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The product of shape fibrations

The notion of shape fibration for maps between metric compacta was
introduced by S.Mardesi¢ and T.B. Rushing in [4] and [5]. In [3] S. MardeSi¢ has
extented this notion to maps of arbitrary topological spaces. The author has
estabilished some further properties of shape fibrations in the noncompact
case (see e.g. [1], [2]).

The main result of this paper is the foollowing theorem: If p: E — B,
p': E' — B’ are maps of arbitrary topological spaces E,E’ to compact Haus-
dorff spaces B,B’, then p X p’': E X E' — B X B’ is a shape fibration if and
only if p and p’ are shape fibrations. T. Watanabe in [6] has proved that the
product of maps between compact Hausdorff spaces is a shape fibration if
and only if each of these maps is a shape fibration. Thus, our result can be
considered as a generalization of the above mentioned Watanabe’s result.

In order to obtain our main result, we have also shown the following result
about resolutions of product spaces: Let q = (qr): E — E = (Ex,qax, ) be
a morphism of pro-Top andv = (vy): B — B = (By, vy, M) a morphism of
pro-Cpt such that E is an ANR-system and B a compact ANR-system. Then
qxr = (qrxxX7ry): EXB — EXB = (Ex XBy,gax X vy, A X M) is a resolution
of E X B if and only if q and v are resolutions of E and B respectively.
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