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Preliminaries

C ∗-algebraic formulation of Quantum Mechanics

In quantum mechanics a physical system is typically described via a unital
C ∗-algebra A with unit element.

The self-adjoint elements of A are thought of as the observables; they
are the measurable quantities of the system.

A state of the system is defined as a positive functional on A (i.e. a
linear map ω : A→ C such that ω(a∗a) ≥ 0 for all a ∈ A) with
ω(1A) = 1. If the system is in the state ω, then ω(a) is the expected
value of the observable a.

Automorphisms correspond to the symmetries, while one-parameter
automorphism groups describe the reversible time evolution of the
system (in the Heisenberg picture).
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Definition

A C ∗-algebra is a (complex) Banach ∗-algebra A whose norm ‖ · ‖
satisfies the C ∗-identity. More precisely:

A is a Banach algebra over the field C.

A is equipped with an involution, i.e. a map ∗ : A→ A, a 7→ a∗

satisfying the properties:

(αa + βb)∗ = αa∗ + βb∗, (ab)∗ = b∗a∗, and (a∗)∗ = a,

for all a, b ∈ A and α, β ∈ C.

Norm ‖ · ‖ satisfies the C ∗-identity, i.e.

‖a∗a‖ = ‖a‖2

for all a ∈ A.
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Remark

The C ∗-identity is a very strong requirement. For instance, together with
the spectral radius formula, it implies that the C ∗-norm is uniquely
determined by the algebraic structure: For all a ∈ A we have

‖a‖2 = ‖a∗a‖ = sup{|λ| : λ ∈ spec(a∗a)}.

In the category of C ∗-algebras, the natural morphisms are the
∗-homomorphisms, i.e. the algebra homomorphisms which preserve the
involution. They are automatically contractive.

Example

Let X be a LCH (locally compact Hausdorff) space and let C0(X ) be the
set of all continuous complex-valued functions on X that vanish at ∞.
Then C0(X ) becomes a commutative C ∗-algebra with respect to the
pointwise operations, involution f ∗(x) := f (x), and max-norm
‖f ‖∞ := sup{|f (x)| : x ∈ X}. Obviously, C0(X ) is unital if and only if X
is compact.

Ilja Gogić (University of Zagreb) TMs and and phantom line bundles XIX GS 2016, Zlatibor 4 / 23



Remark

The C ∗-identity is a very strong requirement. For instance, together with
the spectral radius formula, it implies that the C ∗-norm is uniquely
determined by the algebraic structure: For all a ∈ A we have

‖a‖2 = ‖a∗a‖ = sup{|λ| : λ ∈ spec(a∗a)}.

In the category of C ∗-algebras, the natural morphisms are the
∗-homomorphisms, i.e. the algebra homomorphisms which preserve the
involution. They are automatically contractive.

Example

Let X be a LCH (locally compact Hausdorff) space and let C0(X ) be the
set of all continuous complex-valued functions on X that vanish at ∞.
Then C0(X ) becomes a commutative C ∗-algebra with respect to the
pointwise operations, involution f ∗(x) := f (x), and max-norm
‖f ‖∞ := sup{|f (x)| : x ∈ X}. Obviously, C0(X ) is unital if and only if X
is compact.
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In fact, all unital commutative C ∗-algebras arise in this fashion:

Theorem (Gelfand-Naimark, 1943)

The (contravariant) functor X  C0(X ) defines an equivalence of
categories of LCH spaces (with proper maps as morphisms) and
commutative C ∗-algebras (with non-degenerate ∗-homomorphisms as
morphisms).

In other words: By passing from the space X the function algebra C0(X ),
no information is lost. In fact, X can be recovered from C0(X ). Thus,
topological properties of X can be translated into algebraic properties of
C0(X ), and vice versa, so the theory of C ∗-algebras is often thought of as
noncommutative topology.
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Basic examples

The set B(H) of bounded linear operators on a Hilbert space H
becomes a C ∗-algebra with respect to the standard operations, usual
adjoint and operator norm. In particular, the complex matrix algebras
Mn(C) are C ∗-algebras.

