Vitaly V. Fedorchuk, Moscow State University, Russia

Weakly infinite-dimensional compacta and *C*-compacta via polyhedra and simplicial complexes

Below, all spaces are compact.

Definition 1. Let *K* be a polyhedron. A mapping $f: X \to \text{Cone}(K)$ is said to be *K*-essential if the mapping $f|_{f^{-1}(K)}: f^{-1}(K) \to K$ extends over *X*.

For a class \mathcal{K} of polyhedra, a space X is called \mathcal{K} -weakly infinite-dimensional (notation: $X \in \mathcal{K}$ -wid) if for any sequence $f_i: X \to \text{Cone}(K_i), i \in \mathbb{N}, K_i \in \mathcal{K}$, there exists n such that the mapping

$$f_1 \Delta \dots \Delta f_n \colon X \to \prod_{i=1}^n \operatorname{Cone}(K_i) = \operatorname{Cone}(*_{i=1}^n K_i)$$

is $(*_{i=1}^{n}K_{i})$ -inessential. If \mathcal{K} consists of one polyhedron K we write \mathcal{K} wid = K-wid.

Definition 2. Let *G* be a class of finite simplicial complexes. A space *X* is said to be *G*-*C*-space (notation: $X \in G$ -*C*) if for each sequence $u_i = \{U_1^i, \ldots, U_{k_i}^i\}$, $i \in \mathbb{N}$, of covers of *X* there exist families $v_i = \{V_1^i, \ldots, V_{k_i}^i\}$ of open subsets of *X* such that

- 1. $V_i^i \subset U_i^i$;
- 2. $N(v_i) \subset G_i \in G$, where N(v) denotes the nerve of the family v;
- 3. $\cup_{i=1}^{n} v_i$ is a cover of *X* for some *n*.

We investigate classes \mathcal{K} -wid and G-C and their relationships with the classes wid of weakly infinite-dimensional compact spaces and C of compact C-spaces. In particular, we show that

$$wid \subset \mathcal{K}$$
- wid

for an arbitrary ${\mathcal K}$ and

$$C = G - C$$

for an infinite *G* with $\dim(G) < \infty$.

Question. Is it true that wid = K-wid for a simply connected K with torsion-free homology groups $H_*(K)$?