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Intoroduction

Throughout, A will be a C ∗-algebra.

By an ideal of A we always mean a closed two-sided ideal.

An ideal I of A is said to be essential if I has a non-zero intersection with
every other non-zero ideal of A.

The multiplier algebra of A is the C ∗-subalgebra M(A) of the enveloping
von Neumann algebra A∗∗ that consists of all x ∈ A∗∗ such that ax ∈ A
and xa ∈ A for all a ∈ A.

M(A) is the largest unital C ∗-algebra which contains A as an essential
ideal.
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Ilja Gogić (Univ. of ZG and Univ. of NS) The local multiplier algebra Banach Algebras and Appl. 2 / 15



Intoroduction

Throughout, A will be a C ∗-algebra.

By an ideal of A we always mean a closed two-sided ideal.

An ideal I of A is said to be essential if I has a non-zero intersection with
every other non-zero ideal of A.

The multiplier algebra of A is the C ∗-subalgebra M(A) of the enveloping
von Neumann algebra A∗∗ that consists of all x ∈ A∗∗ such that ax ∈ A
and xa ∈ A for all a ∈ A.

M(A) is the largest unital C ∗-algebra which contains A as an essential
ideal.
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Intoroduction

If I and J are two essential ideals of A such that J ⊆ I , then there is an
embedding M(I ) ↪→ M(J).

In this way, we obtain a directed system of C ∗-algebras with isometric
connecting morphisms, where I runs through the directed set Idess(A) of
all essential ideals of A.

Definition

The local multiplier algebra of A is the direct limit C ∗-algebra

Mloc(A) := (C ∗−) lim
−→
{M(I ) : I ∈ Idess(A)}.

Iterating the construction of the local multiplier algebra one obtains the
following tower of C ∗-algebras which, a priori, does not have the largest
element:

A ⊆ Mloc(A) ⊆ Mloc(Mloc(A)) ⊆ · · ·
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Ilja Gogić (Univ. of ZG and Univ. of NS) The local multiplier algebra Banach Algebras and Appl. 3 / 15



Intoroduction

If I and J are two essential ideals of A such that J ⊆ I , then there is an
embedding M(I ) ↪→ M(J).

In this way, we obtain a directed system of C ∗-algebras with isometric
connecting morphisms, where I runs through the directed set Idess(A) of
all essential ideals of A.

Definition

The local multiplier algebra of A is the direct limit C ∗-algebra

Mloc(A) := (C ∗−) lim
−→
{M(I ) : I ∈ Idess(A)}.

Iterating the construction of the local multiplier algebra one obtains the
following tower of C ∗-algebras which, a priori, does not have the largest
element:

A ⊆ Mloc(A) ⊆ Mloc(Mloc(A)) ⊆ · · ·
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Intoroduction

The concept of the local multiplier algebra was introduced by G.
Pedersen in 1978 (he called it the ”C ∗-algebra of essential
multipliers”).

He proved that every derivation of a separable C ∗-algebra A becomes
inner when extended to a derivation of Mloc(A). Moreover, it suffices
to assume that every essential closed ideal of A is σ-unital.

In particular, Pedersen’s result entails Sakai’s theorem that every
derivation of a simple unital C ∗-algebra is inner.

Since Mloc(A) = M(A) if A is simple, and Mloc(A) = A if A is an
AW ∗-algebra, only an affirmative answer in the non-separable case
would cover, extend and unify the results that every derivation of a
simple C ∗-algebra is inner in its multiplier algebra and that all
derivations of AW ∗-algebras are inner.
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Ilja Gogić (Univ. of ZG and Univ. of NS) The local multiplier algebra Banach Algebras and Appl. 4 / 15



Intoroduction

The concept of the local multiplier algebra was introduced by G.
Pedersen in 1978 (he called it the ”C ∗-algebra of essential
multipliers”).