In fact, every C ∗-algebra can be isometrically embedded as a
norm-closed self-adjoint subalgebra of B(H) for some Hilbert space H
(the noncommutative Gelfand-Naimark theorem).

To every locally compact group G , one can associate a C ∗-algebra
C ∗(G ). Everything about the representation theory of G is encoded
in C ∗(G ).

The category of C ∗-algebras is closed under the formation of direct
products, direct sums, extensions, direct limits, pullbacks, pushouts,
(some) tensor products, etc.
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In the light of noncommutative topology it is natural to try to view a given
C ∗-algebra A as a set of sections of some sort of the bundle. The natural
candidate for the base space X is the primitive spectrum of A:

Definition

An ideal P of A is said to be primitive if P is the kernel of some
irreducible representation of A. The primitive spectrum of A, which we
denote by Prim(A), is the set of all primitive ideals of A equipped with the
Jacobson topology. Hence, if S is some set of primitive ideals, its closure is

S =

{
P ∈ Prim(A) : P ⊇

⋂
Q∈S

Q

}
.

The good news

The primitive ideals separate the points of A. Further, Prim(A) is a locally
compact space.

The bad news

Prim(A) in general satisfies only T0-separation axiom.
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Approximations by elementary operators

Let IB(A) be the set of all bounded maps φ : A→ A that preserve (closed
two-sided) ideals of A, i.e. φ(I ) ⊆ I for all ideals I of A.

For any ideal I of A, φ induces a map φI : A/I → A/I which sends
a + I to φ(a) + I .

If S is any subset of ideals of A with zero intersection, the norm of φ
can be computed by the formula ‖φ‖ = sup{‖φI‖ : I ∈ S}.

The most prominent class of maps φ ∈ IB(A) are the elementary
operators, i.e. those that can be expressed as finite sums of two-sided
multiplication maps Ma,b : x 7→ axb, where a and b are elements of A (or
more generally M(A)–the multiplier algebra of A).

The important observation is that elementary operators are in fact
completely bounded, i.e. supn ‖φ(n)‖ <∞, where for each n,
φ(n) : Mn(A)→ Mn(A) is the induced map that sends the matrix [aij ] to
the matrix [φ(aij)].
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More precisely, we have the following estimate∥∥∥∥∥∑
i

Mai ,bi

∥∥∥∥∥
cb

≤

∥∥∥∥∥∑
i

ai ⊗ bi

∥∥∥∥∥
h

, (1)

where ‖ · ‖h is the Haagerup tensor norm on M(A)⊗M(A), i.e.

‖t‖h = inf


∥∥∥∥∥∑

i

aia
∗
i

∥∥∥∥∥
1
2
∥∥∥∥∥∑

i

b∗i bi

∥∥∥∥∥
1
2

: t =
∑
i

ai ⊗ bi

 .

Theorem (Haagerup 1980, Chatterjee-Sinclair 1992, Mathieu 2003)

The equality in (1) holds true for all elementary operators φ =
∑

i Mai ,bi if
and only if A is a prime C ∗-algebra.

Remark

If the algebra A is not prime, then the map a⊗ b 7→ Ma,b is not even
injective.
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The length of an elementary operator φ 6= 0 is the smallest positive
integer ` = `(φ) such that φ =

∑`
i=1 Mai ,bi for some ai , bi ∈ M(A). We

also define `(0) = 0.

By E`(A) we denote the set of all elementary operators on A and by
E`k(A) the set of all φ ∈ E`(A) with `(φ) ≤ k .

Theorem (Timoney 2003, 2007)

For every φ ∈ E`(A) of length ` we have

‖φ‖cb = ‖φ(`)‖ ≤
√
`‖φ‖.

Corollary

On each E`k(A) the cb-norm is equivalent to the operator norm.
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Question

Which operators φ ∈ IB(A) can be approximated by elementary operators
in the operator norm?

