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GEOMETRY OF IM-QUASIGROUPS

Viadimir Volenec

Abstrace. In a case of idempotent medial quasigroups the results of [8] can be completed
with some new »geometricale results, A »geometrice proof of the representation theorem of IM-
quasigroups will be given.

A quasigroup (Q, +) is said to be IM-quasigroup iff it has the properties of
potency and mediality, i. e. iff it satisfies the identities

aa = q, [¢))]
ab - ¢d = ac - bd. @
Example 1. Let (G, +) be a commutative group with an automorphism ¢

such that the mapping @, defined by p{x) =x — @(x), is an automorphism of
(G, +)too. If - is a binary operation on the set G defined by

ab=a+ (b — a),
then (G, +) is an IM-quasigroup. Let us prove this statement. For every a,b € G
the equation ax = b, i. e. the equation @ + @ (x — @) = b, has the unique solu-
tion x =a 4 @~ (b — q), and the equation ya =1b, i. e. y + gla—y) =b,
has the unique solution y = v~ [b — ¢ (a)), because of ¥ — p(y) = p(y). The

identity (1) is obvious and the identity \2) is a consequence of the fact that the
product

ab-cd=ab+o(ed—ab)=a-+gb—a)+glc+pld—2d—
Tamel—al=at9® — 9@+ 9@ +(pop)d) —
@D 9@ — (o) B+ (pop)(a)
is a symmetric function of b and c.

Example 2. Let (F +. *) be any field, g e F and % a binary operation on
the set F defined by

a¥b=(l—gq)a-+gb 3)
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The identities ¢ (@) = ga, (@) = (1 — g) a define obviously two automorphisms
@ and v of the commutative group (F, +) such that ¢ (a) -+ v (a) = a. The equa-
lity (3) can be written in the form a % b = a + ¢ (b — a) and because of Example
1 it tollows that (F,*) is an IM-quasigroup.

Example 3. Let (C, +, *) be the field of the complex numbers, ¢ € C and *
the operation on C defined by (3. Because of Example 2 it follows that (C, %
is an IM-quasigroup. This quasigroup has a beautiful geometrical interpretatior
which motivates the study of the IM-quasigroups. Let us regard the comples
numbers as the points of the Euclidean plane. For any two different points g and
b the equality (3) can be written in the form

a*¥b—a ¢—0

b—a  1-0
which means that the points a, b, a % b are the veitices of a triangle directly si-
milar to the triangle with the vertices 0, 1, ¢, i. e. the vertices of a triangle of ¢
given form. (If ¢ is a real number, the triangle is degenerate.) Every identity ir
the IM-quasigroup (C, %) can be interpreted as a geometrical theorem, which

of course can be proved directly, but the theory of IM-quasigroups gives a better
insight into the mutual relations of such theorems.

In an IM-quasigroup (Q, -) all results of [8] ate valid and here we shall prove
some new statements, for proof of which the idendty (1) is necessary. The defi-
nitions of necessary »geometric¢ notions are given in {8] and this notions agree
with Example 3. Theorem n from [8] we designate by n’. The elements cf the se
Q is said to be points.

If we put ¢ = d = a, then d = ¢ and finally b = a (with substitutions ¢ -
and d - ¢) in (2), then according to (1) we obtain the propesties of elasticity and
right and left distributivity i. e. the identities

ab-a=a - ba, (€
ab - ¢ = ac - be, (5;
a-bc=ab-ac (6,

THEOREM 1. From ab = e, ca = b and bd = a it follows cd = e.
Proof. We have successively
cd-ad®ca-d=bdPbd - bd=a bd'®ab-ad=-e" ad,
i.e cd=e.
In the case of the quasigroup (C, %) from Example 3 this theorem represents
the following statement of Euclidean geometry in a plane:
If abe, cab and bda are directly similar triangles constructed on a given seg-

ment ab, then the triangle cde is directly similar to them.
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THEOREM 2. From ab = ¢, ap = ¢, a’b = p and pb’ = ¢ it follows a'b’ =

=
Proof. We have

’

¢t =ap-ab Dad - pb =ad -ab®q-ab= ap = D¢,

i.e. a'd =c.

In the case of the quasigroup (C, ) this theorem proves the following result
from [1]:

Let abc be a triangle and p a point. If &', ¥, ¢’ are points such that the trian-
gles apc’, bpa’, cpb’ are directly similar to the triangles abe, bca, cab, respectively,
then the triangle a'd’c’ is directly similar to the triangle abc.

