Fiberwise two-sided multiplications on homogeneous C*-algebras

Ilja Gogić

Department of Mathematics University of Zagreb

XX Geometrical Seminar Vrnjačka Banja, Serbia May 20–23, 2018

joint work with Richard M. Timoney (Trinity College Dublin)

C*-algebras as noncommutative topology

Definition

A (unital) C^* -algebra is a complex Banach *-algebra A whose norm $\|\cdot\|$ satisfies the C^* -identity. More precisely:

- A is a Banach algebra with identity over the field C.
- A is equipped with an involution, i.e. a map * : A → A, a → a^{*} satisfying the properties:

$$(lpha a + eta b)^* = \overline{lpha} a^* + \overline{eta} b^*, \hspace{0.3cm} (ab)^* = b^* a^*, \hspace{0.3cm} ext{and} \hspace{0.3cm} (a^*)^* = a_*$$

for all $a, b \in A$ and $\alpha, \beta \in \mathbb{C}$.

• Norm $\|\cdot\|$ satisfies the C^* -identity, i.e.

$$||a^*a|| = ||a||^2$$

for all $a \in A$.

Remark

The C^{*}-identity is a very strong requirement. For instance, together with the spectral radius formula, it implies that the C^{*}-norm is uniquely determined by the algebraic structure: For all $a \in A$ we have

$$\|a\|^2 = \|a^*a\| = r(a^*a) = \sup\{|\lambda| : \lambda \in \operatorname{spec}(a^*a)\}.$$

Remark

The C^{*}-identity is a very strong requirement. For instance, together with the spectral radius formula, it implies that the C^{*}-norm is uniquely determined by the algebraic structure: For all $a \in A$ we have

$$||a||^2 = ||a^*a|| = r(a^*a) = \sup\{|\lambda| : \lambda \in \operatorname{spec}(a^*a)\}.$$

In the category of C^* -algebras, the natural morphisms are the (unital) *-homomorphisms, i.e. the algebra homomorphisms which preserve the involution and the identity. They are automatically contractive.

Remark

The C^* -identity is a very strong requirement. For instance, together with the spectral radius formula, it implies that the C^* -norm is uniquely determined by the algebraic structure: For all $a \in A$ we have

$$||a||^2 = ||a^*a|| = r(a^*a) = \sup\{|\lambda| : \lambda \in \operatorname{spec}(a^*a)\}.$$

In the category of C^* -algebras, the natural morphisms are the (unital) *-homomorphisms, i.e. the algebra homomorphisms which preserve the involution and the identity. They are automatically contractive.

Example

Let X be a CH (compact Hausdorff) space and let C(X) be the set of all continuous complex-valued functions on X. Then C(X) becomes a commutative C^* -algebra with respect to the pointwise operations, involution $f^*(x) := \overline{f(x)}$, and max-norm $||f||_{\infty} := \sup\{|f(x)| : x \in X\}$.

In fact, all unital commutative C^* -algebras arise in this fashion:

Theorem (Gelfand-Naimark)

The (contravariant) functor $X \rightsquigarrow C(X)$ defines an equivalence of categories of CH spaces (with continuous maps as morphisms) and commutative C^{*}-algebras (with *-homomorphisms as morphisms).

In fact, all unital commutative C^* -algebras arise in this fashion:

Theorem (Gelfand-Naimark)

The (contravariant) functor $X \rightsquigarrow C(X)$ defines an equivalence of categories of CH spaces (with continuous maps as morphisms) and commutative C^{*}-algebras (with *-homomorphisms as morphisms).

In other words: By passing from the space X the function algebra C(X), no information is lost. In fact, X can be recovered from C(X). Thus, topological properties of X can be translated into algebraic properties of C(X), and vice versa, so the theory of C^* -algebras is often thought of as **noncommutative topology**.

Basic examples

- The set B(H) of bounded linear operators on a Hilbert space H becomes a C*-algebra with respect to the standard operations, usual adjoint and operator norm. In particular, the complex matrix algebras M_n = M_n(C) are C*-algebras.
- In fact, every C*-algebra can be isometrically embedded as a norm-closed self-adjoint subalgebra of B(H) for some Hilbert space H (the noncommutative Gelfand-Naimark theorem).
- To every locally compact group G, one can associate a C^* -algebra $C^*(G)$. Everything about the representation theory of G is encoded in $C^*(G)$.
- The category of C*-algebras is closed under the formation of direct products, direct sums, extensions, direct limits, pullbacks, pushouts, (some) tensor products, etc.