Theorem (Magajna 2009)

If A is a separable C ∗-algebra, then E`(A) is operator norm dense in IB(A)
if and only if A can be decomposed as a finite direct sum
A = A1 ⊕ · · · ⊕ An, where each summand Ai is homogeneous with the
finite type property. In particular, in this case we have IB(A) = E`(A).

Remark

A C ∗-algebra A is called n-homogeneous if A/P ∼= Mn for every
P ∈ Prim(A). By a well-known theorem of Fell and
Tomiyama-Takesaki, for any n-homogeneous C ∗-algebra A with
(primitive) spectrum X there is a locally trivial bundle E over X with
fibre Mn and structure group Aut(Mn) = PU(n) = U(n)/S1 such
that A is isomorphic to the algebra Γ0(E) of sections of E which
vanish at infinity.
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Remark (continuation)

Moreover, any two such algebras Ai = Γ0(Ei ) with spectra Xi are
isomorphic if and only if there is a homeomorphism f : X1 → X2 such
that E1

∼= f ∗(E2) as bundles over X1.

An n-homogeneous C ∗-algebra Γ0(E) with spectrum X is said to have
the finite type property if E can be trivialized over some finite open
cover of X .

Theorem (G. 2011)

Let A be a separable C ∗-algebra.

(a) If E`(A) is norm closed, then A is necessarily subhomogeneous (i.e.
sup{dim(A/P) : P ∈ Prim(A)} <∞) and each homogeneous
sub-quotient of A has the finite type property.

(b) The converse is also true if Prim(A) is Hausdorff.

(c) There exists a compact subset X of R and a unital C ∗-subalgebra A
of C (X ,M2) such that E`(A) is not closed in the operator norm.
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Approximations by two-sided multiplications
Notation

Let TM(A) = {Ma,b : a, b ∈ A} and let TM(A) be its (operator) norm
closure.

Problem

Describe TM(A).

Theorem (G.-Timoney 2016)

Suppose that a, b, c and d are norm-one elements of a C ∗-algebra A. If

‖a⊗ b − c ⊗ d‖h < ε ≤ 1/3,

then there exists a scalar µ of modulus one such that

max{‖a− µc‖, ‖b − µd‖} < 6ε.

Consequently, TM(A) is norm closed if A is a prime C ∗-algebra.
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Suppose that a, b, c and d are norm-one elements of a C ∗-algebra A. If

‖a⊗ b − c ⊗ d‖h < ε ≤ 1/3,

then there exists a scalar µ of modulus one such that

max{‖a− µc‖, ‖b − µd‖} < 6ε.

Consequently, TM(A) is norm closed if A is a prime C ∗-algebra.
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In the sequel A = Γ0(E) will be a homogeneous C ∗-algebra with the
primitive spectrum X .

Proposition

For every φ ∈ IB(A) the norm function x 7→ ‖φx‖ is continuous on X . In

particular, for each φ ∈ TM(A) we have (x 7→ ‖φx‖) ∈ C0(X ).

The next set may seem as the most obvious candidate for the norm closure
of TM(A):

Notation

PTM(A) := {φ ∈ IB(A) : (x 7→ ‖φx‖) ∈ C0(X ) & φx ∈ TM(Ax) ∀x ∈ X}.

Proposition

If A is a homogeneous C ∗-algebra, then the set PTM(A) is norm closed.

In particular, we have TM(A) ⊆ PTM(A).
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Ilja Gogić (University of Zagreb) TMs and and phantom line bundles XIX GS 2016, Zlatibor 14 / 23



In the sequel A = Γ0(E) will be a homogeneous C ∗-algebra with the
primitive spectrum X .

Proposition

For every φ ∈ IB(A) the norm function x 7→ ‖φx‖ is continuous on X . In

particular, for each φ ∈ TM(A) we have (x 7→ ‖φx‖) ∈ C0(X ).