THEOREM 3. From Par(a, b, ¢, d), ea = b and af = d it follows ef = c.

Proof. By Theorems 23’ and 20’ we have Par (a, a, ¢, ¢) and Par ({, a, a, f),
wherefrom by Theorem 25’ it follows Par (af, aa. ea, ¢f), i. e. Par (d, a, b, ef). On
the other hand, by Theorem 20’ we have Par (d, q, b, ¢) and by Theorem 21’ it
follows of = c.

In the case of the quasigroup (C, %) we have the foilowing statemznt, a spe-
cial case of which is equivalent to a result of [71:

If abed is a parallelogram and eab and afd two directly similar triangles, then
the triangle efc is directly similar to them.

THEOREM 4. If ac = b, then the statements Par (a, b, ¢, d) and ca = d are
equivalent.

Proof. By Theorem 23’ and 20’ we have Par (a, a, c, ¢) and Par (¢, a, a, ¢),
wherefrom by Theorem 25’ it follows Par (ac, aa, ca, cc), i. . Par (a, b, ¢, ca) be-
cause of Theorem 20, Now, the statement of our theorem is a consequence of
Theorem 21°.

THEOREM 5. If ab = c, then the statements Par {a, b, ¢, d) and c¢d = a are
equivalent.

Proof. By Theorem 23’ we have Par (g, a, ¢, ¢) and by Theorem 21’ there is
one and only one point e such that Pat (@, &. ¢, ¢). Because of Theorem 25' it fol-
lows Par (aa, ab, cc, ce), i. €. Par (a, ¢, ¢, ce). On the other hand, by Theorem 23’
and 20" have Par (a, ¢, ¢, @) and by Theorem 21’ it follows ce = a. Now, it is ob-
vious that any of two statements Par (g, b, ¢, d) and cd = a is equivalent to d = e,

THEOREM 6. If ab = d, then the statements Par (a, b, ¢. d) and cd = b are
equivalent.

Proof. By Theorem 21’ there is one and only one point e such that Par (d,a,b.e)
and by Theorem 23’ and 20’ we have Par (d, b, b, d). Because of Theorem 25’ it
follows Par (dd, ab, bb, ed), i. e. Par (d, d, b, ed). On the other hand, by Theorem
23’ we have Par (d, d, b, b) and by Theorem 21" it follows ed — &, Any of two sta-
tements Par (@, b, ¢, d) and cd = b is equivalent to ¢ = e,

THEOREM 7. For any points a, b, ¢ we have P (a, ca, cb, ab) and Par (a, ac,
be, ba).
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Proof. Because of Theorem 23" and 20" we have Par (a, ¢, ¢, a) and Par (a, a, b, b
wherefrom by Theorem 25’ it follows Par (aa, ca, cb, ab) and Par (aa, ac, bc, ba), i
e. Par {a, ca, cb; ab) and Par (a, ac, be, ba).

In the case of the quasigroup (C, %) this theorem proves the following re-
sult from [2]:

If bea’, cab’y abe’, cba'', ach”, bac” are directly similar triangles constructed

on the sides of a given triangle abc, then ab’a”’¢’ and ab”a’c’’ are parallelograms.

THEOREM 8. If we have Par (a, f, d, €), Par (b, d, e, f) and Par (¢, ¢, f, d)
then any two of four equalities

=f af=e fo=d, ed=c 7

are mutually equivalent and any of these equalities implies the equality ab = c.

Proof. By Theorem 6 from Par (a, f, d, €) and af = ¢ it follows de = f and
analogously from Par (d, e, a, f) and de = f it follows af = e, i. €. we have proved
the equivalence of the first and the second equality (7). Analogously by Theorer
5 from Par (d, e, f, b) it follows the equivalence of the first and the third equality
(7) and by Theorem 4 from Par (e, ¢, d, f) if tollows the equivalence of the first
and the fourth equality (7). Now. let we have the equalities (7). From Par (f, d, e, &
and Par (f; e, d, b) by Theorem 25’ we obtain Par (f, de, ed, ab), i. e. Par (4, f, ¢, ab)
On the other hand by Theorem 23" we have Par (J, £, ¢, ¢) and because of Theo-
rem 21’ it follows ab = c.