Homogeneous C*-algebras

Definition

A representation of a C^* -algebra A is a *-homomorphism $\pi : A \to \mathbb{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} . A representation π is said to be **irreducible** if it has no nontrivial closed invariant subspaces (i.e. if \mathcal{K} is a closed subspace of \mathcal{H} such that $\pi(A)\mathcal{K} \subseteq \mathcal{K}$, then $\mathcal{K} = \{0\}$ or $\mathcal{K} = \mathcal{H}$).

Homogeneous C*-algebras

Definition

A representation of a C^* -algebra A is a *-homomorphism $\pi : A \to \mathbb{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} . A representation π is said to be **irreducible** if it has no nontrivial closed invariant subspaces (i.e. if \mathcal{K} is a closed subspace of \mathcal{H} such that $\pi(A)\mathcal{K} \subseteq \mathcal{K}$, then $\mathcal{K} = \{0\}$ or $\mathcal{K} = \mathcal{H}$).

Noncommutative Gelfand-Naimark theorem

Every C^* -algebra admits an isometric representation on some Hilbert space.

Homogeneous C*-algebras

Definition

A representation of a C^* -algebra A is a *-homomorphism $\pi : A \to \mathbb{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} . A representation π is said to be **irreducible** if it has no nontrivial closed invariant subspaces (i.e. if \mathcal{K} is a closed subspace of \mathcal{H} such that $\pi(A)\mathcal{K} \subseteq \mathcal{K}$, then $\mathcal{K} = \{0\}$ or $\mathcal{K} = \mathcal{H}$).

Noncommutative Gelfand-Naimark theorem

Every C^* -algebra admits an isometric representation on some Hilbert space.

Remark

Because of the previous theorem, C^* -algebras can be concretely defined as norm closed self-adjoint subalgebras of bounded operators on some Hilbert space \mathcal{H} .

Let A be C*-algebra.

- A primitive ideal of A is an ideal which is the kernel of an irreducible representation of A.
- The primitive spectrum of A is the set Prim(A) of primitive ideals of A equipped with the Jacobson topology: If S is a set of primitive ideals, its closure is

$$\overline{S} := \left\{ P \in \operatorname{Prim}(A) : P \supseteq \bigcap_{Q \in S} Q \right\}$$

Let A be C*-algebra.

- A primitive ideal of A is an ideal which is the kernel of an irreducible representation of A.
- The primitive spectrum of A is the set Prim(A) of primitive ideals of A equipped with the Jacobson topology: If S is a set of primitive ideals, its closure is

$$\overline{S} := \left\{ P \in \operatorname{Prim}(A) : P \supseteq \bigcap_{Q \in S} Q \right\}$$

Example

If A = C(X), let $C_x(X) := \{f \in C(X) : f(x) = 0\}$ $(x \in X)$. Then $Prim(C(X)) = \{C_x(X) : x \in X\}$. Moreover, the correspondence $x \mapsto C_x(X)$ defines a homeomorphism between X and Prim(C(X)).

This idea in particularly works well for the following class of C^* -algebras:

Definition

A C^{*}-algebra A is called n-homogeneous if $A/P \cong \mathbb{M}_n$ for every $P \in \operatorname{Prim}(A)$.

This idea in particularly works well for the following class of C^* -algebras:

Definition

A C^{*}-algebra A is called n-homogeneous if $A/P \cong \mathbb{M}_n$ for every $P \in \operatorname{Prim}(A)$.

Theorem (Fell & Tomiyama-Takesaki)

If A is a (unital) n-homogeneous C^{*}-algebra, then its primitive spectrum X is a CH space and there is a locally trivial bundle \mathcal{E} over X with fibre \mathbb{M}_n and structure group $\operatorname{Aut}(\mathbb{M}_n) = PU(n) = U(n)/\mathbb{S}^1$ such that A is isomorphic to the algebra $\Gamma(\mathcal{E})$ of sections of \mathcal{E} .

This idea in particularly works well for the following class of C^* -algebras:

Definition

A C^{*}-algebra A is called n-homogeneous if $A/P \cong \mathbb{M}_n$ for every $P \in \operatorname{Prim}(A)$.

