Uroš Milutinović*, University of Maribor, Slovenia

Closed embeddings into Lipscomb's universal space

 $\mathcal{J}(\tau)$ be Lipscomb's one-dimensional space and $L_n(\tau) = \{x \in \mathcal{J}(\tau)^{n+1} | \text{ at least one coordinate of } x \text{ is irrational} \} \subseteq \mathcal{J}(\tau)^{n+1}$ Lipscomb's *n*-dimensional universal space of weight $\tau \ge \aleph_0$. We prove that if X is a complete metrizable space and dim $X \le n$, $wX \le \tau$, then there is a closed embedding of X into $L_n(\tau)$. Furthermore, any map $f: X \to \mathcal{J}(\tau)^{n+1}$ can be approximated arbitrarily close by a closed embedding $\psi: X \to L_n(\tau)$. Also, relative and pointed versions are obtained. In the separable case an analogous result is obtained, in which the classic triangular Sierpiński curve (homeomorphic to $\mathcal{J}(3)$) is used instead of $\mathcal{J}(\aleph_0)$.

^{*}This is a joint work with Ivan Ivanšić