The local multiplier algebra of a *C**-algebra with finite-dimensional irreducible representations

Ilja Gogić

Department of Mathematics, University of Zagreb (Croatia) and Department of Mathematics and Informatics, University of Novi Sad (Serbia)

Banach Algebras and Applications Gothenburg, Sweden, July 29 – August 4, 2013

Ilja Gogić (Univ. of ZG and Univ. of NS)

The local multiplier algebra

Banach Algebras and Appl.

By an ideal of A we always mean a closed two-sided ideal.

By an ideal of A we always mean a closed two-sided ideal.

An ideal *I* of *A* is said to be **essential** if *I* has a non-zero intersection with every other non-zero ideal of *A*.

By an ideal of A we always mean a closed two-sided ideal.

An ideal *I* of *A* is said to be **essential** if *I* has a non-zero intersection with every other non-zero ideal of *A*.

The multiplier algebra of A is the C*-subalgebra M(A) of the enveloping von Neumann algebra A^{**} that consists of all $x \in A^{**}$ such that $ax \in A$ and $xa \in A$ for all $a \in A$.

By an ideal of A we always mean a closed two-sided ideal.

An ideal *I* of *A* is said to be **essential** if *I* has a non-zero intersection with every other non-zero ideal of *A*.

The multiplier algebra of *A* is the *C**-subalgebra M(A) of the enveloping von Neumann algebra A^{**} that consists of all $x \in A^{**}$ such that $ax \in A$ and $xa \in A$ for all $a \in A$.

M(A) is the largest unital C*-algebra which contains A as an essential ideal.

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

Definition

The local multiplier algebra of A is the direct limit C*-algebra

$$M_{\mathrm{loc}}(A) := (C^* -) \lim_{\longrightarrow} \{M(I) : I \in \mathrm{Id}_{ess}(A)\}.$$

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

Definition

The local multiplier algebra of A is the direct limit C*-algebra

$$M_{\operatorname{loc}}(A) := (C^* -) \lim_{A \to \infty} \{M(I) : I \in \operatorname{Id}_{ess}(A)\}.$$

Iterating the construction of the local multiplier algebra one obtains the following tower of C^* -algebras which, a priori, does not have the largest element:

$$A \subseteq M_{\mathrm{loc}}(A) \subseteq M_{\mathrm{loc}}(M_{\mathrm{loc}}(A)) \subseteq \cdots$$

Ilja Gogić (Univ. of ZG and Univ. of NS)

• The concept of the local multiplier algebra was introduced by G. Pedersen in 1978 (he called it the "*C**-algebra of essential multipliers").

- The concept of the local multiplier algebra was introduced by G. Pedersen in 1978 (he called it the "C*-algebra of essential multipliers").
- He proved that every derivation of a separable C^* -algebra A becomes inner when extended to a derivation of $M_{loc}(A)$. Moreover, it suffices to assume that every essential closed ideal of A is σ -unital.

- The concept of the local multiplier algebra was introduced by G. Pedersen in 1978 (he called it the "C*-algebra of essential multipliers").
- He proved that every derivation of a separable C^* -algebra A becomes inner when extended to a derivation of $M_{loc}(A)$. Moreover, it suffices to assume that every essential closed ideal of A is σ -unital.
- In particular, Pedersen's result entails Sakai's theorem that every derivation of a simple unital *C**-algebra is inner.

- The concept of the local multiplier algebra was introduced by G. Pedersen in 1978 (he called it the "C*-algebra of essential multipliers").
- He proved that every derivation of a separable C^* -algebra A becomes inner when extended to a derivation of $M_{loc}(A)$. Moreover, it suffices to assume that every essential closed ideal of A is σ -unital.
- In particular, Pedersen's result entails Sakai's theorem that every derivation of a simple unital *C**-algebra is inner.
- Since M_{loc}(A) = M(A) if A is simple, and M_{loc}(A) = A if A is an AW*-algebra, only an affirmative answer in the non-separable case would cover, extend and unify the results that every derivation of a simple C*-algebra is inner in its multiplier algebra and that all derivations of AW*-algebras are inner.

