ON ISOTOPY AND UNIMODAL INVERSE LIMIT SPACES

H. BRUIN AND S. STIMAC

ABSTRACT. We prove that every self-homeomorphism h : Ky — K on the inverse limit space

K, of tent map T with slope s € (v/2,2] is isotopic to a power of the shift-homeomorphism
R.

o Ky — K.

1. INTRODUCTION

The solution of Ingram’s Conjecture constitutes a major advancement in the classification of
unimodal inverse limit spaces and the group of self-homeomorphisms on them. This conjecture
was posed by Tom Ingram in 1992 for tent maps 7y : [0, 1] — [0, 1] with slope +s, s € [1, 2],
defined as T,(z) = min{sz, s(1—=)}. The turning point is ¢ = 1 and we denote its iterates by
cn = T3 (c). The inverse limit space K, = lim([0, s/2], ;) consists of the core lim([cy, c1], T’)
and the 0-composant €, i.e., the composant of the point 0 := (...,0,0,0), which compactifies

on the core of the inverse limit space. Ingram’s Conjecture reads:

If 1 <s < s <2, then the corresponding inverse limit spaces lim([0, /2], T§)

and lim([0, s'/2], Ty) are non-homeomorphic.

The first results towards solving this conjecture were obtained for tent maps with a finite
critical orbit [9, 12, 3]. Raines and Stimac [11] extended these results to tent maps with a
possibly infinite, but non-recurrent critical orbit. Recently Ingram’s Conjecture was solved
completely (in the affirmative) in [2], but we still know very little of the structure of inverse
limit spaces (and their subcontinua) for the case that orb(c) is infinite and recurrent, see
1, 5, 8.

Given a continuum K and x € K, the composant A of x is the union of the proper subcontinua
of K containing z. For slopes s € (1/2, 2], the core is indecomposable (i.e., it cannot be written
as the union of two proper subcontinua), and in this case we also proved [2] that any self-

homeomorphism h : K, — K, is pseudo-isotopic to a power o of the shift-homeomorphism
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o on the core. This means that A permutes the composants of the core of K in the same way
as o does, and it is a priori a weaker property than isotopy. This is for instance illustrated
by the sin -continuum, defined as the graph {(z,sin 1) : z € (0,1]} compactified with a bar
{0} x [=1,1]. There are homeomorphisms that reverse the orientation of the bar, and these
are always pseudo-isotopic, but never isotopic, to the identity. Since such sin %—continua are
precisely the non-trivial subcontinua of Fibonacci-like inverse limit spaces [8], this example is

very relevant to our paper.

In this paper we make the step from pseudo-isotopy to isotopy. To this end, we exploit so-
called folding points, 1.e., points in the core of Ky where the local structure of the core of K

is not that of a Cantor set cross an arc. In the next section we prove the following results:

Theorem 1.1. If s € (v/2,2], and h : K, — K, is a homeomorphism, then there is R € Z
such that h(z) = of(z) for every folding point z in K.

Folding points © = (..., x_o,x_1, xo) are characterized by the fact that each entry x_; belongs
1
29
corollary for those slopes such that the critical orbit orb(c) is dense in [¢g, ¢1], which according

to [7] holds for Lebesgue a.e. s € [v/2,2].

to the omega-limit set w(c) of the turning point ¢ = 3, see [10]. This gives the immediate

Corollary 1.2. If orb(c) is dense in [cs, ¢;], then for every homeomorphism h : K, — K
there is R € Z such that h = ¢® on the core of K.

The more difficult case, however, is when orb(c) is not dense in [cg, ¢1]. In this case, h can be
at best isotopic to a power of the shift, because at non-folding points, where the core of K is
a Cantor set cross an arc, h can easily act as a local translation. It is shown in [4] that for tent
maps with non-recurrent critical point (or in fact, more generally long-branched tent maps),
every homeomorphism h : Ky — K, is indeed isotopic to a power of the shift. The proof
exploits the fact that in this case, so-called p-points (indicating folds in the arc-components
of Ky) are separated from each other, at least in arc-length semi-metric. Here we prove the

general result.

Theorem 1.3. If s € (1/2,2], and h : K, — K, is a homeomorphism, then there exists R € Z
R

such that h is isotopic to o™.
The paper is organized as follows. In Section 2 we give basic definitions and prove results
on how homeomorphisms act on folding points, i.e., Theorem 1.1 and Corollary 1.2. These
proofs depend largely on the results obtained in [2]. In Section 3 we present the additional

arguments needed for the isotopy result and finally prove Theorem 1.3.
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2. INVERSE LIMIT SPACES OF TENT MAPS AND FOLDING POINTS

Let N = {1,2,3,...} be the set of natural numbers and Ny = N U {0}. The tent map
T, : [0,1] — [0,1] with slope +s is defined as Tis(x) = min{sz,s(1 — z)}. The critical or
turning point is ¢ = 1/2 and we write ¢, = T%(c), so in particular ¢; = s/2 and ¢y = s(1—5/2).
Also let orb(c) and w(c) be the orbit and the omega-limit set of c¢. We will restrict T to the
interval I = [0, s/2]; this is larger than the core [ca, ;] = [s — $*/2,5/2], but it contains the
fixed point 0 on which the 0-composant &, is based.