Theorem (Fell & Tomiyama-Takesaki)

If A is a (unital) n-homogeneous C*-algebra, then its primitive spectrum X is a CH space and there is a locally trivial bundle \mathcal{E} over X with fibre \mathbb{M}_n and structure group $\operatorname{Aut}(\mathbb{M}_n) = PU(n) = U(n)/\mathbb{S}^1$ such that A is isomorphic to the algebra $\Gamma(\mathcal{E})$ of sections of \mathcal{E} . Moreover, any two such algebras $A_i = \Gamma_0(\mathcal{E}_i)$ with spectra X_i are isomorphic if and only if there is a homeomorphism $f : X_1 \to X_2$ such that $\mathcal{E}_1 \cong f^*(\mathcal{E}_2)$ as bundles over X_1 .

From the general theory we know that any topological group G admits the **universal** G-bundle EG over BG (where BG is the **classifying space** of G), which has the property that any G-bundle E over a CW-complex X is isomorphic to the induced G-bundle $f^*(EG)$ for some continuous map $f: X \to BG$.

From the general theory we know that any topological group G admits the **universal** G-bundle EG over BG (where BG is the **classifying space** of G), which has the property that any G-bundle E over a CW-complex X is isomorphic to the induced G-bundle $f^*(EG)$ for some continuous map $f: X \to BG$.

Since any two homotopic maps induce isomorphic bundles, the map $[f] \mapsto [f^*(EG)]$ defines a bijection between the homotopy classes [X, BG] onto the isomorphism classes Bun(X, G) of *G*-bundles over *X*.

From the general theory we know that any topological group G admits the **universal** G-bundle EG over BG (where BG is the **classifying space** of G), which has the property that any G-bundle E over a CW-complex X is isomorphic to the induced G-bundle $f^*(EG)$ for some continuous map $f: X \to BG$.

Since any two homotopic maps induce isomorphic bundles, the map $[f] \mapsto [f^*(EG)]$ defines a bijection between the homotopy classes [X, BG] onto the isomorphism classes Bun(X, G) of *G*-bundles over *X*.

The classifying space of PU(n) is not that easy to describe as it is for the group U(n) (=inductive limits of complex Grassmanians). Hence, the classification problem of PU(n)-bundles is more complex than the classification problem of (complex) vector bundles.

However, if our base space X is of the form $\Sigma(Y)$ (suspension of Y) we can use the following result:

Theorem

If the group G is path-connected, then there exists a bijection between the equivalence classes of G-bundles over $X = \Sigma(Y)$ and the homotopy classes [Y, G].

However, if our base space X is of the form $\Sigma(Y)$ (suspension of Y) we can use the following result:

Theorem

If the group G is path-connected, then there exists a bijection between the equivalence classes of G-bundles over $X = \Sigma(Y)$ and the homotopy classes [Y, G].

In particular, since $\Sigma(\mathbb{S}^{k-1}) = \mathbb{S}^k$, we have:

Corollary

If the group G is path-connected, then there is a bijection between the equivalence classes of G-bundles over \mathbb{S}^k and the elements of (k-1)th-homotopy group $\pi_{k-1}(G)$.

The lower homotopy groups of G = PU(n) are known. In particular, putting $X = \mathbb{S}^k$, we get:

No. of isomorphism classes of *n*-homogeneous C^* -algebras over \mathbb{S}^k

	\mathbb{M}_1	\mathbb{M}_2	\mathbb{M}_3	\mathbb{M}_4	\mathbb{M}_5	\mathbb{M}_6	\mathbb{M}_7	\mathbb{M}_8	M9	\mathbb{M}_{10}
\mathbb{S}^1	1	1	1	1	1	1	1	1	1	1
\mathbb{S}^2	1	2	3	4	5	6	7	8	9	10
\mathbb{S}^3	1	1	1	1	1	1	1	1	1	1
\mathbb{S}^4	1	ℵ₀	<i>№</i> 0	N ₀	N ₀	N ₀	N ₀	ℵ₀	N ₀	N ₀
\mathbb{S}^{5}	1	2	1	1	1	1	1	1	1	1
\mathbb{S}^{6}	1	2	×0	×0	×0	×0	×0	×0	N ₀	№ ₀
\mathbb{S}^7	1	12	6	1	1	1	1	1	1	1

We end this part of the talk with the following interesting result:

Theorem (Antonevič-Krupnik)

If \mathcal{E} is any PU(n)-bundle over $X = \mathbb{S}^k$, then:

- (i) \mathcal{E} is trivial as a vector bundle; and
- (ii) E is of the form E = End(V) for some n-dimensional vector bundle V over S^k.

