by induction that $F_{n+l} \equiv F_n \pmod{m}$, which means that l is a period of the sequence $(F_n \mod m)_{n \ge 1}$.

Finally, from
$$k \leq l = t - s$$
, it follows that $k \leq m^2$.

Corollary 4.18. For any positive integer m, among the first m^2 Fibonacci numbers, there is at least one divisible by m.

Proof: By Theorem 4.17, the fundamental period k of the sequence of remainders of Fibonacci numbers divided by m satisfies $k \leq m^2$, and we have $F_{k+1} \equiv F_1 \pmod{m}$, $F_{k+2} \equiv F_2 \pmod{m}$. We conclude that $F_k \equiv F_2 - F_1 \equiv F_0 \equiv 0 \pmod{m}$, which means that F_k is divisible by m.

It can be shown that $k(m) \leq 6m$, while the equality holds if and only if $m = 2 \cdot 5^n$. Similarly, the smallest index z(m), such that $F_{z(m)}$ is divisible by m, satisfies $z(m) \leq 2m$, while the equality holds if and only if $m = 6 \cdot 5^n$. The paper [414] is devoted to the properties of the function k(m).

Let us mention, without proof, another significant divisibility property of Fibonacci numbers. Let p be a prime number. If $p \mid F_n$, but $p \nmid F_m$ for $1 \leq m < n$, then we say that p is a primitive prime divisor of F_n . Carmichael's theorem on primitive prime divisors states that every Fibonacci number F_n , where $n \neq 1, 2, 6, 12$, has at least one primitive prime divisor (for the proof and generalizations see [100, Chapters 13.4 and 13.5]). Note that $F_{12} = 144 = 2^4 \cdot 3^2$ does not have a primitive prime divisor since $2 \mid F_3$ and $3 \mid F_4$.

4.6 Exercises

- 1. Determine all remainders which a perfect square can give in the division by 16.
- 2. Determine all quadratic residues
 - a) modulo 17,
 - b) modulo 19,
 - c) modulo 24.
- 3. Let n be a positive integer. Prove that the greatest common divisor of the numbers $n^2 + 1$ and $(n+1)^2 + 1$ is either 1 or 5. Prove that it is equal to 5 if and only if $n \equiv 2 \pmod{5}$.

4. Let
$$gcd(a, p) = 1$$
. Calculate $\sum_{x=1}^{p} \left(\frac{ax+b}{p}\right)$.

EXERCISES 105

5. Let p be an odd prime number and n a positive integer. How many quadratic residues modulo p^n are there?

- 6. Let p > 3 be a prime number. Prove that the sum of all quadratic residues r modulo p, such that $1 \le r \le p 1$, is divisible by p.
- 7. Determine all primes p such that $\left(\frac{10}{p}\right) = 1$.
- 8. Determine all primes p such that $\left(\frac{-3}{p}\right) = 1$. Prove that there are infinitely many primes of the form 6k + 1.
- 9. Prove that there are infinitely many primes whose decimal representation ends with the digit 9.
- 10. For which primes p does the congruence $x^4 \equiv -4 \pmod{p}$ have a solution?
- 11. Prove that for a positive integer m, the number $2^m + 1$ does not divide $5^m 1$.
- 12. Let p be a prime number. Prove that there is a positive integer n such that the number $(n^2 3)(n^2 5)(n^2 15)$ is divisible by p.
- 13. Solve the congruence $x^2 \equiv 41 \pmod{43}$.
- 14. Let p be an odd prime number and g a primitive root modulo p. Prove that g is a quadratic nonresidue modulo p.
- 15. Find all positive integers $a \in \{1, \dots, 34\}$ for which the Jacobi symbol $\left(\frac{a}{35}\right)$ is equal to 1, but the congruence $x^2 \equiv a \pmod{35}$ does not have a solution.
- 16. Compute the Legendre symbols:
 - a) $(\frac{51}{71})$,
 - b) $(\frac{7}{227})$,
 - b) $(\frac{30}{571})$.
- 17. How many solutions are there for the congruence $x^2 \equiv 19 \pmod{170}$?
- 18. Solve the congruence $x^2 \equiv 23 \pmod{77}$.
- 19. Prove that for any positive integer k there are k consecutive Fibonacci numbers which are all composite.

- 20. Determine the period of the sequence $(F_n \mod m)$ if:
 - a) m = 7,
 - b) m = 10,
 - c) m = 11.
- 21. Prove that no Lucas number L_n is divisible by 5.
- 22. Find relatively prime positive integers a and b such that sequence $c_n = an + b$ does not contain any Fibonacci number.
- 23. Let k(m) denote the period length of the sequence $(F_n \mod m)$. Prove the statement: If p is a prime number of the form $10l \pm 1$, then $k(p) \mid (p-1)$, and if p is a prime number of the form $10l \pm 3$, then $k(p) \mid (2p+2)$.
- 24. Let $F_{n(k)}$ be the smallest Fibonacci number ending with k zeros, i.e. $n(k)=z(10^k)$. Check that n(1)=15, n(2)=150 and n(3)=750. Prove that

$$n(k) = \begin{cases} 15 \cdot 10^{k-1}, & \text{for } k \le 2, \\ 75 \cdot 10^{k-2}, & \text{for } k \ge 3. \end{cases}$$

- 25. Prove that for all positive integers m and n,
 - a) $F_{mn} \equiv mF_nF_{n+1}^m \pmod{F_n^2}$,
 - b) $F_{mn+1} \equiv F_{n+1}^m \pmod{F_n^2}$.
- 26. Use the previous exercise to prove *Matiyasevich's lemma*, used in his famous solution of Hilbert's tenth problem of the non-existence of an algorithm for decidability whether arbitrary Diophantine equation has integer solutions:

$$F_{mn} \equiv 0 \pmod{F_n^2} \iff m \equiv 0 \pmod{F_n}.$$

- 27. Prove that for any prime number p, $L_p \equiv 1 \pmod{p}$.
- 28. Prove that for any positive integer n and any prime number p,
 - a) $F_{(n+1)p} \equiv F_{np} + F_{(n-1)p} \pmod{p}$,
 - b) $F_{np} \equiv F_n F_p \pmod{p}$.