The inverse limit space K, = lim([0, /2], T}) is
{z=(.. 29,2 1,20) : Ts(x;_1) = x; € [0,5/2] for all i < 0},
equipped with metric d(z,y) = _, o 2"|%n — yu| and induced (or shift) homeomorphism

U(. .. ,$_2,$_1,$0) = ( .. ,ZL‘_Q,[E_l,QT(),TS([Eo)).

Let m : lim([0,s/2],Ts) — I, m,(x) = x_x be the k-th projection map. Since 0 € I, the
endpoint 0 := (...,0,0,0) is contained in lim([0, s/2], T;). The composant of lim([0, s/2], T})
of 0 will be denoted as p; it is a ray converging to, but disjoint from the core lim([cy, ¢1], T’)
of the inverse limit space. We fix s € (\/5, 2]; for these parameters T} is not renormalizable
and m( [c2, c1], Ty) is indecomposable. Moreover, the arc-component of 0 coincides with the
composant of 0, but for points in the core of K, we have to make the distinction between

arc-component and composant more carefully.

A point x = (...,x_9,2_1,%0) € K, is called a p-point if v_,_; = c for some | € Ny. The
number L,(z) := [ is the p-level of z. In particular, xo = TP*!(c). By convention, the endpoint
0 of € is also a p-point and L,(0) := oo, for every p. The ordered set of all p-points of the
composant & is denoted by £, and the ordered set of all p-points of p-level [ by E,;. Given

an arc A C K, with successive p-points z°, ..., 2", the sequence of their p-level is denoted as
FP,(A) := L,(2°),...,L,(z"),

where F'P stands for folding pattern. Note that every arc of & has only finitely many p-points,
but an arc A of the core of K can have infinitely many p-points. In this case, if (u’);cz is the set
of p-points of A, then FP,(A) = (L,(u")):ez, for some countable index set Z (not necessarily
of the same ordinal type as N or Z). The folding pattern of the composant €y, denoted by
FP(€y), is the sequence L,(z'), L,(2%),..., L,(2"),..., where E, = {z',2%,...,2",...} and
p is any nonnegative integer. Let ¢ € N, ¢ > p, and E, = {y°,y*, 4%, ... }. Since 0977 is an
order-preserving homeomorphism of €, it is easy to see that 0?77(2') = ¢ for every i € N,

and L,(z") = L,(y"). Therefore, the folding pattern of €, does not depend on p.
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Definition 2.1. We call a p-point s € € salient if 0 < L,(z) < L,(s) for every p-point = €
(0,s). Let (s;)ien be the sequence of all salient p-points of €, ordered such that s; € (0, s;11)
for all ¢+ > 1.

Since for every slope s > 1 and p € Ny, the folding pattern of the 0-composant &, starts as
00010201 ..., and since by definition L,(s;) > 0, for all ¢ > 1, we have L,(s;) = 1.
Also, since s; = 07 !(s;1), we have L,(s;) = i, for every i € N. Therefore, for every p-point
x of K, with L,(x) # 0, there exists a unique salient p-point s; such that L,(z) = L,(s;)
and | = L,(x). Also, for every I € N, amongst all p-points E,; of €, with p-level [ there
exists precisely one p-point s; which is salient and has p-level [. Note that the salient p-points

depend on p: if p > ¢, then the salient p-point s; equals the salient g-point s;4,_,.

A folding point is any point x in the core of K, such that no neighborhood of = in core of
K is homeomorphic to the product of a Cantor set and an arc. In [10] it was shown that
x = (...,x_9,2_1,20) is a folding point if and only if z_, € w(c) for all & > 0. We can

characterize folding points in terms of p-points as follows:

Lemma 2.2. Let p be arbitrary. A point z € K, is a folding point if and only if there is a

sequence of p-points (*)gen such that 2% — z and L,(2*) — oo.

Proof. = Take m > p arbitrary. Since 7,,(z) € w(c) there is a sequence of post-critical points
Cn; — Tm(x). This means that any point y* = (..., ¢n,, Cuit1y- -+ Cnyom) 1S @ p-point with
p-level L,(y") = n; +m —p. Furthermore, for each 0 < j < m, |m;(y") — m;(z)| — 0 as i — oo.
Since m is arbitrary, we can construct a diagonal sequence (z¥)ren of p-points, by taking a
single element from (y');en for each m, such that sup,;, |m;(2*) — m;(x)| — 0 as k — oo. This

proves that z¥ — z and L,(2*) — oc.