He proved that every derivation of a separable C ∗-algebra A becomes
inner when extended to a derivation of Mloc(A). Moreover, it suffices
to assume that every essential closed ideal of A is σ-unital.

In particular, Pedersen’s result entails Sakai’s theorem that every
derivation of a simple unital C ∗-algebra is inner.

Since Mloc(A) = M(A) if A is simple, and Mloc(A) = A if A is an
AW ∗-algebra, only an affirmative answer in the non-separable case
would cover, extend and unify the results that every derivation of a
simple C ∗-algebra is inner in its multiplier algebra and that all
derivations of AW ∗-algebras are inner.
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Intoroduction

This led Pedersen to ask:

Problem 1

If A is an arbitrary C ∗-algebra, is every derivation of Mloc(A) inner?

Problem 2

Is Mloc(Mloc(A)) = Mloc(A) for every C ∗-algebra A?
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Intoroduction

There is another important characterisation of Mloc(A), which was first
obtained by Frank and Paulsen in 2003.

For a C ∗-algebra A, let us denote by I (A) its injective envelope as
introduced by Hamana in 1979.

I (A) is not an injective object in the category of C ∗-algebras and
∗-homomorphisms, but in the category of operator spaces and complete
contractions.

However, it turns out that (nevertheless) I (A) is a C ∗-algebra canonically
containing A as a C ∗-subalgebra. Moreover, I (A) is monotone complete,
so in particular, I (A) is an AW ∗-algebra.
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Intoroduction

Theorem (Frank and Paulsen, 2003)

Under this embedding of A into I (A), Mloc(A) is the norm closure of the
set of all x ∈ I (A) which act as a multiplier on some I ∈ Idess(A), i.e.

Mloc(A) =

 ⋃
I∈Idess(A)

{x ∈ I (A) : xI + Ix ⊆ I}

=

Thus, we have the following inclusion of C ∗-algebras:

A ⊆ Mloc(A) ⊆ A ⊆ I (A),

where A is the regular monotone completion of A.

Moreover, one has I (Mloc(A)) = I (A), so we have an additional
sequence of inclusions of C ∗-algebras:

A ⊆ Mloc(A) ⊆ Mloc(Mloc(A)) ⊆ · · · ⊆ A ⊆ I (A).
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Intoroduction

Problem 3

When is Mloc(A) = I (A), or at least Mloc(A) = A?

This question is very difficult to answer. Indeed, let A be an AW ∗-algebra.

Then, as already mentioned, Mloc(A) = A.

On the other hand, A coincides with A if and only if A is monotone
complete.

This is true if A is of type I ; in this case A is injective (Hamana,
1981).

However, for general AW ∗-algebras we arrive at a long standing open
problem dating back to the work of Kaplansky in 1951: Are all
AW ∗-algebras monotone complete?
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Intoroduction

The C ∗-algebras Mloc(A) and I (A) are difficult to determine precisely, even
for fairly rudimentary types of C ∗-algebras.

Let A = C0(X ) be a commutative C ∗-algebra.

Then Mloc(A) is a commutative AW ∗-algebra. In particular, Mloc(A)
is injective, so

Mloc(A) = Mloc(Mloc(A)) = I (A).

The maximal ideal space of Mloc(A) = I (A) can be identified with the
inverse limit lim

←−
βU of Stone-Čech compactifications βU of dense

open subsets U of X .
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βU of Stone-Čech compactifications βU of dense

open subsets U of X .
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Some results

Problem 2 has a negative answer

The first class of examples of C ∗-algebras for which Problem 2 has a
negative answer was given by Ara and Mathieu (2006): There exist
unital separable approximately finite-dimensional primitive
C ∗-algebras A such that Mloc(Mloc(A)) 6= Mloc(A).

After that, Argerami, Farenick and Massey (2009) showed that a
relatively well-behaved C ∗-algebra C ([0, 1])⊗K also fails to satisfy
Mloc(Mloc(A)) = Mloc(A).

