HRVATSKA AKADEMIJA ZNANOSTIIUMIJETNOSTI

VLADIMIR VOLENEC
REGULAR TRIANGLES IN HEXAGONAL QUASIGROUPS

Poseban otisak iz.
Rada 467 — Matematicke znanosti,
svezak 11

6»‘“”“‘4;%

scvr%
%

—,""'Vom.,.g\«“"~

‘f"'\“

* p4 Dccclf‘\*l

ZAGREB 194




Rad Hrvatske akad. znan. umj. mat. [467] 11 (1994), 85-93

REGULAR TRIANGLES IN HEXAGONAL QUASIGROUPS

Viadimir Volenec

Abstract. The “geometrical” notions of parallelogram, midpoint and regular triangle are
defined and investigated in a general h ] quasigroup.

A quasigroup (@, ) is said to be hexagonal if it is idempotent, medial and
semisymmetric, i.e. if identically

ae = a, (1)
ab-cd = ac- bd, (2)
ab-a=a-ba=b. 3)

The first equality in (3) expresses the elasticity. In a hexagonal quasigroup we have
also the left and right distributivity

a-bc=ab-ac, (4)
ab-c=ac-be (5)

and the identity
(ab - c)d = b(c - da). (6)

The identities (3) can be represented in the form of an equivalence
ab=c & a=be )

Hexagonal quasigroups were studied in [5] and because of mediality we can
apply all results of (4].

Ezample. Let C be the set of all points of an Euclidean plane and - an op-
eration on C such that aa = a for any @ € C and for any a,b € C (a # b) let a,
b, ab be successively the vertices of a positively oriented regular triangle. In [5] is
proved that (C, -) is a hexagonal quasigroup. This quasigroup can give a motivation
for the definition of “geometric” notions and the proving of “geometric” properties
of a general hexagonal quasigroup. In this quasigroup (C,-) we can illustrate (by
figures) the properties of general hexagonal quasigroups.

In the sequel let (Q,-) be any hexagonal quasigroup. The elements of @ are
said to be points.
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The points a, b, ¢, d are said to be the vertices of a parallelogram and we
write Par (a, b, ¢,d) if there are two points p and ¢ such that ap = bg and dp = cq
[4, Cor. 1].

In [4] it was proved that (Q,Par) is a parallelogram space and all the prop-
erties of the quaternary relations Par proved in [4] hold. In {5] it was shown that
the notion of parallelogram can be given by an alternative definition

Par(a,b,¢,d) < d = bc - ab. (8)
In Q? we define a binary relation ~ by
(a,b) ~ (¢,d) & Par(a,b,d,c).

Then ~ is relation of equivalence. The elements of the set Q?/~ are said to be
vectors. A vector with the representant (q,b) is designed by [a,b]. If v is a given
vector, then for any point @ there is one and only one point b resp. for any point b
there is one and only one point @ such that v = [a, B].

From (7) it follows that anyone of three equalities

ab=c, bc=a, ca=b 9)

implies the other two equalities. We say in this case that a, b, ¢ are the vertices
of a (positively oriented) regular triangle and we write Tr(a,b,c). The statements
Tr(a, b, c), Tr(b, ¢, a) and Tr(c, a,b) are mutually equivalent.

THEOREM 1. Anyone of the siz stalements Tr{ai1, as2, ai3) (1 = 1,2,3) and
Tr(aij, azj, as;) (5 = 1,2,3) is a consequence of the other five equalities (Fig. 1).

Fig. 1. Fig. 2.

Proof. Let the first five statements be satisfied. Then we have a;1a;0 = a3
(:=1,2,3) and ayja9; = agj (j = 1,2). Therefore

@
Qr3@23 = d11@12 - 21Q23 = G11C2; * Q12022 = G31d33 = azs,

i.e. we have the sixth statement. By cyclic permutations the proofs of other cases
follow.
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THEOREM 2. If Tr(b, ¢, a’), Trx(c, a,¥'), Tr(c,b,a"), Tr(a,c,b"), then there is
a point ¢ such that Te(¥',a’, "), Tr(a",b", "), Par(b,c,a,c™} (Fig. 2).