We end this part of the talk with the following interesting result:

Theorem (Antonevič-Krupnik)

If \mathcal{E} is any PU(n)-bundle over $X = \mathbb{S}^k$, then:

- (i) \mathcal{E} is trivial as a vector bundle; and
- (ii) *E* is of the form *E* = End(*V*) for some *n*-dimensional vector bundle *V* over S^k.

Problem

Which manifolds/CW-complexes X satisfy the statements (i) and/or (ii) of the above theorem?

Algebraic characterisation of homogeneous C*-algebras

Standard polynomial of degree k is a polynomial in k non-commuting variables x_1, \ldots, x_k defined by

$$s_k(x_1,\ldots,x_k) := \sum_{\sigma \in S_k} \operatorname{sign}(\sigma) x_{\sigma(1)} \cdots x_{\sigma(k)},$$

where S_k is a symmetric group of order k.

Algebraic characterisation of homogeneous C*-algebras

Standard polynomial of degree k is a polynomial in k non-commuting variables x_1, \ldots, x_k defined by

$$s_k(x_1,\ldots,x_k) := \sum_{\sigma \in S_k} \operatorname{sign}(\sigma) x_{\sigma(1)} \cdots x_{\sigma(k)},$$

where S_k is a symmetric group of order k.

Definition

We say that a ring R satisfies the **standard identity** s_k if for each k-tuple (r_1, \ldots, r_k) of elements in R we have $s_k(r_1, \ldots, r_k) = 0$.

Algebraic characterisation of homogeneous C*-algebras

Standard polynomial of degree k is a polynomial in k non-commuting variables x_1, \ldots, x_k defined by

$$s_k(x_1,\ldots,x_k) := \sum_{\sigma \in S_k} \operatorname{sign}(\sigma) x_{\sigma(1)} \cdots x_{\sigma(k)},$$

where S_k is a symmetric group of order k.

Definition

We say that a ring R satisfies the **standard identity** s_k if for each k-tuple (r_1, \ldots, r_k) of elements in R we have $s_k(r_1, \ldots, r_k) = 0$.

Theorem (Amitsur-Levitzki)

If R is a unital commutative ring, then the ring $M_n(R)$ of $n \times n$ matrices over R satisfies the standard identity s_{2n} .

We say that a unital R ring is an A_n -ring if:

(i) R satisfies the standard identity s_{2n} ; and

(ii) No non-zero homomorphic image of R satisfies the standard identity $s_{2(n-1)}$.

We say that a unital R ring is an A_n -ring if:

- (i) R satisfies the standard identity s_{2n} ; and
- (ii) No non-zero homomorphic image of R satisfies the standard identity $s_{2(n-1)}$.

Corollary

A unital C^* -algebra A is an A_n -ring if and only if A is n-homogeneous.

We say that a unital R ring is an A_n -ring if:

- (i) R satisfies the standard identity s_{2n} ; and
- (ii) No non-zero homomorphic image of R satisfies the standard identity $s_{2(n-1)}$.

Corollary

A unital C^* -algebra A is an A_n -ring if and only if A is n-homogeneous.

Definition

A unital ring R with centre Z is said to be Azumaya over Z if:

- (i) R is a finitely generated projective Z-module; and
- (ii) The canonical homomorphism

 $\theta: A \otimes_Z A^{\circ} \to \operatorname{End}_Z(R), \quad \theta(a \otimes b)(x) = axb$

is an isomorphism.

If R is Azumaya over Z, then R is a finitely generated projective Z-module and hence has a rank function $\operatorname{Spec}(R) \to \mathbb{N}_0$. If this function is constant then R is said to be of **constant rank**. In this case the rank of R is a perfect square. If *R* is Azumaya over *Z*, then *R* is a finitely generated projective *Z*-module and hence has a rank function $\operatorname{Spec}(R) \to \mathbb{N}_0$. If this function is constant then *R* is said to be of **constant rank**. In this case the rank of *R* is a perfect square.

Theorem (Artin)

A unital ring R is an A_n -ring if and only if R iz Azumaya of constant rank n^2 .