This example was further developed by Ara and Mathieu (2011), who
showed that if X is a perfect, second countable LCH space, and
A = C0(X )⊗ B for some non-unital separable simple C ∗-algebra B,
then Mloc(Mloc(A)) 6= Mloc(A).
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Some results

This leads to the following restatement of Problem 2:

Problem 2’

When is Mloc(Mloc(A)) = Mloc(A)?

We have the following partial answer:

Theorem (Somerset, 2000; Ara and Mathieu, 2011)

If A is a unital (or more generally quasi-central), separable C ∗-algebra such
that Prim(A)(= the primitive ideal space of A) contains a dense Gδ subset
of closed points, then Mloc(Mloc(A)) = Mloc(A). Moreover, in this case
Mloc(A) has only inner derivations.
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Some results

On the other hand, Mloc(Mloc(A)) is always a type I AW ∗-algebra,
whenever A is separable and liminal. More generally:

Theorem (Somerset, 2000; Argerami and Farenick, 2005)

If the injective envelope of a C ∗-algebra A is of type I , then A has a
liminal essential ideal. The converse is also true if A is separable.
Moreover, in this case Mloc(Mloc(A)) is an AW ∗-algebra of type I .

There is also a partial converse in a non-separable direction:

Theorem (Argerami, Farenick and Massey, 2010)

If A is a spatial Fell algebra, then Mloc(Mloc(A)) is an AW ∗-algebra of
type I .

This result applies in particular to algebras of the form A = C0(X )⊗K,
for any LCH space X .
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Some results

On the other hand, a fairly interesting class of liminal C ∗-algebras is the
class FIN, which consists of all C ∗-algebras having only finite-dimensional
irreducible representations.

Problem

What can be said about Mloc(A) and I (A) if A belongs to FIN?

Theorem (G., 2013)

If A belongs to FIN, then Mloc(A) is a finite or countable direct product
of C ∗-algebras of the form C (Xn)⊗Mn, where each space Xn is Stonean.
In particular, Mloc(A) is an AW ∗-algebra of type I , so it coincides with the
injective envelope of A and it admits only inner derivations.

Recall that a space X is said to be Stonean if it is an extremally
disconnected CH space. It is well known that a commutative C ∗-algebra
A = C0(X ) is an AW ∗-algebra if and only if X is a Stonean space.
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Some results

Proof, Step 1

We first show that every C ∗-algebra in FIN contains an essential ideal
J which can be expressed as a direct sum of a sequence (Jn) of
C ∗-algebras, where each Jn is either zero, or n-homogeneous (i.e. all
irreducible representations of Jn are n-dimensional).

This reduces the problem to the homogeneous case.

Homogeneous C ∗-algebras can be represented in a following way:

Theorem (Fell, 1961)

If Jn is an n-homogeneous C ∗-algebra, then it is a continuous-trace
C ∗-algebra, and there exists a locally trivial C ∗-bundle En over Prim(Jn)
with fibres Mn such that Jn is isomorphic to the C ∗-algebra Γ0(En) of all
continuous sections of En which vanish at infinity.
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Some results

Proof, Step 2

If Jn = Γ0(En) is as above, we use Zorn’s lemma to find a dense open
subset On ⊆ Prim(Jn) such that the restriction bundle En|On is trivial.

Hence, In := Γ0(En|On) ∼= C0(On)⊗Mn is an essential ideal of Jn.

Proof, Step 3

Putting all together,
⊕∞

n=1 In is an essential ideal of A, so we have

Mloc(A) = Mloc

( ∞⊕
n=1

In

)
=
∞∏
n=1

Mloc(In) =
∞∏
n=1

Mloc(C0(On))⊗Mn

=
∞∏
n=1

C (Xn)⊗Mn,

where Xn is the maximal ideal space of Mloc(C0(On)). Finally since
Mloc(C0(On)) is a commutative AW ∗-algebra for all n, each Xn is a
Stonean space.
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