Proof. We have
@)

Vo' =ca-be= cb-ac=a"b"

and with ¢ = b'a’ we have ¢/ = a""b”’, /" = ca - be.

THEOREM 3. From Tr(b,¥,b"), Tr(c",¢’,¢), Tr(¢', ', a), Tr(a,b",c") it fol-
lows Par (V',a,b"”,¢), Par(c",a,¢',b) (Fig. 3).

Proof. We have
ab” Va=c"d =e,

ac' -c"a=bb =

In the case of the quasigroup (C,-) the statements Par(¥',a,b”,c) and
Par (¢”,a,¢',b) means that the segments {¢',6"}, {a,c} resp. {c",c'}, {a,b} have
the same midpoint. Therefore the triangles (b,',5"), (¢”,¢',¢) (a,b,¢) have the
same centroid. But, if the given triangle (a, b, ¢) and the regular triangles (b, ', "),
(¢", ¢, ¢) have the same centroid, then these regular triangles are uniquely deter-
mined by this condition. Thercfore we have (in the case of the quasigroup (C, )}
the following statement proved in [1]:

If (b, 5, "), (¢, ¢, ") are two oppositely oriented regular triangles with the
same centroid as the given triangle (a, b, ¢}, then (a,5", "), (a, b, ¢’) are oppositely
oriented regular triangles.

Fig. 4.

We say that the vectors a = [a,b], ¢ = [c,d], e = [e, f] define a regular triangle
and write Tr(a, ¢, e) if there are three points u, v, w such that Tr(u,v,w) and
a=[vw),c=[wuy, e=[ur1]ie Par (a,b,w,v), Par(c,d,u,w), Par (e, f,v,u)
(Fig. 4).
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THEOREM 4. The statement Tr(la, b}, [e, d], [e, f]) holds iff any two (and then
all three) of three equalities

da=cb, fc=ed, be=af (10
are valid (Fig. }).
COROLLARY 1. From Tr(la, 8], [c,d], [e, £]) it follows Te([b, al, [d, ], [f, ¢]).
For the proof of Theorem 4 we need a lemma.

LEMMA. Let [a,b] = [v,w], [e,d] = [w,u]. The statement Tr(u, v, w) is equiv-
alent to the equality da = cb (Fig. 4).

Proof. We have Par (d, c, w, u), Par(a,b,w,v) and by [4, Th. 25] it follows
Par (da, cb, w, uv) because of (1). Therefore by [4, Th. 23] and [4, Th. 20] equality
da = cb is equivalent to equality uv = w, i.e. to the statement Tr(u, v, w).

Proof of Theorem 4. If we have Tr(u,v, w) and [q,b] = [v, ], [e,d] = [w,u],
le, ] = [u, ] (Fig. 4) then by Lemma the equalities (10) follow. Conversely, let, two
first equalities (10) hold. Let v be any point and let w and u be two points such
that [a, b] = [v, w), [c, d] = [w, 4] (Fig. 4). Then by Lemma we have Tr(u, v, w). Let
v’ be the point such that le, /1= [u, v']. The equalities [¢, d] = [w, ul, [e, f] = [u,v'],
fe = ed imply by Lemma the statement Tr(w, u, v'). Therefore, we have v/ = wy —
= v and finally [e, f] = [u,v].

A consequence of this proof is that any two of three equalities (10) imply the
remaining equality (10). But, this fact can be proved directly. Indeed, from (10)
we obtain by (7) f = ¢ ed and then (3), (10), and (6) imply

be = (cb - c)e = (da-c)e = a(c-ed) = af,
ie. (10); and (10), imply (10)3.