If R is Azumaya over Z, then R is a finitely generated projective Z-module and hence has a rank function $\operatorname{Spec}(R) \to \mathbb{N}_0$. If this function is constant then R is said to be of **constant rank**. In this case the rank of R is a perfect square.

Theorem (Artin)

A unital ring R is an A_n -ring if and only if R iz Azumaya of constant rank n^2 .

Corollary

For a unital C*-algebra A the following conditions are equivalent:

- (i) A is n-homogeneous.
- (ii) A is an A_n -ring.

(iii) A is Azumaya of constant rank n^2 .

Theorem (G. 2011)

For a C^* -algebra A the following conditions are equivalent:

(i) A is Azumaya.

(ii) A is finitely generated module over the centre of its multiplier algebra.

(iii) A is a finite direct sum of unital homogeneous C*-algebras.

Fiberwise two-sided multiplications on homogeneous C*-algebras

If A is a C*-algebra, the important class of bounded linear maps $\phi : A \to A$ are the ones that preserve its (closed two-sided) ideals, i.e. $\phi(I) \subseteq I$ for all ideals I of A. We denote by IB(A) the set of all such maps.

Fiberwise two-sided multiplications on homogeneous C*-algebras

If A is a C*-algebra, the important class of bounded linear maps $\phi : A \to A$ are the ones that preserve its (closed two-sided) ideals, i.e. $\phi(I) \subseteq I$ for all ideals I of A. We denote by IB(A) the set of all such maps.

- Since any ideal in a C*-algebra is an intersection of all primitive ideals that contain it, a bounded linear map φ : A → A lies in IB(A) if and only if φ preserves all primitive ideals of A.
- For any ideal *I* of *A*, φ induces a map φ_I : *A*/*I* → *A*/*I* which sends a + *I* to φ(a) + *I*.

Fiberwise two-sided multiplications on homogeneous C*-algebras

If A is a C*-algebra, the important class of bounded linear maps $\phi : A \to A$ are the ones that preserve its (closed two-sided) ideals, i.e. $\phi(I) \subseteq I$ for all ideals I of A. We denote by IB(A) the set of all such maps.

 Since any ideal in a C*-algebra is an intersection of all primitive ideals that contain it, a bounded linear map φ : A → A lies in IB(A) if and only if φ preserves all primitive ideals of A.

• For any ideal I of A, ϕ induces a map $\phi_I : A/I \to A/I$ which sends a + I to $\phi(a) + I$.

The class of maps $\phi \in IB(A)$ that have the simplest form are the two-sided multiplications $M_{a,b}: x \mapsto axb$, where a and b are elements of A. We denote by TM(A) the set of all such maps.

Suppose that A is a "well-behaved" unital C^* -algebra. If $\phi \in IB(A)$ has the property that each induced map $\phi_P : A/P \to A/P$ ($P \in Prim(A)$) is a two-sided multiplication of A/P, does ϕ have to be a two-sided multiplication of A?

Suppose that A is a "well-behaved" unital C*-algebra. If $\phi \in IB(A)$ has the property that each induced map $\phi_P : A/P \to A/P$ ($P \in Prim(A)$) is a two-sided multiplication of A/P, does ϕ have to be a two-sided multiplication of A?

Remark

In the sequel we consider the above problem when $A = \Gamma(\mathcal{E})$ is a unital *n*-homogeneous algebra over X = Prim(A) (which is compact since A is unital), where \mathcal{E} is the canonical PU(n)-bundle over X.

Suppose that A is a "well-behaved" unital C*-algebra. If $\phi \in IB(A)$ has the property that each induced map $\phi_P : A/P \to A/P$ ($P \in Prim(A)$) is a two-sided multiplication of A/P, does ϕ have to be a two-sided multiplication of A?

Remark

In the sequel we consider the above problem when $A = \Gamma(\mathcal{E})$ is a unital *n*-homogeneous algebra over X = Prim(A) (which is compact since A is unital), where \mathcal{E} is the canonical PU(n)-bundle over X.

Suppose that A is a "well-behaved" unital C*-algebra. If $\phi \in IB(A)$ has the property that each induced map $\phi_P : A/P \to A/P$ ($P \in Prim(A)$) is a two-sided multiplication of A/P, does ϕ have to be a two-sided multiplication of A?

