Penney - Pomerance (1974)
y2 = x3 - x2 - 832328021x + 9183124281870 Torsion points: O, [17738, 0] Independent points of infinite order: P1 = [15541, 34307] P2 = [9333, 1492605] P3 = [7129, 1900453] P4 = [-186011/9, 113131711/27] P5 = [1637171/49, 1482112071/343] P6 = [1378809, 1618682523]
Penney - Pomerance (1974)
y2 = x3 - x2 - 2069247973x + 36191779888342 Torsion points: O, [26962, 0] Independent points of infinite order: P1 = [28366, 564642] P2 = [41701, 4734687] P3 = [27337, 230775] P4 = [41709/4, 31747841/8] P5 = [85581, 22043153] P6 = [128029/4, 13266729/8]
Penney - Pomerance (1974)
y2 = x3 - x2 - 3272444581x + 72023792282806 Torsion points: O, [33586, 0] Independent points of infinite order: P1 = [33609, 51175] P2 = [13009, 5626185] P3 = [22653, 3084991] P4 = [61026, 9979340] P5 = [57134, 8459010] P6 = [-216995/4, 75851127/8]
Penney - Pomerance (1974)
y2 = x3 - x2 - 122985156x + 232744673700 Torsion points: O, [1953, 0] Independent points of infinite order: P1 = [1876, 92862] P2 = [-4892, 846930] P3 = [40616, 7889138] P4 = [10741, 388362] P5 = [13116, 935862] P6 = [311696/25, 99790306/125]
Penney - Pomerance (1974)
y2 = x3 - x2 - 852210116x + 9511510378980 Torsion points: O, [15713, 0] Independent points of infinite order: P1 = [-10234, 4142592] P2 = [15153, 277620] P3 = [-8324, 4003558] P4 = [54376, 11133058] P5 = [-128603/4, 15339115/8] P6 = [-177656/9, 116575766/27]
Penney - Pomerance (1974)
y2 = x3 - x2 - 1664597956x + 26095909440100 Torsion points: O, [22753, 0] Independent points of infinite order: P1 = [24378, 57200] P2 = [-25000, 7217010] P3 = [37876, 4169262] P4 = [-12534, 6707512] P5 = [162250/9, 37661120/27] P6 = [2382832/9, 3636914050/27]
Penney - Pomerance (1974)
y2 = x3 - x2 - 1980651076x + 33887665543876 Torsion points: O, [24961, 0] Independent points of infinite order: P1 = [24910, 76704] P2 = [24948, 38246] P3 = [20968, 1255254] P4 = [19074, 1745800] P5 = [10546, 3764640] P6 = [752437/4, 635863443/8]
Penney - Pomerance (1974)
y2 = x3 - x2 - 2388994756x + 44907381038500 Torsion points: O, [27553, 0] Independent points of infinite order: P1 = [27448, 112350] P2 = [29750, 405600] P3 = [-14000, 8695350] P4 = [-41724, 8482162] P5 = [117368608, 1271533747770] P6 = [-16300964/289, 2216801226/4913]
Penney - Pomerance (1974)
y2 = x3 - x2 - 3002115396x + 63280268148996 Torsion points: O, [31041, 0] Independent points of infinite order: P1 = [32273, 76076] P2 = [24196, 2192250] P3 = [-45490, 10281544] P4 = [62528, 10955774] P5 = [127164, 41687310] P6 = [350114, 204765680]
Rank records history | Andrej Dujella home page |