# Finitely centrally generated C\*-algebras

# Ilja Gogić

Department of Mathematics University of Zagreb

Applied Linear Algebra May 24–28, Novi Sad





2 Homogeneous C\*-algebras

3 Finitely centrally generated C\*-algebras

# Definition

A  $C^*$ -algebra is a Banach \*-algebra A which satisfies the  $C^*$ -identity

$$\|a^*a\|=\|a\|^2, \quad \forall a\in A.$$

- (i) Let H be a Hilbert space. The operator algebra B(H) of all bounded linear operators on H with the operator norm and usual adjoint obeys the C<sup>\*</sup>-identity. If H is n-dimensional, we obtain that the n × n matrices M<sub>n</sub>(ℂ) ≅ B(ℂ<sup>n</sup>) form a C<sup>\*</sup>-algebra.
- (ii) Let X be a locally compact Hausdorff space. The space  $C_0(X)$  of complex-valued continuous functions on X that vanish at infinity form a commutative  $C^*$ -algebra  $C_0(X)$  under pointwise operations, complex conjugation and supremum norm.  $C_0(X)$  has a unit if and only if X is compact; in this case we usually write C(X). More generally, if A is a  $C^*$ -algebra, then the set  $C_0(X, A)$  of norm-continuous functions from X to A vanishing at infinity, with pointwise operations and supremum norm, is a C\*-algebra. In particular,  $C_0(X, M_n(\mathbb{C})) \cong M_n(C_0(X)) \cong C_0(X) \otimes M_n(\mathbb{C})$  is  $C^*$ -algebra.

The morphisms in the category of C\*-algebras are \*-homomorphisms, that is, linear multiplicative maps which preserves adjoint. It is well known that every \*-homomorphism  $\phi: A \rightarrow B$  between C\*-algebras A and B is contractive (hence bounded), and that  $\phi$  is isometric if and only if  $\phi$  is injective.

The morphisms in the category of C\*-algebras are \*-homomorphisms, that is, linear multiplicative maps which preserves adjoint. It is well known that every \*-homomorphism  $\phi: A \to B$  between C\*-algebras A and B is contractive (hence bounded), and that  $\phi$  is isometric if and only if  $\phi$  is injective. A representation of a C\*-algebra A on a Hilbert space  $\mathcal{H}$  is a \*-homomorphism  $\pi: A \to B(\mathcal{H})$ . We say that  $\pi$  is

- faithful if  $\pi$  is injective;
- *irreducible* if there is no closed invariant subspace apart from  $\{0\}$  and  $\mathcal{H}$ .

The morphisms in the category of C\*-algebras are \*-homomorphisms, that is, linear multiplicative maps which preserves adjoint. It is well known that every \*-homomorphism  $\phi: A \to B$  between C\*-algebras A and B is contractive (hence bounded), and that  $\phi$  is isometric if and only if  $\phi$  is injective. A representation of a C\*-algebra A on a Hilbert space  $\mathcal{H}$  is a \*-homomorphism  $\pi: A \to B(\mathcal{H})$ . We say that  $\pi$  is

- faithful if  $\pi$  is injective;
- *irreducible* if there is no closed invariant subspace apart from  $\{0\}$  and  $\mathcal{H}$ .

By a dimension dim  $\pi$  of a representation  $\pi$  we mean the dimension of the underlying Hilbert space of  $\pi$ .

The morphisms in the category of C\*-algebras are \*-homomorphisms, that is, linear multiplicative maps which preserves adjoint. It is well known that every \*-homomorphism  $\phi: A \to B$  between C\*-algebras A and B is contractive (hence bounded), and that  $\phi$  is isometric if and only if  $\phi$  is injective. A representation of a C\*-algebra A on a Hilbert space  $\mathcal{H}$  is a \*-homomorphism  $\pi: A \to B(\mathcal{H})$ . We say that  $\pi$  is

- faithful if  $\pi$  is injective;
- *irreducible* if there is no closed invariant subspace apart from  $\{0\}$  and  $\mathcal{H}$ .

By a dimension dim  $\pi$  of a representation  $\pi$  we mean the dimension of the underlying Hilbert space of  $\pi$ .

Two representations  $\pi : A \to B(\mathcal{H})$  and  $\rho : A \to B(\mathcal{H})$  are *(unitarily) equivalent* if there exists a unitary isomorphism  $U : \mathcal{K} \to \mathcal{H}$  such that

$$\pi(a) = U\rho(a)U^*, \quad \forall a \in A.$$

# The next two theorems are fundamental in the theory of $\mathsf{C}^*\text{-}\mathsf{algebras}:$

The next two theorems are fundamental in the theory of  $C^{\ast}\mbox{-algebras}:$ 

Theorem (The first Gelfand-Naimark theorem)

Let A be a commutative C<sup>\*</sup>-algebra. Then there exists a locally compact Hausdorff space X such that  $A \cong C_0(X)$ .

