
FIBONACCI POWER MEANS

ANDREJ DUJELLA1, JULIJE JAKŠETIĆ2, AND J. PEČARIĆ3

Abstract. Starting from an inequality for partial sums of integer powers of

the Fibonacci sequence, a model of Fibonacci means is developed, possessing

a multitude of interesting properties expressed through inequalities.

1. Introduction

The Fibonacci sequence is defined recursively by

F0 = 0, F1 = 1, Fn = Fn−2 + Fn−1, n ∈ N.

The next theorem can be found in [9].

Theorem 1.1. Let n be a positive integer and ℓ be an integer. Then,(
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In the following remarks, we outline the structure of this paper.

(i) A direct examination of the proof in the paper [9] shows that ℓ ∈ N can
be replaced by any real number. In the works [1] and [2], extensions of the
results (1.1) to real numbers are also provided, but the proof techniques
and the direction of generalization differ from our approach.

(ii) Let u ∈ R. By using the arithmetic-harmonic inequality
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(1.2)

using the substitutions

wi = F 2
i , xi = Fu

i , i = 1, . . . , n, (1.3)

and using identity (see [7, p. 12])
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we obtain
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i , u ∈ R. (1.5)
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(iii) The arithmetic and harmonic means belong to the class of power means,
which are defined as follows (see [10, p. 108]):
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(1.6)

where x = (x1, x2, . . . , xn) , w = (w1, w2, . . . , wn) stand for strictly positive
n−tuples and Wn =

∑n
i=1 wi.

A key property of power means is their comparability

M [r]
n (x,w) ≤ M [s]

n (x,w), −∞ ≤ r < s ≤ ∞. (1.7)

Thus, if we choose the harmonic and arithmetic means by taking r =
−1, u = 1 in (1.7), with the substitutions (1.3), we obtain (1.5). If we
apply (1.7) for the case −∞ < −1 < 0 < 1 < ∞, with substitutions (1.3),
we obtain the following refinement of (1.5):
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for all n ∈ N, u ∈ R.

2. Fibonacci means

Construction. Solving the problem from the previous section can be structured
into the following model.

Definition 2.1. Let n ∈ N, u ∈ R and let w = (w1, w2, . . . , wn) stand for a strictly
positive n−tuple. The Fibonacci power mean is defined by:
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(2.1)

where Wn =
∑n

i=1 wi and where Fi denotes the ith Fibonacci number.

The comparability property

F [r]
n (w;u) ≤ F [s]

n (w;u),−∞ ≤ r < s ≤ ∞ (2.2)

holds for all n ∈ N, u, s ∈ R, as this property is inherited from (1.7).
Other interesting relationships among power means that apply to our adapted Fi-
bonacci means can also be utilized here.

Theorem 2.2. Let n ∈ N, u ∈ R, m = min{Fu
1 , F

u
n }, M = max{Fu

1 , F
u
n }. If

0 < r < s or r < 0 < s, then
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If r < s < 0, then (2.3) is reversed.
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Proof. See [4, p. 195] or [10, p. 109]. □

Corollary 2.3. Let n ∈ N, u ∈ R ,m = min{Fu
1 , F

u
n }, M = max{Fu

1 , F
u
n }. If

0 < r < s or r < 0 < s, then
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(2.4)
If r < s < 0, then (2.4) is reversed.

Proof. From identity (see [7, p. 56])
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n
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)
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(
n

i
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2iFi, i = 0, 1, . . . , n, Wn = F3n (2.5)

and put in Theorem 2.2. □

The second result is about the ratio of the Fibonacci means.

Theorem 2.4. Let u ∈ R ,m = min{Fu
1 , F

u
n }, M = max{Fu

1 , F
u
n }, δ = M/m.

Then for any −∞ < r < s < ∞
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Proof. See [4, p. 198] or [10, p. 110]. □

The next theorem is about estimation of the difference of the Fibonacci means.

Theorem 2.5. Let u ∈ R, m = min{Fu
1 , F

u
n }, M = max{Fu

1 , F
u
n } and let −∞ <

r < s < ∞. Then for n > 1

F [s]
n (w;u)− F [r]

n (w;u) ≤ h(y), (2.7)

where
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{
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Proof. See [4, p. 206-207] or [10, p. 111]. □
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The approach in constructing these means is to select weightsw = (w1, w2, . . . , wn)
that allow for a straightforward expression of the sum Wn =

∑n
i=1 wi. With this

in mind, we can make use of the following list of identities for Fibonacci numbers,
similar to (1.3)-(1.4) and (2.5).

For i = 1, . . . , n, wi = Fi, Wn = Fn+2 − 2, [7, p. 11]

wi = F2i−1, Wn = F2n, [7, p. 11]

wi = F2i, Wn = F2n+1 − 1, [7, p. 11]

wi = iFi, Wn = Fn+2 − Fn+3 + 2, [7, p. 11]

wi = FiFi+1, Wn = F 2
n+1 −

1

2
[1 + (−1)n] , (T. Koshy, 1998) [8]

wi = FiF3i, Wn = FnFn+1F2n+1, (K. G. Recke, 1969) [11]

wi = F4i−2, Wn = F 2
2n, [7, p. 61]

wi =

(
n

i

)
Fi, Wn = F2n, [7, p. 61]

for i = 1, . . . , 2n+ 1, wi =

(
2n+ 1

i

)
F 2
i , W2n+1 = 5nF2n+1. [7, p. 56]

Lesser known identities that can be used in our construction are

for i = 1, . . . , n, wi = arctan

(
1

F2i+1

)
, Wn =

π

4
− arctan

(
1

F2n+2

)
, [7, p. 116]

(2.8)

for i = 1, . . . , n, wi =

(
n

i

)
α3i−2n, Wn = 2n, (H. Freitag, 1975) [6]

where α = 1+
√
5

2 and Fn = 1√
5
(αn − (α−

√
5)n).