This led Pedersen to ask:

This led Pedersen to ask:

Problem 1

If A is an arbitrary C^{*}-algebra, is every derivation of $M_{loc}(A)$ inner?

This led Pedersen to ask:

Problem 1

If A is an arbitrary C^{*}-algebra, is every derivation of $M_{loc}(A)$ inner?

Problem 2

Is $M_{\rm loc}(M_{\rm loc}(A)) = M_{\rm loc}(A)$ for every C*-algebra A?

For a C^* -algebra A, let us denote by I(A) its **injective envelope** as introduced by Hamana in 1979.

For a C^* -algebra A, let us denote by I(A) its **injective envelope** as introduced by Hamana in 1979.

I(A) is not an injective object in the category of C^* -algebras and *-homomorphisms, but in the category of operator spaces and complete contractions.

For a C^* -algebra A, let us denote by I(A) its **injective envelope** as introduced by Hamana in 1979.

I(A) is not an injective object in the category of C^* -algebras and *-homomorphisms, but in the category of operator spaces and complete contractions.

However, it turns out that (nevertheless) I(A) is a C^* -algebra canonically containing A as a C^* -subalgebra. Moreover, I(A) is monotone complete, so in particular, I(A) is an AW^* -algebra.

Theorem (Frank and Paulsen, 2003)

Under this embedding of A into I(A), $M_{loc}(A)$ is the norm closure of the set of all $x \in I(A)$ which act as a multiplier on some $I \in Id_{ess}(A)$, i.e.

$$M_{\mathrm{loc}}(A) = \left(\bigcup_{I \in \mathrm{Id}_{\mathrm{ess}}(A)} \{ x \in I(A) : xI + Ix \subseteq I \} \right)^{=}$$

Theorem (Frank and Paulsen, 2003)

Under this embedding of A into I(A), $M_{loc}(A)$ is the norm closure of the set of all $x \in I(A)$ which act as a multiplier on some $I \in Id_{ess}(A)$, i.e.

$$M_{\mathrm{loc}}(A) = \left(\bigcup_{I \in \mathrm{Id}_{\mathrm{ess}}(A)} \{ x \in I(A) : xI + Ix \subseteq I \} \right)^{=}$$

• Thus, we have the following inclusion of C^* -algebras:

$$A \subseteq M_{\mathrm{loc}}(A) \subseteq \overline{A} \subseteq I(A),$$

where \overline{A} is the regular monotone completion of A.

Ilja Gogić (Univ. of ZG and Univ. of NS)

Theorem (Frank and Paulsen, 2003)

Under this embedding of A into I(A), $M_{loc}(A)$ is the norm closure of the set of all $x \in I(A)$ which act as a multiplier on some $I \in Id_{ess}(A)$, i.e.

$$M_{\mathrm{loc}}(A) = \left(\bigcup_{I \in \mathrm{Id}_{\mathrm{ess}}(A)} \{ x \in I(A) : xI + Ix \subseteq I \} \right)^{=}$$

• Thus, we have the following inclusion of C*-algebras:

$$A \subseteq M_{\mathrm{loc}}(A) \subseteq \overline{A} \subseteq I(A),$$

where \overline{A} is the regular monotone completion of A.

 Moreover, one has I(M_{loc}(A)) = I(A), so we have an additional sequence of inclusions of C*-algebras:

$$A \subseteq M_{\mathrm{loc}}(A) \subseteq M_{\mathrm{loc}}(M_{\mathrm{loc}}(A)) \subseteq \cdots \subseteq \overline{A} \subseteq I(A).$$

When is $M_{\text{loc}}(A) = I(A)$, or at least $M_{\text{loc}}(A) = \overline{A}$?

