FIBONACCI POWER MEANS
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ABSTRACT. Starting from an inequality for partial sums of integer powers of
the Fibonacci sequence, a model of Fibonacci means is developed, possessing
a multitude of interesting properties expressed through inequalities.

1. INTRODUCTION

The Fibonacci sequence is defined recursively by

Fy=0, Fi=1 Fy,=F, o+F, 1, necN.

The next theorem can be found in [9].

Theorem 1.1. Let n be a positive integer and £ be an integer. Then,

(Ff+F§+...+F;;)(
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In the following remarks, we outline the structure of this paper.

(i)

(i)

A direct examination of the proof in the paper [9] shows that £ € N can
be replaced by any real number. In the works [1] and [2], extensions of the
results (1.1) to real numbers are also provided, but the proof techniques
and the direction of generalization differ from our approach.

Let u € R. By using the arithmetic-harmonic inequality

M=
&
&
&8

i=1 i=1
- <= (1.2)
> % > wi
i=1 i=1
using the substitutions
w; =F? z;=F" i=1,...,n, (1.3)
and using identity (see [7, p. 12])
FE+Fi+ +F?=F,Fp (1.4)
we obtain
F2F2, <> FPU> B ueR. (1.5)
i=1 i=1
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(iii) The arithmetic and harmonic means belong to the class of power means,
which are defined as follows (see [10, p. 108]):

1
S wizl \ T
(Bgpms) . r 0,

n w; /Wy o
iz, r=0,

i) _ 1.6
n (% w) min z;, r = —o00, (16)
1<i<n
max T, r = 00,
1<i<n
where x = (21, %2,...,2,), W = (w1, wa, ..., w,) stand for strictly positive
n—tuples and W,, = > w;.
A key property of power means is their comparability
MU (x,w) < MEl(x,w), —co <r < s< oo (1.7)

Thus, if we choose the harmonic and arithmetic means by taking r =
—1, w = 1 in (1.7), with the substitutions (1.3), we obtain (1.5). If we
apply (1.7) for the case —co < —1 < 0 < 1 < oo, with substitutions (1.3),
we obtain the following refinement of (1.5):

u F Fn+1 FnFn+1 E?:l Fiu+2 u u
min{F}*, F" }gzz - u_}_[lF _mgmax{Fl,Fn} (1.8)

foralln € N, u € R.

2. FIBONACCI MEANS

Construction. Solving the problem from the previous section can be structured
into the following model.

Definition 2.1. Letn € N, u € R and let w = (w1, wa, ..., w,) stand for a strictly
positive n—tuple. The Fibonacci power mean is defined by:

n ww; /W, o
Fll(w;u) = [li= F; ;o =0 (2.1)
min{Fy, F'}, 7= —00
max{Fy', !}, r=oo,

where W,, = 2?21 w; and where F; denotes the i Fibonacci number.
The comparability property
FlI'l(w;u) < FI¥(w;u), —00 <7 < s < o0 (2.2)

holds for all n € N, u, s € R, as this property is inherited from (1.7).
Other interesting relationships among power means that apply to our adapted Fi-
bonacci means can also be utilized here.

Theorem 2.2. Let n € N, v € R, m = min{F{, F*}, M = max{F{",F'}. If
O<r<sorr<0<s, then

(M" —m") [F,[f] (w; u)}S — (M? —m?®) [FT[['] (w;u)y <M™'m®—M°m". (2.3)

If r < s <0, then (2.3) is reversed.
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Proof. See [4, p. 195] or [10, p. 109]. O

Corollary 2.3. Let n € N, v € R ;m = min{F*,F*}, M = max{Fy", F*}. If
O<r<sorr<0<s, then
(Mr _ mr) Z <7Z’> QiFiqurl _(Ms _ ms) Z (?) QiFirqul < an(MTmS—MSmT).

i=1 i=1

(2.4)
If r < s <0, then (2.4) is reversed.

Proof. From identity (see [7, p. 56])

S <"> 2 F, — Fi, we set w; = <”> 2%F, i=0,1,...,n, Wy =Fsn  (2.5)
1 1
1=0

and put in Theorem 2.2. O

The second result is about the ratio of the Fibonacci means.

Theorem 2.4. Let uw € R ,m = min{F}*, F'}, M = max{F}*,F'}, 6 = M/m.
Then for any —oo < r < s < 00

Ell(w;u) < Ty(8) - FI'l(wsu), (2.6)
where
s—r \7 ¢ [551 G ro\E
ro=(5=5) () (7)) rero
To.4(6 oy N lim T, (6
0,5(6) = W *ZLI(T)L rs(0);
I 0(6) =1/Tg,(0) = S£%1+ I').s(0).
Proof. See [4, p. 198] or [10, p. 110]. O

The next theorem is about estimation of the difference of the Fibonacci means.

Theorem 2.5. Let v € R, m = min{F}{*, F'}, M = max{F{", F*} and let —o0o <
r<s<oo. Then forn >1

Fi (wiw) = Fi (wiw) < h(y), (2.7)
where
(OM* + (1 — 0)ym*)Y* — (OM™ + (1 — O)m")'", 1.5 #£0,
h(y) = { (OM* + (1 — 9)ym*)"/* — MOm! =9, r=0,
Mm% — (OM" + (1 — O)m")"/" s =0,
and where

y—m" _
Mr—mr> 57 0.

9_{M";n 370

Proof. See [4, p. 206-207] or [10, p. 111]. O
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The approach in constructing these means is to select weights w = (wy, wa, ..., wy)
that allow for a straightforward expression of the sum W,, = Z?:l w;. With this
in mind, we can make use of the following list of identities for Fibonacci numbers,
similar to (1.3)-(1.4) and (2.5).