The next two theorems are fundamental in the theory of  $C^{\ast}\mbox{-algebras}:$ 

Theorem (The first Gelfand-Naimark theorem)

Let A be a commutative C<sup>\*</sup>-algebra. Then there exists a locally compact Hausdorff space X such that  $A \cong C_0(X)$ .

## Theorem (The second Gelfand-Naimark theorem)

Let A be a C<sup>\*</sup>-algebra. Then there exists a Hilbert space  $\mathcal{H}$  and a faithful representation  $\pi : A \to B(\mathcal{H})$ .







Finitely centrally generated C\*-algebras

Ilja Gogić Finitely centrally generated C\*-algebras

# Definition

A  $C^*$ -algebra A is called n-homogeneous if all its irreducible representations are of the same finite dimension n.

# Definition

A  $C^*$ -algebra A is called n-homogeneous if all its irreducible representations are of the same finite dimension n.

#### Example

The basic example of an n-homogeneous  $C^*$ -algebra is the  $C^*$ -algebra  $C_0(X, M_n(\mathbb{C}))$ , where X is a LCH space.

# Definition

A  $C^*$ -algebra A is called n-homogeneous if all its irreducible representations are of the same finite dimension n.

#### Example

The basic example of an n-homogeneous  $C^*$ -algebra is the  $C^*$ -algebra  $C_0(X, M_n(\mathbb{C}))$ , where X is a LCH space.

#### Example

More generally, if E is a locally trivial C\*-bundle over the LCH base space X with fibres  $M_n(\mathbb{C})$  (E is just a usual vector bundle such that the local trivializations, restricted to fibers, are isomorphisms of C\*-algebras) then the C\*-algebra  $\Gamma_0(E)$  of all continuous sections vanishing at  $\infty$  of E is n-homogeneous. In the previous example the underlying C\*-bundle E is trivial, that is  $E = X \times M_n(\mathbb{C})$  (with the product topology). In fact, all *n*-homogeneous C<sup>\*</sup>-algebras arise in this way. This result is due to Fell:

In fact, all *n*-homogeneous C<sup>\*</sup>-algebras arise in this way. This result is due to Fell:

# Theorem (J.M.G. Fell, Acta Math., 1961)

Let A be a n-homogeneous C<sup>\*</sup>-algebra. Then there exists a locally trivial C<sup>\*</sup>-bundle E over the locally compact Hausdorff space X whose fibres are isomorphic to  $M_n(\mathbb{C})$  such that  $A \cong \Gamma_0(E)$ . In this case all irreducible representations of A are (up to a unitary equivalence) evaluations of sections of E at points of X. In fact, all *n*-homogeneous C<sup>\*</sup>-algebras arise in this way. This result is due to Fell:

# Theorem (J.M.G. Fell, Acta Math., 1961)

Let A be a n-homogeneous C<sup>\*</sup>-algebra. Then there exists a locally trivial C<sup>\*</sup>-bundle E over the locally compact Hausdorff space X whose fibres are isomorphic to  $M_n(\mathbb{C})$  such that  $A \cong \Gamma_0(E)$ . In this case all irreducible representations of A are (up to a unitary equivalence) evaluations of sections of E at points of X.

If the base space X of this bundle E admits a finite open covering  $(U_i)$  such that each  $E|_{U_i}$  is trivial (as a C\*-bundle), then E is said to be of *finite type* (and we shall say that in this case A is of finite type).

Each  $M_n(\mathbb{C})$ -bundle E is also an  $n^2$ -dimensional complex vector bundle (by forgetting the additional structure). If E is of finite type (as a C\*-bundle) then of course E is of finite type as a vector bundle. It is interesting (and also non-trivial) that the converse also holds. Moreover, we have the following result:

Each  $M_n(\mathbb{C})$ -bundle E is also an  $n^2$ -dimensional complex vector bundle (by forgetting the additional structure). If E is of finite type (as a C\*-bundle) then of course E is of finite type as a vector bundle. It is interesting (and also non-trivial) that the converse also holds. Moreover, we have the following result:

# Theorem (N.C. Phillips, TAMS, 2007)

Let X be a locally compact Hausdorff space and let E be a locally trivial  $M_n(\mathbb{C})$ -bundle over X. Then the following conditions are equivalent:

- (i) E is of finite type as a  $C^*$ -bundle;
- (ii) E is of finite type when regarded as a complex vector bundle over X by forgetting the structure;
- (iii) E can be extended to a locally trivial  $M_n(\mathbb{C})$ -bundle F over the Stone-Čech compactification  $\beta X$  of X.

