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The product of shape fibrations

The notion of shape fibration for maps between metric compacta was
introduced by S. Mardešíc and T. B. Rushing in [4] and [5]. In [3] S. Mardešíc has
extented this notion to maps of arbitrary topological spaces. The author has
estabilished some further properties of shape fibrations in the noncompact
case (see e.g. [1], [2]).

The main result of this paper is the foollowing theorem: If p : E → B,
p′ : E′ → B′ are maps of arbitrary topological spaces E, E′ to compact Haus-
dorff spaces B, B′, then p × p′ : E × E′ → B × B′ is a shape fibration if and
only if p and p′ are shape fibrations. T. Watanabe in [6] has proved that the
product of maps between compact Hausdorff spaces is a shape fibration if
and only if each of these maps is a shape fibration. Thus, our result can be
considered as a generalization of the above mentioned Watanabe’s result.

In order to obtain our main result, we have also shown the following result
about resolutions of product spaces: Let q = (qλ) : E → E = (Eλ, qλλ′ ,Λ) be
a morphism of pro-Top and r = (rµ) : B → B = (Bµ, rµµ′ ,M) a morphism of
pro-Cpt such that E is an ANR-system and B a compact ANR-system. Then
q× r = (qλ× rµ) : E×B → E ×B = (Eλ×Bµ, qλλ′ × rµµ′ ,Λ×M) is a resolution
of E × B if and only if q and r are resolutions of E and B respectively.
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