For i=1,....n, w;=F, W,=F,0—2, [7, p. 11]
w; = Foyy 1, Wy = Fop, (7, p. 11]
wy = Fyy, Wy = Fopqq — 1, [7, p. 11]
w; = ZFZ, Wn = Lpny2 — Fn+3 + 2, [7, p. ].].]
1
w; = FiFiy1, W, =F — B 1+ (=1)"], (T. Koshy, 1998) [8]
w; = FiF3i7 Wn = FnFn+1F2n+1; (K G. Recke, 1969) [11]
w; = Fy_o, W,=Fj, [7, p. 61]
)
2 1
for i=1,....2n+1, w;= ( n+ >Fi23 Want1 = 5" Fony1- [7, p. 56]
]
Lesser known identities that can be used in our construction are
1 1
for i=1,...,n, wizarctan( ), Wn:W—arctan< ), [7, p. 116]
241 4 2n+2
(2.8)
for i=1,...,n, w;= (n) a2 W, =2, (H. Freitag, 1975) [6]
i

where a = 1+2‘/5 and F,, = %(a” — (a—+/5)").

Lucas numbers and means. Lucas numbers are closely related to Fibonacci
numbers and are defined as

Ln: n+1+Fn—la nZL

and Lg := 2.
The following identities about Lucas numbers can be included in our construction
of Fibonacci means.

For 1=1,....,n, w; =Loi_1, Wy = Lo, —2, [7, p. 98]

w; = Lo, Wy = Lopy1 — 1, 7, p. 98]

w; =iL;, Wy =nLpis — Lnys + 4, 7, p. 98]

w; = L, Wy =Ln,Lyi1—2, (7, p. 98]

w; =1iL;, Wy =nLpyo— Lyys+4, [7, p. 99]

formeN, i=0,1,...,n, w; = LpmiLmn_mi, Wn=2"Lpmn+2L". [7, p. 98]
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Remark 2.6. In a completely analogous way, Lucas means can also be defined
using Lucas numbers: if n € N, u € R and if w = (w1, wa,...,w,) stands for a
strictly positive n—tuple

1
mw LT\ T
( ZI_II/IZ); - ) , T 7& 0

n uw; /W,
L (wsw) = T 28, e =0 (2.9)
min{ LY, L%}, r=—00
max{ LY, L»}, r = o0.

Things become interesting when we combine mixed identities of these two num-
bers in Fibonacci means:

for i=0,1,...,n, wi:(?>FiFn_i, W, = (1/5) (2"L, —2), [7, p. 110]

w; = (n> FiLn*’h Wn = 2nFn~ [7’ p. 110]
7
(2.10)

Corollary 2.7. Let v € R, m = min{F}*, F'}, M = max{F},F'}, 6§ = M/m.
Then for any —oco <r < s < 00

n 1/s n 1/r
on(:—7 "Ypsurin ) < T, (6) - "\ pretig, 2.11
(1) <t (3 (1) e
where T'y. () is as in Theorem 2.4.

Proof. We use identity (2.10) in Theorem 2.4. O

Catalan and Narayana numbers. Catalan numbers are defined by

1 2
c, = (”) neN, Cy=1.
n+1l\n

The following identity about Catalan numbers can be used in constructing examples
of Fibonacci means:

for i=1,....,n, w;=C;_1Cn_;, W, =0C,. [7, p. 232]
Narayana numbers are defined with
N(0,0) =1,
N(n,0)=0, n>1,

N(n,k):i(Z)(kiJ, n>k>1,

and we can relate them to Catalan numbers (see [7]):

C, = z": N(n,i)
i=1

and again use this for Fibonacci means by choice:

for i=1,...,n, w; = N(n,i), W, =C,. [7, p. 268]
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Infinity case, generalized Fibonacci means.
It is natural to try to extend (1.6) to the case when n = oco. The first condition is

W = lim Wn:Zwi<oo
i=1

n— oo

and the second condition is that the sequence (z;);en is bounded from below and
above.

Any bounded function f can serve the role of the power function & — z° in Fi-
bonacci means. We can set

in extension of power means, using limit, and now

(W) T #£0

Fll(w; £y = { 124 FE)Y =0 (2.12)
inf{f(F;):ieN}, r=-00
sup{f(F;):i € N}, r = o0,

stands for generalized Fibonacci means.
For example, we can use for weights (w;);en the following identities:

F,
for i €N, w; = 2* Low=3, (J. H. Butchart, 1968) [5]
, F; 1
for ZGN, U}Z‘:W7 W:g7 [7, p. 63]
for 1 €N, w; = , W=1. 7, p. 63
FiFito 7. - 63]

For functions, we can take, for example, f = arctan, or f = tanh.
Note here that the function arctan can be used in two ways: by extending the
identity (2.8) to

ie.

N

1
for i € N, wizarctan< ), W =
2i+1

and putting f = arctan we get the following means

1
(% S0 arctan (ﬁ) arCtanT(Fi)) T,r#0

FIrl(w) = J T2, arctan(F)) * 2o (msis) r=0 (2.13)
T r = —00
2

5 r =00,
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concluding
- - 1 0 4 arctan ;
4 < 4 x~oo  arctan(l/Faiq1) < H [aI“Ctan(Fi)] (F27,+1) <
it arctan(R)  i=1

i

) arctan(F;) <

oS

Fyiq

4 o0
< — arctan
2o

after use of moment comparison.
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