Hence, to show that an  $M_n(\mathbb{C})$ -bundle E is of finite type as a C<sup>\*</sup>-bundle, it is sufficient to check that the underlying  $n^2$ -dimensional vector bundle is of finite type. The next standard fact gives a useful way to do this:

Hence, to show that an  $M_n(\mathbb{C})$ -bundle E is of finite type as a C<sup>\*</sup>-bundle, it is sufficient to check that the underlying  $n^2$ -dimensional vector bundle is of finite type. The next standard fact gives a useful way to do this:

#### Lemma

Let E be a locally trivial vector bundle of constant (finite) rank over a paracompact Hausdorff space X. The following conditions are equivalent:

- (i) E is of finite type;
- (ii) There exists a finite number a<sub>1</sub>,..., a<sub>m</sub> of continuous bounded sections of E such that

$$\operatorname{span}\{a_1(x),\ldots,a_m(x)\}=E(x),\quad\forall x\in X.$$





- 2 Homogeneous C\*-algebras
- **③** Finitely centrally generated C\*-algebras

Let A be a C\*-algebra. If A is non-unital, then there are several ways of embedding A in a unital C\*-algebra. The *multiplier algebra* of A, denoted by M(A), is a unital C\*-algebra which is the largest unital C\*-algebra that contains A as an ideal in a "non-degenerate" way. It is the noncommutative generalization of Stone-Čech compactification. Of course, if A is unital then M(A) = A.

Let A be a C\*-algebra. If A is non-unital, then there are several ways of embedding A in a unital C\*-algebra. The *multiplier algebra* of A, denoted by M(A), is a unital C\*-algebra which is the largest unital C\*-algebra that contains A as an ideal in a "non-degenerate" way. It is the noncommutative generalization of Stone-Čech compactification. Of course, if A is unital then M(A) = A. By Z(A) we denote the center of A, that is

$$Z(A) := \{z \in A : zx = xz, \forall x \in A\}.$$

We consider A as a Z(M(A))-module, under the standard action

$$z \cdot a := za, \quad \forall z \in Z(M(A)), a \in A.$$

Let A be a C\*-algebra. If A is non-unital, then there are several ways of embedding A in a unital C\*-algebra. The *multiplier algebra* of A, denoted by M(A), is a unital C\*-algebra which is the largest unital C\*-algebra that contains A as an ideal in a "non-degenerate" way. It is the noncommutative generalization of Stone-Čech compactification. Of course, if A is unital then M(A) = A. By Z(A) we denote the center of A, that is

$$Z(A) := \{z \in A : zx = xz, \forall x \in A\}.$$

We consider A as a Z(M(A))-module, under the standard action

$$z \cdot a := za, \quad \forall z \in Z(M(A)), a \in A.$$

#### Definition

A  $C^*$ -algebra A is said to be finitely centrally generated (shorter FCG) if A as a Z(M(A))-module is finitely generated.

Let X be a CH space. Then the C\*-algebra  $A := C(X, M_n(\mathbb{C}))$  is FCG. Indeed, since X is compact A is unital, hence M(A) = A. Let  $(E_{i,j})$  be the standard matrix units of  $M_n(\mathbb{C})$  considered as constant elements of A. Since the center of  $M_n(\mathbb{C})$  consists only of the scalar multiples of identity, we have (by continuity)

$$Z(A) = \{f1_n : f \in C(X)\} \cong C(X).$$

Then for each  $a = (a_{i,j}) \in A \cong M_n((C(X))$  we have  $a = \sum_{i,j=1}^n (a_{i,j} \mathbb{1}_n) E_{i,j}$ , hence

$$A = \operatorname{span}_{Z(A)} \{ E_{i,j} : 1 \le i, j \le n \}.$$

More generally, if E is a locally trivial  $M_n(\mathbb{C})$ -bundle over a CH base space X then the (n-homogeneous)  $C^*$ -algebra  $\Gamma(E)$  is FCG. This can be seen by using the previous example together with the finite partition of unity argument.

More generally, if E is a locally trivial  $M_n(\mathbb{C})$ -bundle over a CH base space X then the (n-homogeneous)  $C^*$ -algebra  $\Gamma(E)$  is FCG. This can be seen by using the previous example together with the finite partition of unity argument.

Hence, by Fell's theorem, each unital homogeneous C\*-algebra is FCG. Of course, the same conclusion holds for a finite direct sum of unital homogeneous C\*-algebras. The converse is also true:

More generally, if E is a locally trivial  $M_n(\mathbb{C})$ -bundle over a CH base space X then the (n-homogeneous)  $C^*$ -algebra  $\Gamma(E)$  is FCG. This can be seen by using the previous example together with the finite partition of unity argument.