The next set may seem as the most obvious candidate for the norm closure
of TM(A):

Notation

PTM(A) := {φ ∈ IB(A) : (x 7→ ‖φx‖) ∈ C0(X ) & φx ∈ TM(Ax) ∀x ∈ X}.

Proposition

If A is a homogeneous C ∗-algebra, then the set PTM(A) is norm closed.

In particular, we have TM(A) ⊆ PTM(A).
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Problem

Which homogeneous C ∗-algebras A satisfy the equality

TM(A) = PTM(A)?

Auxiliary notation

TMnv(A) = {φ ∈ TM(A) : φx 6= 0 ∀x ∈ X};
PTMnv(A) = {φ ∈ PTM(A) : TM(Ax) 3 φx 6= 0 ∀x ∈ X}.

Theorem (G.-Timoney 2016)

Let A = Γ0(E) be a homogeneous C ∗-algebra. To each operator
φ ∈ PTMnv(A) we can (canonically) associate a complex line subbundle
Lφ of E with the property that

φ ∈ TMnv(A) ⇐⇒ Lφ is a trivial bundle.

Further, is X is σ-compact, then for every complex line subbundle L of E
we can find an operator φL ∈ PTMnv(A) such that Lφ = L.
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If the base space X is paracompact, then the locally trivial complex line
bundles over X are classified by the homotopy classes from X to CP∞,
and/or by the elements of the second integral Čech cohomology Ȟ2(X ;Z)

For a homogeneous C ∗-algebra A = Γ0(E) we define a map

θ : PTMnv(A)→ Ȟ2(X ;Z)

which sends an operator φ ∈ PTMnv(A) to the corresponding class of the
bundle Lφ in Ȟ2(X ;Z). Then θ−1(0) = TMnv(A) (by the latter theorem).

Corollary

Let A be a homogeneous C ∗-algebra. If X = Prim(A) is paracompact with
Ȟ2(X ;Z) = 0, then PTMnv(A) = TMnv(A).
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Theorem (G.-Timoney 2016)

Let X be a CH space with dimX ≤ d <∞. For each n ≥ 1 let

An = C (X ,Mn). If p :=
⌈√

(d + 1)/2
⌉

, then for every n ≥ p the mapping

θ : PTMnv(A)→ Ȟ2(X ;Z) is surjective. In particular, if Ȟ2(X ;Z) 6= 0,
then TMnv(An)  PTMnv(An) for all n ≥ p.

Corollary

If X = S2 or X = S1 × S1, then for A = C (X ,Mn) we have
TMnv(A)  PTMnv(A) for all n ≥ 2.

Theorem (G.-Timoney 2016)

Let A = Γ0(E) be a homogeneous C ∗-algebra with X = Prim(A).
Consider the following two conditions:

(a) ∀U ⊂ X open, each complex line subbundle of E|U is trivial.

(b) PTM(A) = TM(A).

Then (a) ⇒ (b). If A is separable, then (a) and (b) are equivalent.
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Corollary

Let A be an n-homogeneous C ∗-algebra with n ≥ 2.

(a) If X is second-countable with dimX < 2, or if X is (homeomorphic
to) a subset of a non-compact connected 2-manifold, then
PTM(A) = TM(A).

(b) If X is σ-compact and contains a nonempty open subset
homeomorphic to (an open subset of) Rd for some d ≥ 3, then
PTM(A) \ TM(A) 6= ∅.

Theorem (G.-Timoney 2016)

Let A = Γ0(E) be a homogeneous C ∗-algebra. For an operator φ ∈ B(A)
the following two conditions are equivalent:

(a) φ ∈ TM(A).

(b) φ ∈ PTM(A) and for coz(φ) := {x ∈ X : φx 6= 0} the bundle Lφ is
trivial on each compact subset of coz(φ).
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Definition

A locally trivial fibre bundle F over a locally compact Hausdorff space X is
said to be a phantom bundle if F is not globally trivial, but is trivial on
each compact subset of X .