When is $M_{\text{loc}}(A) = I(A)$, or at least $M_{\text{loc}}(A) = \overline{A}$?

This question is very difficult to answer. Indeed, let A be an AW^* -algebra.

When is
$$M_{
m loc}(A) = I(A)$$
, or at least $M_{
m loc}(A) = \overline{A}$?

This question is very difficult to answer. Indeed, let A be an AW^* -algebra.

• Then, as already mentioned, $M_{loc}(A) = A$.

When is
$$M_{
m loc}(A) = I(A)$$
, or at least $M_{
m loc}(A) = \overline{A}$?

This question is very difficult to answer. Indeed, let A be an AW^* -algebra.

- Then, as already mentioned, $M_{\text{loc}}(A) = A$.
- On the other hand, A coincides with \overline{A} if and only if A is monotone complete.

When is
$$M_{
m loc}(A) = I(A)$$
, or at least $M_{
m loc}(A) = \overline{A}$?

This question is very difficult to answer. Indeed, let A be an AW^* -algebra.

- Then, as already mentioned, $M_{\text{loc}}(A) = A$.
- On the other hand, A coincides with \overline{A} if and only if A is monotone complete.
- This is true if A is of type I; in this case A is injective (Hamana, 1981).

When is
$$M_{
m loc}(A) = I(A)$$
, or at least $M_{
m loc}(A) = \overline{A}$?

This question is very difficult to answer. Indeed, let A be an AW^* -algebra.

- Then, as already mentioned, $M_{\text{loc}}(A) = A$.
- On the other hand, A coincides with A if and only if A is monotone complete.
- This is true if A is of type I; in this case A is injective (Hamana, 1981).
- However, for general AW*-algebras we arrive at a long standing open problem dating back to the work of Kaplansky in 1951: Are all AW*-algebras monotone complete?

The C^* -algebras $M_{loc}(A)$ and I(A) are difficult to determine precisely, even for fairly rudimentary types of C^* -algebras.

The C^* -algebras $M_{loc}(A)$ and I(A) are difficult to determine precisely, even for fairly rudimentary types of C^* -algebras.

Let $A = C_0(X)$ be a commutative C^* -algebra.

The C^{*}-algebras $M_{loc}(A)$ and I(A) are difficult to determine precisely, even for fairly rudimentary types of C^{*}-algebras.

Let $A = C_0(X)$ be a commutative C^* -algebra.

Then M_{loc}(A) is a commutative AW*-algebra. In particular, M_{loc}(A) is injective, so

$$M_{\mathrm{loc}}(A) = M_{\mathrm{loc}}(M_{\mathrm{loc}}(A)) = I(A).$$

The C^{*}-algebras $M_{loc}(A)$ and I(A) are difficult to determine precisely, even for fairly rudimentary types of C^{*}-algebras.

Let $A = C_0(X)$ be a commutative C^* -algebra.

Then M_{loc}(A) is a commutative AW*-algebra. In particular, M_{loc}(A) is injective, so

$$M_{\mathrm{loc}}(A) = M_{\mathrm{loc}}(M_{\mathrm{loc}}(A)) = I(A).$$

• The maximal ideal space of $M_{loc}(A) = I(A)$ can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

Problem 2 has a negative answer

• The first class of examples of C^* -algebras for which Problem 2 has a negative answer was given by Ara and Mathieu (2006): There exist unital separable approximately finite-dimensional primitive C^* -algebras A such that $M_{\text{loc}}(M_{\text{loc}}(A)) \neq M_{\text{loc}}(A)$.

Problem 2 has a negative answer

- The first class of examples of C^* -algebras for which Problem 2 has a negative answer was given by Ara and Mathieu (2006): There exist unital separable approximately finite-dimensional primitive C^* -algebras A such that $M_{\text{loc}}(M_{\text{loc}}(A)) \neq M_{\text{loc}}(A)$.
- After that, Argerami, Farenick and Massey (2009) showed that a relatively well-behaved C*-algebra $C([0,1]) \otimes \mathbb{K}$ also fails to satisfy $M_{\rm loc}(M_{\rm loc}(A)) = M_{\rm loc}(A)$.

