Vladimir V.Marchenko, Russian University of Peoples' Friendship, Moscow, Russia

Topological vector spaces of cochains and chains for Eucledian compacta

For an arbitrary compact *K* of the Eucledian space \mathbb{R}^n we define the spaces $C^p(K)$ of *germs* of *p*-forms and $C_p(K)$ of *p*-currents on *K* using the inverse system $\{U_{\alpha}, i_{\alpha\beta}, A\}$ of all open neighborhoods U_{α} of *K* in \mathbb{R}^n and embeddings $i_{\alpha\beta} : U_{\alpha} \subseteq U_{\beta}, \alpha, \beta \in A$.

We raise the problem of studying \mathbb{R} -shape type of *K*. It turns out to be complicated enough. However, we obtain the following results.

Theorem 1. $C^{p}(K)$ and $C_{p}(K)$ are locally convex topological vector spaces. Moreover, $C^{p}(K)$ is also a commutative cochain space with an operation \land extended from $C^{p}(U_{\alpha})$ (U_{α} is open) to $C^{p}(K)$, p = 0, 1, ...

The spaces $H^p(K)$ and $H_p(K)$ of the de Rham cohomologies and homologies for K are defined as well.

Theorem 2. The spaces of the Chech cohomologies $\check{H}^p(K)$ and Chech homologies $\check{H}_p(K)$ are isomorphic to the de Rham cohomologies $H^p(K)$ and the de Rham homologies $H_p(K)$ of the compact K.

Unfortunately, $C^{p}(K)$ is not Hausdorff, but by slightly changing $C_{p}(K)$ we construct a new cochain space (we also denote it $C^{p}(K)$), which is Hausdorff, nuclear and barreled (but incomplete). The new $C_{p}(K)$ is nuclear and complete (but nonbarreled).

We construct new cochains $\tilde{C}^p(K)$ and chains $\tilde{C}_p(K)$ of the compact K, which are herediterily reflexive and dual to each other, and a continuous epimorphism (not topological homomorphism) $\varphi : \tilde{C}^p(K) \to C^p(K)$ and concider on $C^p(K)$ a new factor topology of $\tilde{C}^p(K) / \ker \varphi$.

Theorem 3. In this new topology $C^p(\vec{K})$ becomes a reflexive topological vector space with the strong dual $C_p(K)$ (in new topology). Cohomologies $H^p(K)$ and homologies $H_p(K)$ are reflexive and dual to each other in the topologies induced from $C^p(K)$ and $C_p(K)$, respectively.

This research was supported by the grant of Russia Fund of Fundamental Researches (Grant # 06-01-00341).