THEOREM 9. Any of the six statements Par (¢, a, d, g), Par (o, b, e, k). Par (o.
¢, f, 1), ab = ¢, de = f, gh = 1 is a consequence of the other five statements.

Proof. This is an immediate consequence of Theorem 25’ because of Theorem
20’ and 21".

In the case of the quasigroup (C, %) this theorem proves the following re-
sult from [6]:

If abe and def are directly similar triangles and og, ok, of three segments equi-
polent to the segments ad, be, cf, respectively, then the triangle ghs is directly si-
milar to the triangles abc and def.

THEOREM 10. From Par (o, a8, b), Par (o, ¢, h, d), Par (o, e, %, f), ao = f.
bc = o0, and od = e it follows gh = 1.

Proof. From Par (o, f, 1, €), ao = f, od = ¢ by Theorem 3 it follows ad = 1.
From Par (o, b, g, a) and Par (o, ¢, k, d) by Theorem 25’ it follows Par (oo, bc, gh,
ad), i. e. Par (o, o, gh, ), and because of Theorem 23’ we obtain gh = 1.

In the case of the quasigroup (C, %) this theorem proves the following re-
sult from [3] and [4]:

If oagh, ochd, oeif are parallelograms and aof, bco, ode are directly similar
triangles, then ghi is a triangle directly similar to these triangles.

In {8] the notion of a parallelogram is characterized by Corollary 1’ in the
following way:

Par(a,b,c,d)<>(3p, g€ Q) ap = bq, dp = ¢cg.
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But, in our case of an IM-quasigroup the notion of a parallelogram can be charac-
terized by only one equality without auxiliary points, because of following two
theorems.

THEOREM 11. The statement Par (a, b, ¢, d) is equivalent to the equality
ab - da=ac: a.

Proof. Tet g be the point such that ad = bq. Because of Corollaries 1’ and 3’
the statement Par (g, b, ¢, d) is equivalent to the equality dd = ¢, 1. e. d = cq.
Moreover, we have successively

ad - ba 2 (ad - ba) (ad - ba),
(a-cq) - ba® (ac - aq) - ba 2 (ac - b) (ag - a) 2 (ac - b)(a-qa) ¥
2 (ac+ a)(b - qa) @ (ac - a) (bq - ba) = (ac - a) (ad * ba),
and by (2) we have ad * ba = ab + da. Therefore, we obtain
Par(a,b,¢c,d)<>d = cqg <> ad - ba = (a - ¢q) - ba < (ad - ba) (ad - ba) =
=(ac - a)(ad - ba) <> ad - ba=ac - a<ab - da = ac - a.

THEOREM 12. The statement Par (a, b, ¢, d) is equivalent 1o the equality
ab - de = ac.

Proof. Let p and ¢ be two points such that ap = bg. According to Corollaries
1" and 3’ the statement Par (a, b, ¢, d) is equivalent to the equality dp = ¢q. On
the other hand, we have

ap - (dp - cq)® (ap - dp)(ap - cq) = (ap - dp) (bq - cq) 2
D (ad - p) (bc - q) 2 (ad - bc) - pg 2 (ab - dej - pg,
ap - (cq - cq) L ap - cq 2 ac - pyg,
and therefore it follows
Par(a b,c,d) = dp=cqg<=ap - (dp - cq) = ap * (cq * cq) =
<= (ab - dc) - pg = ac - pg <> ab - dc = ac.

In the case of the quasigroup (C, %) this theorem proves Theorem 2 from

[51.

THEOREM 13. If the pairs of points b, ¢, and ¢, a have midpoints d and e,
then there are midpoints f and g of the pairs of points bc, ca and ab, ¢ and de = f,
ed = g and Par (d, f, ¢, g) holds.
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Proof. From M (b, d, ¢) and M (¢, e, a) it follows by Theorem 33’ M (be, de, ca),
i. e. M (b, f, ca), where f = de. Analogously, from M (a, ¢, c) and M (b, d, ¢) it
follows M (ab, ed, cc), i. e. M (ab, g, c) ,where g — ed. Because of Theorem 4
from de = f and ed = g we obtain Par (4, f, ¢, g).

According to (1). every element of the IM-quasigroup is the left and the

right unit of its own. Let O be a given point and let + be an addition of points
defined as in [8] by

¢=a - b<Par(0,a,rc,b).

