Martin - McMillen (2000)
y2 + xy + y = x3 - 120039822036992245303534619191166796374x
+ 504224992484910670010801799168082726759443756222911415116
Independent points of infinite order:
P1 = [2005024558054813068, -16480371588343085108234888252]
P2 = [-4690836759490453344, -31049883525785801514744524804]
P3 = [4700156326649806635, -6622116250158424945781859743]
P4 = [6785546256295273860, -1456180928830978521107520473]
P5 = [6823803569166584943, -1685950735477175947351774817]
P6 = [7788809602110240789, -6462981622972389783453855713]
P7 = [27385442304350994620556, 4531892554281655472841805111276996]
P8 = [54284682060285253719/4, -296608788157989016192182090427/8]
P9 = [-94200235260395075139/25, -3756324603619419619213452459781/125]
P10 = [-3463661055331841724647/576,
-439033541391867690041114047287793/13824]
P11 = [-6684065934033506970637/676,
-473072253066190669804172657192457/17576]
P12 = [-956077386192640344198/2209,
-2448326762443096987265907469107661/103823]
P13 = [-27067471797013364392578/2809,
-4120976168445115434193886851218259/148877]
P14 = [-25538866857137199063309/3721,
-7194962289937471269967128729589169/226981]
P15 = [-1026325011760259051894331/108241,
-1000895294067489857736110963003267773/35611289]
P16 = [9351361230729481250627334/1366561,
-2869749605748635777475372339306204832/1597509809]
P17 = [10100878635879432897339615/1423249,
-5304965776276966451066900941489387801/1697936057]
P18 = [11499655868211022625340735/17522596,
-1513435763341541188265230241426826478043/73349586856]
P19 = [110352253665081002517811734/21353641,
-461706833308406671405570254542647784288/98675175061]
P20 = [414280096426033094143668538257/285204544,
266642138924791310663963499787603019833872421/4816534339072]
P21 = [36101712290699828042930087436/4098432361,
-2995258855766764520463389153587111670142292/262377541318859]
P22 = [45442463408503524215460183165/5424617104,
-3716041581470144108721590695554670156388869/399533898943808]
P23 = [983886013344700707678587482584/141566320009,
-126615818387717930449161625960397605741940953/53264752602346277]
P24 = [1124614335716851053281176544216033/152487126016,
-37714203831317877163580088877209977295481388540127/59545612760743936]
| Rank records history | Andrej Dujella home page |