Lucas numbers and means. Lucas numbers are closely related to Fibonacci
numbers and are defined as

Ln = Fn+1 + Fn−1, n ≥ 1,

and L0 := 2.
The following identities about Lucas numbers can be included in our construction
of Fibonacci means.

For i = 1, . . . , n, wi = L2i−1, Wn = L2n − 2, [7, p. 98]

wi = L2i, Wn = L2n+1 − 1, [7, p. 98]

wi = iLi, Wn = nLn+2 − Ln+3 + 4, [7, p. 98]

wi = L2
i , Wn = LnLn+1 − 2, [7, p. 98]

wi = iLi, Wn = nLn+2 − Ln+3 + 4, [7, p. 99]

for m ∈ N, i = 0, 1, . . . , n, wi = LmiLmn−mi, Wn = 2nLmn + 2Ln
m. [7, p. 98]
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Remark 2.6. In a completely analogous way, Lucas means can also be defined
using Lucas numbers: if n ∈ N, u ∈ R and if w = (w1, w2, . . . , wn) stands for a
strictly positive n−tuple

L[r]
n (w;u) =



(∑n
i=1 wiL

ru
i

Wn

) 1
r

, r ̸= 0∏n
i=1 L

uwi/Wn

i , r = 0

min{Lu
1 , L

u
n}, r = −∞

max{Lu
1 , L

u
n}, r = ∞.

(2.9)

Things become interesting when we combine mixed identities of these two num-
bers in Fibonacci means:

for i = 0, 1, . . . , n, wi =

(
n

i

)
FiFn−i, Wn = (1/5) (2nLn − 2) , [7, p. 110]

wi =

(
n

i

)
FiLn−i, Wn = 2nFn. [7, p. 110]

(2.10)

Corollary 2.7. Let u ∈ R, m = min{Fu
1 , F

u
n }, M = max{Fu

1 , F
u
n }, δ = M/m.

Then for any −∞ < r < s < ∞

2n(
1
s−

1
r )

(
n∑

i=0

(
n

i

)
F su+1
i Ln−i

)1/s

≤ Γr,s(δ) ·

(
n∑

i=0

(
n

i

)
F ru+1
i Ln−i

)1/r

, (2.11)

where Γr,s(δ) is as in Theorem 2.4.

Proof. We use identity (2.10) in Theorem 2.4. □

Catalan and Narayana numbers. Catalan numbers are defined by

Cn =
1

n+ 1

(
2n

n

)
, n ∈ N, C0 = 1.

The following identity about Catalan numbers can be used in constructing examples
of Fibonacci means:

for i = 1, . . . , n, wi = Ci−1Cn−i, Wn = Cn. [7, p. 232]

Narayana numbers are defined with

N(0, 0) = 1,

N(n, 0) = 0, n ≥ 1,

N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
, n ≥ k ≥ 1,

and we can relate them to Catalan numbers (see [7]):

Cn =

n∑
i=1

N(n, i)

and again use this for Fibonacci means by choice:

for i = 1, . . . , n, wi = N(n, i), Wn = Cn. [7, p. 268]
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Infinity case, generalized Fibonacci means.
It is natural to try to extend (1.6) to the case when n = ∞. The first condition is

W = lim
n→∞

Wn =

∞∑
i=1

wi < ∞

and the second condition is that the sequence (xi)i∈N is bounded from below and
above.
Any bounded function f can serve the role of the power function x 7→ xs in Fi-
bonacci means. We can set

xi = f(Fi), i ∈ N

in extension of power means, using limit, and now

F [r](w; f) =



(∑∞
i=1 wif(Fi)

r

W

) 1
r

, r ̸= 0∏∞
i=1 f(Fi)

wi/W , r = 0

inf{f(Fi) : i ∈ N}, r = −∞
sup{f(Fi) : i ∈ N}, r = ∞,

(2.12)

stands for generalized Fibonacci means.
For example, we can use for weights (wi)i∈N the following identities:

for i ∈ N, wi =
Fi+1

2i
, W = 3, (J. H. Butchart, 1968) [5]

for i ∈ N, wi =
Fi

3i+1
, W =

1

5
, [7, p. 63]

for i ∈ N, wi =
1

FiFi+2
, W = 1. [7, p. 63]

For functions, we can take, for example, f = arctan, or f = tanh .
Note here that the function arctan can be used in two ways: by extending the
identity (2.8) to

∞∑
i=1

arctan

(
1

F2i+1

)
=

π

4

i.e.

for i ∈ N, wi = arctan

(
1

F2i+1

)
, W =

π

4
,

and putting f = arctan we get the following means

F [r](w) =



(
4
π

∑∞
i=1 arctan

(
1

F2i+1

)
arctanr(Fi)

) 1
r

, r ̸= 0∏∞
i=1 [arctan(Fi)]

4
π arctan

(
1

F2i+1

)
, r = 0

π
4 , r = −∞
π
2 , r = ∞,

(2.13)
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concluding

π

4
<

π

4

1∑∞
i=1

arctan(1/F2i+1)
arctan(Fi)

<

∞∏
i=1

[arctan(Fi)]
4
π arctan

(
1

F2i+1

)
<

<
4

π

∞∑
i=1

arctan

(
1

F2i+1

)
arctan(Fi) <

π

2
,

after use of moment comparison.
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