a trivial bundle X × C². Hence, TM(C₀(X, M₂)) is not uniformly closed.

Example (continuation)

- In particular, H²(X; Z) is non-trivial. Let E be a line bundle defined by some non-zero class of H²(X; Z). Then E is a phantom bundle, since the restriction of E to each finite subcomplex of X is trivial.
- Since (the standard model of) X is a 2-complex, E is a direct summand of a trivial bundle X × C². Hence, TM(C₀(X, M₂)) is not uniformly closed.

Moreover, Prof. Mladen Bestvina (University of Utah) informed us that $\mathcal{K}(\mathbb{Q}, 1)$ is homotopy equivalent to an open subset of \mathbb{R}^3 . As a consequence of this we get:

Corollary

(a) For any open subset U of \mathbb{R}^3 , $TM(C_0(U, \mathbb{M}_2))$ is not uniformly closed.

(b) In fact, d = 3 is the smallest possible dimension with the following property: there exists an open subset U of ℝ^d such that TM(C₀(U, M_n)) is not uniformly closed for some n.