Problem 2 has a negative answer

- The first class of examples of C^* -algebras for which Problem 2 has a negative answer was given by Ara and Mathieu (2006): There exist unital separable approximately finite-dimensional primitive C^* -algebras A such that $M_{\text{loc}}(M_{\text{loc}}(A)) \neq M_{\text{loc}}(A)$.
- After that, Argerami, Farenick and Massey (2009) showed that a relatively well-behaved C^* -algebra $C([0,1]) \otimes \mathbb{K}$ also fails to satisfy $M_{\rm loc}(M_{\rm loc}(A)) = M_{\rm loc}(A)$.
- This example was further developed by Ara and Mathieu (2011), who showed that if X is a perfect, second countable LCH space, and $A = C_0(X) \otimes B$ for some non-unital separable simple C*-algebra B, then $M_{\text{loc}}(M_{\text{loc}}(A)) \neq M_{\text{loc}}(A)$.

This leads to the following restatement of Problem 2:

Problem 2' When is $M_{\rm loc}(M_{\rm loc}(A)) = M_{\rm loc}(A)$?

This leads to the following restatement of Problem 2:

Problem 2' When is $M_{loc}(M_{loc}(A)) = M_{loc}(A)$?

We have the following partial answer:

Theorem (Somerset, 2000; Ara and Mathieu, 2011)

If A is a unital (or more generally quasi-central), separable C*-algebra such that Prim(A) (= the primitive ideal space of A) contains a dense G_{δ} subset of closed points, then $M_{loc}(M_{loc}(A)) = M_{loc}(A)$. Moreover, in this case $M_{loc}(A)$ has only inner derivations.

Theorem (Somerset, 2000; Argerami and Farenick, 2005)

If the injective envelope of a C^* -algebra A is of type I, then A has a liminal essential ideal. The converse is also true if A is separable. Moreover, in this case $M_{loc}(M_{loc}(A))$ is an AW*-algebra of type I.

Theorem (Somerset, 2000; Argerami and Farenick, 2005)

If the injective envelope of a C^{*}-algebra A is of type I, then A has a liminal essential ideal. The converse is also true if A is separable. Moreover, in this case $M_{loc}(M_{loc}(A))$ is an AW^{*}-algebra of type I.

There is also a partial converse in a non-separable direction:

Theorem (Argerami, Farenick and Massey, 2010)

If A is a spatial Fell algebra, then $M_{\rm loc}(M_{\rm loc}(A))$ is an AW*-algebra of type I.

Theorem (Somerset, 2000; Argerami and Farenick, 2005)

If the injective envelope of a C^{*}-algebra A is of type I, then A has a liminal essential ideal. The converse is also true if A is separable. Moreover, in this case $M_{loc}(M_{loc}(A))$ is an AW^{*}-algebra of type I.

There is also a partial converse in a non-separable direction:

Theorem (Argerami, Farenick and Massey, 2010)

If A is a spatial Fell algebra, then $M_{\rm loc}(M_{\rm loc}(A))$ is an AW*-algebra of type I.

This result applies in particular to algebras of the form $A = C_0(X) \otimes \mathbb{K}$, for any LCH space X.

Problem

What can be said about $M_{loc}(A)$ and I(A) if A belongs to **FIN**?

Problem

What can be said about $M_{loc}(A)$ and I(A) if A belongs to **FIN**?

Theorem (G., 2013)

If A belongs to **FIN**, then $M_{loc}(A)$ is a finite or countable direct product of C^* -algebras of the form $C(X_n) \otimes \mathbb{M}_n$, where each space X_n is Stonean. In particular, $M_{loc}(A)$ is an AW^* -algebra of type I, so it coincides with the injective envelope of A and it admits only inner derivations.