THEOREM 5. By the hypothesis of Theorem I we have Tr([a12, a1, [ags, azs),
[as1, ays]) (Fig. 1).

Proof. We have
a32G12 = a2z = a3ay,

421831 = d11 = ajpa;s
and the statement follows by Theorem 4.

THEOREM 6. By the hypothesis of Theorem 2 we have Tr([a, 8], [, "], [a”, b))
(Fig. 2).

Proof. We have
Vla=c=a'b, ba"=c=ql

and the statement follows by Theorem 4.
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THEOREM 7. Ti(fp, a], [p, 8], [p, c]) implies Tr(a, b, c).
Proof. By Theorem 4 we have cp = pb, ap = pc and therefore successively

3 2 3 1
ab 2 (p- ap)(pb-p) = (p - pe)(cp-p) D - p)pe p) Lec e

THEOREM 8. From Tr(b,c,a’), Tr(c,a,b), Tr(a,b,¢'), Tr(c,b,a"),
Tr(a, c,b”), Tr(b,a,c") it follows Tr([e, '], {6,¥],[a,a), Tr((a,a"],[b,4"],[c,c"]),
Par(c/,a,¥,a"), Par(d’,b,¢,8"), Par (¥, c,a’, "), Par (,a,c",a’),
Par(¢",b,a",b), Par (a”,¢c,b", ¢’), Tx([a, B],, [a', 5], [a", bY), Tx((b, o], [¥/, "], [8", <),
Tr(fe,al, [¢/,a"],[c",a']). There ezist points o™, b, " such that Tr(c',¥',a™),
'I‘X'(ll’, ClY b/l!)y Tr(bf, a,, Cllf)y "I‘r(blnfycl:'7 alll), Tr(c/l’ ally b///)y ’n(all’ b”, C,/,)y
Par(c,a,b,a"), Par(a,b,¢,5"), Par (b,¢,a,c"), Par(a”,a,d’, a™), Par (b”,b,b',b™),
Par (¢, ¢, ¢!, ") (Fig. 5).

Proof. The first three hypotheses imply

Ve=a=1bd, ab=c=ab

and by Theorem 4 we have Tr([c,c],{b,],[a,a’]). Analogously, the follow-
ing three hypotheses imply Tr([a,a”],[b,8"],[c,c"]). By Theorem 6 we ob-
tain Tr([a, b],[a’, "], [a”,4]) and by Theorem 2 there is a point ¢” such that
Tr(¥, a’, ™), Tr(a”,b", "), Par (b, ¢, a, ¢”) Further, we have

ca' -be=ba=c", cb"-a"c=ab="¢,
ec’ e = (ab’ - ab)(ba - a'b) @ (a-b'b)(ba - a'b) (é)
= (a-ba)(¥'b - a'd) D o(b'd - a'b) D bpra 1) D var =

and by (8) the statements Par (¥, ¢, a’, ™), Par (a”,¢,b”,c'), Par (¢, ¢, ¢, ¢} fol-
low. Analogously, the remaining statements can be proved.

A pairs of points is said to be a segment. We say that b is a midpoint of the
segment {a,c} and we write M(a,b,c) or M(c,b,a) if Par (a, b, ¢) holds.

For any a obviously M{a,a,a) holds. In the quasigroup (C,-) any segment
has the unique midpoint, but this is not generally true.

THEOREM 9. By the hypothesis of Theorem 8 we have M@, a "),
M(C”’, b,a’”), M(a’”, c,b”’) (Fig. 5)‘

Proof. 1t follows from Par{c,a,b,a"), Par(a,b,c, "), Par (b, c,a,c”) by [4,
Th. 41).

THEOREM 10. From M(b,d, c), Tr(c,a,b'), Tr(a,b,c’), Te(¥, d, ), Tr(d, d, f)
it follows Tr(a, e, f) (Fig. 6).