Hence, by Fell's theorem, each unital homogeneous C\*-algebra is FCG. Of course, the same conclusion holds for a finite direct sum of unital homogeneous C\*-algebras. The converse is also true:

## Theorem (I. Gogić, PEMS, to appear)

Let A be a  $C^*$ -algebra. Then A is finitely centrally generated if and only if A is a finite direct sum of unital homogeneous  $C^*$ -algebras.

# Sketch of the proof

Suppose that A is FCG. The proof of the theorem is divided in several steps:

• Using the functional calculus we first show that A must be unital. The easy consequence of this fact is that if A is FCG so is A/J for each (closed two-sided) ideal J of A.

# Sketch of the proof

Suppose that A is FCG. The proof of the theorem is divided in several steps:

- Using the functional calculus we first show that A must be unital. The easy consequence of this fact is that if A is FCG so is A/J for each (closed two-sided) ideal J of A.
- Next, we show that A is subhomogeneous, that is the dimensions of irreducible representations of A are uniformly bounded by some finite constant. This is easy, suppose that

$$A = \operatorname{span}_{Z(A)} \{ e_1, \ldots, e_m \}$$

for some  $e_1, \ldots, e_m \in A$ . Then  $\pi$  maps Z(A) into scalars, so

$$\pi(A) = \operatorname{span}_{\mathbb{C}} \{\pi(e_1), \ldots, \pi(e_m)\} \Rightarrow \dim \pi \leq \sqrt{m} < \infty.$$

Suppose that A is subhomogeneous of degree n (i.e. the maximal dimension of irreducible representation of A equals n) and let J be the n-homogeneous ideal of A (J is the intersection of the kernels of all irreducible representations of dimension at most n − 1). To prove that A is a finite direct sum of unital homogeneous C\*-algebras, note that it is sufficient to show that J is unital. Indeed, in this case A ≅ J ⊕ (A/J), where A/J is FCG with the lower degree of subhomogenity.

- Suppose that A is subhomogeneous of degree n (i.e. the maximal dimension of irreducible representation of A equals n) and let J be the n-homogeneous ideal of A (J is the intersection of the kernels of all irreducible representations of dimension at most n − 1). To prove that A is a finite direct sum of unital homogeneous C\*-algebras, note that it is sufficient to show that J is unital. Indeed, in this case A ≅ J ⊕ (A/J), where A/J is FCG with the lower degree of subhomogenity.
- Now, we show that J is of finite type. To see this, let E be a locally trivial M<sub>n</sub>(ℂ)-bundle over the LCH base space X such that J ≅ Γ<sub>0</sub>(E). Using the previous lemma, we see that E must be of finite type as a vector bundle, and hence, by Phillips's theorem, E is of finite type as a C\*-bundle.

Next, we reduce the proof to the case when J is essential in A (i.e. if I is any ideal of A such that IJ = {0} then I = {0}). In this case, A ⊆ M(J), and by [3] we have the equalities

$$M(J) = \Gamma_b(E) = \Gamma(F),$$

where  $\Gamma_b(E)$  denotes the C\*-algebra of all continuous bounded sections of E and F denotes the  $M_n(\mathbb{C})$ -bundle over  $\beta X$  which extends E (such F exits by Phillips's theorem).

Finally, to obtain a contradiction, we assume that J is non-unital so that X is non-compact. In this case it can be seen that there exits a point s<sub>0</sub> ∈ βX \ X, a compact neighborhood H of s<sub>0</sub> and an ideal I<sub>H</sub> of M(J) (which consists of all a ∈ M(J) such that a|<sub>H</sub> = 0) such that A<sub>H</sub> := A/(I<sub>H</sub> ∩ A) can be identified with a C\*-subalgebra of C(H, M<sub>n</sub>(ℂ)) and

$$a_{1,n}|_{H\setminus U}=0, \quad \forall a=(a_{i,j})_{1\leq i,j\leq n}\in A_H,$$

where  $U := X \cap H$ . Note that U is a dense open subset of H, and  $s_0 \notin U$ . Using this fact we then show that the commutative C\*-algebra  $C_0(U)$  is FCG. By the first part of the proof we conclude that  $C_0(U)$  must be unital, so that U is compact, hence equal to H, contradicting the fact that  $s_0 \in H \setminus U$ .

# References

- J. M. G. Fell, *The structure of algebras of operator fields*, Acta Math., 106 (1961), 233-280.
- I. Gogić, Elementary operators and subhomogeneous C\*-algebras, to appear in Proc. Edin. Math. Soc.
- B. Magajna, *Uniform approximation by elementary operators*, Proc. Edin. Math. Soc., 52/03 (2009) 731-749.
- N. C. Phillips, *Recursive subhomogeneous algebras*, Trans. Amer. Math. Soc. 359 (2007), 4595-4623.