Problem

What can be said about $M_{loc}(A)$ and I(A) if A belongs to **FIN**?

Theorem (G., 2013)

If A belongs to **FIN**, then $M_{loc}(A)$ is a finite or countable direct product of C^* -algebras of the form $C(X_n) \otimes \mathbb{M}_n$, where each space X_n is Stonean. In particular, $M_{loc}(A)$ is an AW*-algebra of type I, so it coincides with the injective envelope of A and it admits only inner derivations.

Recall that a space X is said to be **Stonean** if it is an extremally disconnected CH space. It is well known that a commutative C^* -algebra $A = C_0(X)$ is an AW^* -algebra if and only if X is a Stonean space.

• We first show that every C^* -algebra in **FIN** contains an essential ideal J which can be expressed as a direct sum of a sequence (J_n) of C^* -algebras, where each J_n is either zero, or *n*-homogeneous (i.e. all irreducible representations of J_n are *n*-dimensional).

- We first show that every C^* -algebra in **FIN** contains an essential ideal J which can be expressed as a direct sum of a sequence (J_n) of C^* -algebras, where each J_n is either zero, or *n*-homogeneous (i.e. all irreducible representations of J_n are *n*-dimensional).
- This reduces the problem to the homogeneous case.

- We first show that every C^* -algebra in **FIN** contains an essential ideal J which can be expressed as a direct sum of a sequence (J_n) of C^* -algebras, where each J_n is either zero, or *n*-homogeneous (i.e. all irreducible representations of J_n are *n*-dimensional).
- This reduces the problem to the homogeneous case.

Homogeneous C^* -algebras can be represented in a following way:

Theorem (Fell, 1961)

If J_n is an n-homogeneous C^* -algebra, then it is a continuous-trace C^* -algebra, and there exists a locally trivial C^* -bundle E_n over $Prim(J_n)$ with fibres \mathbb{M}_n such that J_n is isomorphic to the C^* -algebra $\Gamma_0(E_n)$ of all continuous sections of E_n which vanish at infinity.

 If J_n = Γ₀(E_n) is as above, we use Zorn's lemma to find a dense open subset O_n ⊆ Prim(J_n) such that the restriction bundle E_n|_{On} is trivial.

- If J_n = Γ₀(E_n) is as above, we use Zorn's lemma to find a dense open subset O_n ⊆ Prim(J_n) such that the restriction bundle E_n|_{O_n} is trivial.
- Hence, $I_n := \Gamma_0(E_n|_{O_n}) \cong C_0(O_n) \otimes \mathbb{M}_n$ is an essential ideal of J_n .

- If J_n = Γ₀(E_n) is as above, we use Zorn's lemma to find a dense open subset O_n ⊆ Prim(J_n) such that the restriction bundle E_n|_{O_n} is trivial.
- Hence, $I_n := \Gamma_0(E_n|_{O_n}) \cong C_0(O_n) \otimes \mathbb{M}_n$ is an essential ideal of J_n .

Proof, Step 3

Putting all together, $\bigoplus_{n=1}^{\infty} I_n$ is an essential ideal of A, so we have

$$\begin{aligned} M_{\rm loc}(A) &= M_{\rm loc}\left(\bigoplus_{n=1}^{\infty} I_n\right) = \prod_{n=1}^{\infty} M_{\rm loc}(I_n) = \prod_{n=1}^{\infty} M_{\rm loc}(C_0(O_n)) \otimes \mathbb{M}_n \\ &= \prod_{n=1}^{\infty} C(X_n) \otimes \mathbb{M}_n, \end{aligned}$$

where X_n is the maximal ideal space of $M_{loc}(C_0(O_n))$. Finally since $M_{loc}(C_0(O_n))$ is a commutative AW^* -algebra for all n, each X_n is a Stonean space.

Ilja Gogić (Univ. of ZG and Univ. of NS)