Proof. We have ¢ = bd - db, ' = ca, ¢’ = ab, e = b'd, f = d¢’ and therefore
ef =¥d-dc’ = (ca-d)(d- ab) = [(bd - db)a - d)(d - ab)

= [db-a(d - bd)](d- ab) D (db- ab)(d - ab) D (ab-d)-ab Db-ab D .
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Fig. 5. Fig. 6.

THEOREM 11. Tr(ay, by,¢1),  Tr(az, ba,c2), Tr(a,b,¢), M(ai,a,az),
M(by,b,by) imply M{cy,c,c2).

Proof. From M{(ay,a,a3) and M{by,b,bs) it follows M (a1b;,ab, azbs) by 4,
Th. 23], i.e. we have M(cy, ¢, c3) because of a1y = ¢y, ab = ¢, agby = ¢y

Using Theorem 11 the statements Tr(b, ¢, a), Tr(c, a,b), Tr(d, e, f), M(b,d, ¢),
M(c, e, a) imply:

COROLLARY 2. Tr(a, b,¢), Tr(d, ¢, f), M(b,d,c), M(c,e,a) imply M(a, f,b).

THEOREM 12. IfTe(b, ¢, a1), Tr(c,a, bs), Tr( . b.cs), M(b,a’,c), M(e,b',a),
M(a,c',b), M(c,p,ar) and if u, v, g, v, w arc poinis such that Tr(d',p,u),
Tr(p,¢/,v), Tr(v,¥,q), Te(d,u,r), Tr(g,a',w), then Tr(c,r,w), M{a,q,b),
M(b,r,c1), M(b,u,a1), M(c,v,b1), M{a,w,c1) and Tr({r, v}, [g,u], [p, w]) (Fig. 7).

Proof. We have pu=a’, vp =, Yu=r, vb' = ¢, ga’ = w and it follows

dr=wvp-bu @ cpu=gd = w,

i.e. Tr(c',r,w). From Tr(a;,b,c), Tr(a’,p,u), M(b,a',c), M(c,p,a;) it follows
by Corollary 2 M(a,,u,b). By Theorem 11 Tr{c,a,b:), Tr(as,b,¢), Tr(p,c’,v),
M(e,p,a1), M(a,c',b) imply M(b;,v,¢) and Tr(c,aq,b), Tr(a,b,e1), Tr(d', u,r),
M(c, b a), M(ay,u,b) imply M(b,r,¢1). By Corollary 2 Tr(cy,a,b), Tr(c',r, w),
M(a,c',b), M(b,r,c1) imply M{cy,w,a) and Tr(a,bs,c), Tr(v,¥,q), M(b1,v,c¢),
M(c,¥,a) imply M{(a,q,b1). The equalities ur = ¥, qv = ¥, wg = o', pu = o
imply ur = gv, wg = pu and by Theorem 4 we obtain Tr([r, ], (g, ¢}, [p, w]).

THEOREM 13. If o, @, u1, u, v, v2 are any poinis, wy, wa, a’ the points
such that Tr(vy,u1, wi), Tr(ve, uz,w2), Tr(o,a,a’), further ¥, ¢ poinis such thal
Par (v1, a,v2,¥), Par(u1,a',uz,¢) and b, ¢’ points such that Tr(¥,0,b), Tr(o,c,c’),
then Par (wy,b,ws, ¢’) (Fig. 8).