Remark

In the sequel we consider the above problem when $A = \Gamma(\mathcal{E})$ is a unital *n*-homogeneous algebra over X = Prim(A) (which is compact since A is unital), where \mathcal{E} is the canonical PU(n)-bundle over X.

Definition

We say that a map $\phi \in IB(A)$ is a fiberwise two-sided multiplication if $\phi_x \in TM(A_x)$ for all $x \in X$. The set of all such maps is denoted by FTM(A).

Prposition

Let $\phi \in FTM(A)$ and suppose that $\phi_{x_0} \neq 0$ for some $x_0 \in X$. Then there exists a compact neighborhood N of x_0 and $a, b \in A$ such that $a(x) \neq 0$ and $b(x) \neq 0$ for all $x \in N$ and $\phi = M_{a,b}$ modulo the ideal $I_N = \{a \in A : a(x) = 0 \text{ for all } x \in N\}.$

Prposition

Let $\phi \in FTM(A)$ and suppose that $\phi_{x_0} \neq 0$ for some $x_0 \in X$. Then there exists a compact neighborhood N of x_0 and $a, b \in A$ such that $a(x) \neq 0$ and $b(x) \neq 0$ for all $x \in N$ and $\phi = M_{a,b}$ modulo the ideal $I_N = \{a \in A : a(x) = 0 \text{ for all } x \in N\}.$

Auxiliary notation

- $\operatorname{TM}_{\operatorname{nv}}(A) = \{ \phi \in \operatorname{TM}(A) : \phi_x \neq 0 \ \forall x \in X \};$
- $\operatorname{FTM}_{\operatorname{nv}}(A) = \{ \phi \in \operatorname{FTM}(A) : \operatorname{TM}(A_x) \ni \phi_x \neq 0 \ \forall x \in X \}.$

Prposition

Let $\phi \in FTM(A)$ and suppose that $\phi_{x_0} \neq 0$ for some $x_0 \in X$. Then there exists a compact neighborhood N of x_0 and $a, b \in A$ such that $a(x) \neq 0$ and $b(x) \neq 0$ for all $x \in N$ and $\phi = M_{a,b}$ modulo the ideal $I_N = \{a \in A : a(x) = 0 \text{ for all } x \in N\}.$

Auxiliary notation

- $\operatorname{TM}_{\operatorname{nv}}(A) = \{ \phi \in \operatorname{TM}(A) : \phi_x \neq 0 \ \forall x \in X \};$
- $\operatorname{FTM}_{\operatorname{nv}}(A) = \{ \phi \in \operatorname{FTM}(A) : \operatorname{TM}(A_x) \ni \phi_x \neq 0 \ \forall x \in X \}.$

Theorem (G.-Timoney 2018)

To each operator $\phi \in \operatorname{FTM}_{nv}(A)$ there is a canonically associated complex line subbundle \mathcal{L}_{ϕ} of \mathcal{E} such that

$$\phi \in \mathrm{TM}_\mathrm{nv}(\mathcal{A}) \hspace{0.1in} \Longleftrightarrow \hspace{0.1in} \mathcal{L}_\phi$$
 is a trivial bundle.

Moreover, for each complex line subbundle \mathcal{L} of \mathcal{E} there is an operator $\phi_{\mathcal{L}} \in \mathrm{FTM}_{\mathrm{nv}}(\mathcal{A})$ such that $\mathcal{L}_{\phi_{\mathcal{L}}} = \mathcal{L}$.

As we know, the principle G-bundles over X are classified by:

- homotopy classes [X, BG] (BG is the classifying space of G).
- Čech cohomology H¹(X; G) of equivalent 1-cocycles of a sheaf S over X, whose local groups are sections C(U, G), U ⊂ X.

When we deal with (principle) complex line bundles, their structure group is $G = U(1) = \mathbb{S}^1$. In this case $BG = \mathbb{C}P^{\infty}$ and there exists a natural isomorphisms of groups $H^1(X; G) \to \check{H}^2(X; \mathbb{Z})$.

As we know, the principle G-bundles over X are classified by:

- homotopy classes [X, BG] (BG is the classifying space of G).
- Čech cohomology H¹(X; G) of equivalent 1-cocycles of a sheaf S over X, whose local groups are sections C(U, G), U ⊂ X.

When we deal with (principle) complex line bundles, their structure group is $G = U(1) = \mathbb{S}^1$. In this case $BG = \mathbb{C}P^{\infty}$ and there exists a natural isomorphisms of groups $H^1(X; G) \to \check{H}^2(X; \mathbb{Z})$.