Corollary

Let A = Γ0(E) be a homogeneous C ∗-algebra. Then the set TM(A) is not
norm closed if and only if there exists a σ-compact open subset U of X
and a phantom subbundle of E|U .
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Remark

Let G be a group and n a positive integer. Recall that a space X is called
an Eilenberg-MacLane space of type K (G , n), if it’s n-th homotopy
group πn(X ) is isomorphic to G and all other homotopy groups trivial. If
n > 1 then G must be abelian (since for all n > 1, the homotopy groups
πn(X ) are abelian). We state some basic facts about Eilenberg-MacLane
spaces:

There exists a CW-complex K (G , n) for any group G at n = 1, and
abelian group G at n > 1. Moreover such a CW-complex is unique up
to homotopy type. Hence, by abuse of notation, it is common to
denote any such space by K (G , n).

Given a CW-complex X , there is a bijection between its cohomology
group Hn(X ;G ) and the homotopy classes [X ,K (G , n)] of maps from
X to K (G , n).

K (Z, 2) ∼= CP∞. In particular, for each CW-complex X there is a
bijection between [X ,K (Z, 2)] and isomorphism classes of complex
line bundles over X .
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Example

Let us consider the Eilenberg-MacLane space K (Q, 1).

The standard model of K (Q, 1) is the mapping telescope ∆ of the
sequence

S1 z−→ S1 z2

−→ S1 z3

−→ · · · .

Applying H1(−;Z) to the levels of this mapping telescope gives the
system

Z ×1−→ Z ×2−→ Z ×3−→ · · · .

The colimit of this system is H1(∆;Z) = Q and all other integral
homology groups are trivial. By the universal coefficient theorem for
cohomology each integral cohomology group of ∆ is trivial, except for
H2(∆;Z) which is isomorphic to Ext(Q;Z) ∼= R.

Hence, there exist uncountably many mutually nontrivial complex line
bundles over X . Each such bundle L is a phantom bundle, since all
restrictions of L over finite subcomplexes of ∆ are trivial.

Ilja Gogić (University of Zagreb) TMs and and phantom line bundles XIX GS 2016, Zlatibor 21 / 23



Conclusion

Since ∆ is a 2-complex, L is a direct summand of a trivial bundle ∆×C2.
In particular, if A = C0(∆,M2), then TM(A) is not norm closed.

In private correspondence Prof. Mladen Bestvina (University of Utah)
informed us that even inside R3 there are open subsets of type K (Q, 1).
Using this observation we can show the following fact:

Theorem (G.-Timoney 2016)

Let A be an n-homogeneous C ∗-algebra with n ≥ 2.

(a) If X is second-countable with dimX < 2 or if X is (homeomorphic
to) a subset of a non-compact connected 2-manifold, then TM(A) is
not norm closed.

(b) If there is a nonempty open subset of X homeomorphic to (an open
subset of) Rd for some d ≥ 3, then TM(A) fails to be norm closed.
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Summary

Let A be a separable n-homogeneous C ∗-algebra with n ≥ 2 such that
dimX = d <∞. If X is a CW-complex or a subset of a d-manifold, the

following relations between TM(A), TM(A) and PTM(A) occur:

(a) If d < 2 we always have TM(A) = TM(A) = PTM(A).

(b) If d = 2 we have four possibilities:

(i) TM(A) = TM(A) = PTM(A): e.g. if X is a subset of a non-compact
connected 2-manifold

(ii) TM(A) = TM(A) ( PTM(A): e.g. if A = C (X ,Mn), where X = S2.

(iii) TM(A) ( TM(A) = PTM(A): e.g. if A = C0(X ,Mn), where X = ∆ is
the standard model for K (Q, 1).

(iv) TM(A) ( TM(A) ( PTM(A): e.g. for A = C0(X ,Mn), where X is
the topological disjoint union of S2 and ∆.

(c) If d > 2 we always have TM(A) ( TM(A) ( PTM(A).
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