Proof. We have the equalities

niul = Wy, Uiy = Wy, (11)
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a=do, b=1bo, (12)
oc=c. (13)

From Par (w1, ¢, up, a’), Par (v, a, vy, ') it follows cup - ujec = a,avy-via =V, le.

by (12)
a = (cusg - uyc)o, (14)

b= (avs - via)o. (15)

Now, we obtain successively

brwy - wob n (b viuy)(vous - b) =
= [(ave - via)o - viwy) {vausz - (ava - v1a)o] @

= [(avs - via)vy - ouy] [va(avs - via) - uz0] ©

= [v2(n1a - via) - ouy] [(avz - ava)v) - u20] @

= (v2 - via)(our) - (avz - vy )(uz0) @ (v - via)(avs - vy) - (ou; - u20) @

14)
y &

= (v3 - ava)(via - v1) - (ouy - u20) @ aa - (ouy - uz0) @ afouy - uz0

= {cuy - uyc)o - (ouy - uz0) @ (euz - urc)(ouy) - (0 - u20) @

3

= (cuy - usc)(our) - uy @ (cus - o)(urc-uy) - ug =
= (cuy - 0)c - ug @ us(0 - cc) - uy D Doc® d,

i.e. Par (ws, b, w1, ¢').

e=af b

Fig. 7. Fig. 8.
If uy = ug, v; = v then (11) implies w; = w2 and we get:
COROLLARY 3. If o, a, u, v arc any poinls, w, @' the poinis such that
Tr(v,u, w), Tr(o,a,a’), further ¥/, ¢ points such that M{a,v,b'), M{a',u,c) and b,
¢ points such that Tr(¥',0,b), Tr(o,c,c’) then M(b,w,c') (Fig. 9).
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If we substitute the points u, v, w, b, ¢, ¥, ¢’ by the points y, =, z, ¢, b, ¢/, b’
we have:

COROLLARY 4. If o, a, z, y are any poinis, z, a’ {he poinis such that
Tr(z,y,2), Tr{o,a,a’), further ¢’, b points such that M(a,z,c'), M(a',y,b) and c,
b points such that Tr(c',0,c), Tr{o,b,¥) then M{c,z,b') (Fig. 9).

In the case of the quasigroup (C,-) the Corollary 4 can be stated as a result
from {2] (with our symbolism):

If Tr(o,a,a’), Tr(o,b,b'), Te(o,¢,¢'), M(a,z,¢'), M(b,y,a’), M(c,z,a’) then
Tr(z,y, z) (Fig. 9).

The Corollaries 3 and 4 prove in the quasigroup (C, ) a result of [3]:

A rotation about the point o through the angle z maps the given points

a, b, ¢ into the points o', ¥/, ¢. If M(a,z,c'), M(b,y,a’), M(c,z,b"), M(c,u,a’),
M{a,v,b), M(b,w,c) then Tr(z,y, 2z}, Tr{w, v, u) (Fig. 9).
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Pravilni trokuti u Sesterokutnim kvazigrupama

Viadimir Volenec
Sadriaj

Kvazigrupa (Q, ) je Sesterokutna ako u njoj vrijede identiteti aa = a, ab-cd =
= ac-bd, ab-a = a-ba = b. Elemente skupa @ zovemo totkama. Tocke a, b,
¢, d tvore paralelogram i pisemo Par(a,b,c,d), ako vrijedi d = bc - ab. Tada je
struktura (@, Par) paralelogramski prostor. Kaze se da je ¢ poloviste para totaka
{a, b} ako vrijedi Par (a, ¢, b, ¢). Na uobi¢ajeni nacin moZe se uvesti i pojar vektora.
Tocke a, b, ¢ su vrhovi pravilnog trokuta ako vrijede jednakosti ab = ¢, be = q,
ca = b, koje su inage medusobno ekvivalentne. Kazemo da vektori [a, 8], [¢, d], [e, f]
odreduju pravilan trokut ako postoji pravilan trokut s vrhovima u, v, w tako da
vrijedi Par (a,b,w,v), Par(c,d,u,w), Par (e, f,v,u). Nuzan i dovoljan uvjet za to
su jednakosti da = cb, fc = ed, be = af, od kojih je svaka posljedica ostalih dviju.
U radu se dokazuje niz tvrdnji o odnosima definiranih geometrijskih pojmova u bilo
kojoj sesterokutnoj kvazigrupi.

Prikvaéeno u II. razredu
30. 9. 1991.