In the light of previous theorem, for a homogeneous C^* -algebra $A = \Gamma(\mathcal{E})$ we define a map

$$\theta: \operatorname{FTM}_{\operatorname{nv}}(A) \to \check{H}^2(X; \mathbb{Z})$$

that sends an operator $\phi \in \operatorname{FTM}_{\operatorname{nv}}(A)$ to the corresponding class of the bundle \mathcal{L}_{ϕ} in $\check{H}^{2}(X;\mathbb{Z})$. Then $\theta^{-1}(0) = \operatorname{TM}_{\operatorname{nv}}(A)$ (by the latter theorem).

Corollary

If $\check{H}^2(X;\mathbb{Z}) = 0$, then $\operatorname{FTM}_{\operatorname{nv}}(A) = \operatorname{TM}_{\operatorname{nv}}(A)$.

Corollary

If
$$\check{H}^2(X;\mathbb{Z}) = 0$$
, then $\operatorname{FTM}_{\operatorname{nv}}(A) = \operatorname{TM}_{\operatorname{nv}}(A)$.

Theorem (G.-Timoney 2018) Suppose that dim $X \le d < \infty$. For each $n \ge 1$ let $A_n = C(X, \mathbb{M}_n)$. If $p := \left\lceil \sqrt{(d+1)/2} \right\rceil$, then for every $n \ge p$ the mapping $\theta : \operatorname{FTM}_{nv}(A) \to \check{H}^2(X; \mathbb{Z})$ is surjective. In particular, if $\check{H}^2(X; \mathbb{Z}) \neq 0$, then $\operatorname{TM}_{nv}(A_n) \subsetneq \operatorname{FTM}_{nv}(A_n)$ for all $n \ge p$.

Corollary

If
$$\check{H}^2(X;\mathbb{Z}) = 0$$
, then $\operatorname{FTM}_{nv}(A) = \operatorname{TM}_{nv}(A)$.

Theorem (G.-Timoney 2018)

Suppose that dim $X \leq d < \infty$. For each $n \geq 1$ let $A_n = C(X, \mathbb{M}_n)$. If $p := \left\lceil \sqrt{(d+1)/2} \right\rceil$, then for every $n \geq p$ the mapping $\theta : \operatorname{FTM}_{nv}(A) \to \check{H}^2(X; \mathbb{Z})$ is surjective. In particular, if $\check{H}^2(X; \mathbb{Z}) \neq 0$, then $\operatorname{TM}_{nv}(A_n) \subsetneq \operatorname{FTM}_{nv}(A_n)$ for all $n \geq p$.

Corollary

If
$$X = \mathbb{S}^2$$
 or $X = \mathbb{S}^1 \times \mathbb{S}^1$, then for $A = C(X, \mathbb{M}_n)$ we have $\mathrm{TM}_{\mathrm{nv}}(A) \subsetneq \mathrm{FTM}_{\mathrm{nv}}(A)$ for all $n \ge 2$.

Theorem (G.-Timoney 2018)

Let $A = \Gamma(\mathcal{E})$ be a unital homogeneous C^* -algebra with X = Prim(A). Consider the following two conditions:

(a) $\forall U \subset X$ open, each complex line subbundle of $\mathcal{E}|_U$ is trivial.

(b) FTM(A) = TM(A).

Then (a) \Rightarrow (b). If A is separable, then (a) and (b) are equivalent.

Theorem (G.-Timoney 2018)

Let $A = \Gamma(\mathcal{E})$ be a unital homogeneous C^* -algebra with X = Prim(A). Consider the following two conditions:

(a) $\forall U \subset X$ open, each complex line subbundle of $\mathcal{E}|_U$ is trivial.

(b) $\operatorname{FTM}(A) = \operatorname{TM}(A)$.

Then (a) \Rightarrow (b). If A is separable, then (a) and (b) are equivalent.

Corollary

Suppose that $n \ge 2$.

(a) If X is second-countable with dim X < 2, or if X is (homeomorphic to) a subset of a non-compact connected 2-manifold, then FTM(A) = TM(A).

(b) If X contains a nonempty open subset homeomorphic to (an open subset of) ℝ^d for some d ≥ 3, then FTM(A) \ TM(A) ≠ Ø.