Because of (1) and lp = ro = O, Theorems 46" and 47 imply immediately the
following theorem.

THEOREM 14. For any points a and b we have the equality
ab = a0 + Ob, ()

ab = g (a) + 2o (8), 9

where Ao and go are two automorphisms of a commutative group (O, +) such that
%0 ° @0 = Qo © Ao
Owing 1o (1) and (8) we get

a = aa = a0 + Oa = g (a) + 20 (a),
i. e. a0 = a — Oa, which substituted in (8) implies ab = a + Ob — Oa. But,
Ao is an automorphism of (Q, ) and we obtain
Ob — Oa = 4o (B) — 20 (@) = Ap (b — a).
Therefore:
THEOREM 15. For any points a and b we have the equality

ab=a+ Ao (b — a),

and for any point a we have Ao (a) + po (@) = a, where Ay and g are two automor-
phisms of the commutative group (Q, +).

From Theorem 15 it follows that every IM-quasigroup can be obtained as
in Example 1, i. e. we have the following theorem.

THEOREM 16. There is an IM-quasigroup (Q, *) iff there is a commutative
group (Q, +) and two of its automorphisms @ and y such that ¢ (a) + v {(a) = a
for every a € Q. If the commutative gruop (Q, -+) and the automorphisms ¢ and
are given, then the operation - is defined by

ab=a -+ ¢(b—a),
and if the IM-quasigroup (Q, *) and an element O € Q are given, then the operation
- 75 defined by
a+b=p5'(a) 15 (b), (10)
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where O is the neutral element of the group (Q, +) and ¢ = Ay and yp = g, are a
left and a right transiation of (Q, -).

At the end let us prove one more theorem.
THEOREM 17. Let P < Q. Two following statements are equivalent:
1° (P, -) is a subquasigroup of (O, ) and O € P;

2° (P, +) is @ subgroup of (Q, +), whick is tnvariant with respect to the map-
pings Ao and go.

Proof. 1° < 2°: For any a € P there is one and only one element » € Q such
that 40 = g, i. . u = g5 (a), and from O, a € P because of 1° we obtain u € P.
Analogously, it can be proved that 5 e P implies 45! (8) € P. If we make the sub-
stitutions @ > 5! () and b — A5 * (b), then the equality (9) takes the form (10).
For any two elements, a, b € P we have 05 ' (a), 25 ' (b) € P and by (10) because
of 1° it follows a 4 b € P. For every a € P there is one and only one element —a e
€Q such that ¢ + (—a) = O, i. e. 05" (@) - 451 (—a) = O because of (10).
Therefore, O, 5! (a) € P imply by 1° 15 (—a) € P and because of O e P we
obtain O - 45" (—a) e P, i.e. —a =1, (45! (—a)) = 0 - 25 (—a) € P. There-
fore, (P, +) is a subgroup of the group (Q, +). For every x € P we have by 1°
Ox € P, i. e. A5 (x) € P, and hence A, (P) € P. For every y € P there is an ele-
ment x € P (because of 1°) such that Ox — ¥ i. e Ao(x) =y, and hence P <
< Ao (P). Therefore 4, (P) = P and analogously 2, (P) = P.

2°=1°: For every a, b € P we have by 2° g5 (a), 4o () € P, i. e. by (9) and
2° ab € P. For every a, c € P there is one and only one element b € Q such that
ab=c, i. €. ¢ =go(a) + Ao (b), and therefore Ao ®) =c—go(a). But, ceP
and from a € Pit follows g, (a) € P. Therefore, by 2° we get 1, (6) € Pand 4, Py =
= P implies b € P. Analogously, we can prove that for every b, ¢ € P there is
one and only one element a € P such that ab = ¢. This means that (P, ) is a sub~
quasigroup of (Q, ). From 2° it follows immediately O € P.
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Geometrija IM-kvazigrupa

Viadimir Volenec
Sadrfaf
U kvazigrupi (Q, *) sa svojstvima idempotentnosti i medijalnosti, izra:
nim identitetima az = aiab * ¢d = ac ° bd, vrijede sva svojstva iz [81, ali idem;
tentnost daje mogucnost da se dobije i niz novih ygeometrijskih¢ rezultata. D
se i sgeometrijski« dokaz teorema 0 reprezentaciji IM-kvazigrupa.

Primljenc u Il. razredu
3.7, 1990.
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