Vitalij A. Chatyrko*, Linköping University, Sweden

Counterparts of Smirnov's compacta for inductive functions *PtrInd*

In 1959 Smirnov constructed metrizable compacta S^{α} , $\alpha < \omega_1$, such that $trIndS^{\alpha} = \alpha$ for each α . Some years later Levshenko proved that $trIndX \leq \omega_0 \cdot trindX$ for any metrizable compact space X. This result together with the inductive character of the function trind implied for each $\alpha : 0 \leq \alpha < \omega_1$, the existence of a compact metrizable space X_{α} such that $trindX_{\alpha} = \alpha \leq trIndX_{\alpha} \neq \infty$.

We generalize Smirnov's construction. In particular, for each absolute multiplicative or additive Borel class *P* and each $\alpha < \omega_1$ we present a separable metrizable space S_P^{α} such that $PtrIndS_P^{\alpha} = trIndS_P^{\alpha} = \alpha$ and $QtrIndS_P^{\alpha} = -1$ for any other absolute multiplicative or additive Borel class *Q* containing *P*.

In 1997 Charalambous proved that for any separable metrizable space X with $trInd X \neq \infty$ and any absolute multiplicative or additive Borel class P the inequality $PtrInd X \leq \omega_0 \cdot (Ptrind X + 1)$ holds.

These two results imply that for each absolute multiplicative or additive Borel class *P* and each $\alpha < \omega_1$ there exists a separable metrizable space X_P^{α} such that *Ptrind* $X_P^{\alpha} = \alpha \leq trInd X_P^{\alpha} \neq \infty$ and *QtrInd* $S_P^{\alpha} = -1$ for any other absolute multiplicative or additive Borel class *Q* containing *P*.

^{*}This is a joint work with Yasunao Hattori