< Take m arbitrary. Since ¥ — =z, also |m,(2%) — mn(z)] — 0 and 7, (z%) = ¢, for
n = L,(z*) +p —m. But L,(z") — 00, so m,(z) € w(c). O
A continuum is chainable if for every € > 0, there is a cover {¢*,..., "} of open sets (called

links) of diameter < & such that ¢/ N ¢ # () if and only if |i — j| < 1. Such a cover is called a
chain. Clearly the interval [0, s/2] is chainable. Throughout, we will use sequence of chains
Cp of lim([0, 5/2], T) satisfying the following properties:

(1) there is a chain {I},I2,..., 1"} of [0,s/2] such that & := 7 '(1]) are the links of Cp;

(2) each point 2 € UJ_ T *(c) is the boundary point of some link I7;

(3) for each i there is j such that Ty(1},,) C I].
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If max; [IJ] < es577/2 then mesh(C,) := max{diam (¢) : ¢ € C,} < &, which shows that
lim([0, s/2], T§) is indeed chainable. Condition (3) ensures that Cpy; refines C, (written Cpy1 =
Cp)-

Note that all p-point E,; of p-level [ belong to the same link of C,. (This follows by property
(1) of Cp, because L,(x) = L,(y) implies m,(x) = m,(y).) Therefore, every link of C, which

contains a p-point of p-level [ contains also the salient p-point s;.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let h : K; — K, be a homeomorphism. Let z,y € K, be folding
points with h(x) = y. For i € Ny let ¢;, p; € N be such that for sequences of chains (Cy,)ien,

and (Cp, )ien, of K5 we have

= h(CqH-l) <C = h(cfh> = Cpi <= h<ClI1> = Cpl = h(CQ> = Cp,

Pi+1
where gy = ¢ and py = p. Let (£ )ien, be a sequence of links such that z € £ € C,,, and
similarly for (€4 )iew,. Then €5~ C €5, €8 C 03 and h((g) C 7. By Lemma 2.2 and by
a remark above this proof, there exists a sequence (s} )ien of salient g-points with s;; — =
as i — 00. Then for every i there exist j; such that sgjl_ € 1y, h(s&ji) € ¢y and h(sgji) -y
as i — 0o0. By [2, Theorem 4.1] the midpoint of the arc component A; of £% which contains

P : o : " Y . : ” .
h(sdji) is a salient p;-point sy, . Since s, ,y € €4, for every ¢ and diam £ — 0 as i — oo,

we have s, — y. Since s is a salient g-point and s € £, s}, can be also considered as a
salient p-point and is also the midpoint of the arc component B; D A; of £ which contains

h(sy, ). Therefore, sy, = sq; +n, where M is as in [2, Theorem 4.1].

Let R = M — q+ p. By [2, Corollary 5.3], R does not depend on ¢, p and M. Since
ot . Ky — K, is a homeomorphism, and since s}, — x as i — co, we have o/(s} ) — o%()
as ¢ — oo. Note that UR(Siiji) = S4;,+m and sq;, +n — y. Therefore of(x) = vy, ie.,

oft(x) = h(x). O

Proof of Corollary 1.2. If orb(c) is dense in [cq, ¢1], every point x in the core of K satisfies
mr(x) € w(e) for all k € N. By [10], this means that every point is a folding point, and hence

the previous theorem implies that A = ¢ on the core of K. [l

Remark 2.3. A point © € K, is an endpoint of an atriodic continuum, if for every pair
of subcontinua A and B containing x, either A C B or B C A. The notion of folding
point is more general than that of endpoint. For example, if the critical point of a tent map
is preperiodic, then the folding points of the inverse limit space of this tent map are not

endpoints.
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It is natural to classify arc-components 2l according to the folding points they may contain.

For arc-components 2, we have the following possibilities:

e 2 contains no folding point.

e 2 contains one folding point x, e.g. if x is an endpoint of 2.

e 2 contains two folding points, e.g. if 2 is the bar of a sin %—continuum.

e 2 contains countably many folding points. One can construct a tent map such that
the folding points of its inverse limit space belong to finitely many arc-components
that are periodic under o, but where there are still countably folding points.!

e 2 contains uncountably many folding points, e.g. if w(c) = [ca, ¢1], because then every

point in the core is a folding point.

This is clearly only a first step towards a complete classification.

Definition 2.4. Let ¢°,¢',... (¥ be those links in C, that are successively visited by an arc
A C €y (hence £¢ # (1 0N+ 2£ () and ¢¢ = (712 is possible if A turns in 1), Let A C

be the corresponding arc components such that Cl A* are subarcs of A. We call the arc A

o p-link symmetricif ¢! = (* for i =0,...,k;
o mazimal p-link symmetric if it is p-link symmetric and there is no p-link symmetric

arc B D A and passing through more links than A.

The p-point of A*/? with the highest p-level is called the center of A, and the link ¢*/2 is called
the central link of A.

3. Isotoric HOMEOMORPHISMS OF UNIMODAL INVERSE LIMITS

It is shown in [2] that every salient p-point s; € € is the center of the maximal p-link sym-
metric arc A;. We denote the central link that s; belongs to by £;!. For a better understanding
of this section, let us mention that a key idea in [2] is that under a homeomorphism h such
that h(C,) < C,, (maximal) ¢-link symmetric arcs have to map to (maximal) p-link symmetric

arcs, and for this reason h(s,,) € £;' for some appropriate m € N (see [2, Theorem 4.1]).

Lemma 3.1. Let h: K, — K, be a homeomorphism pseudo-isotopic to ¢t, and let ¢, p € N,
be such that h(C,) = C,. Let z be a ¢g-point in the core of K, and let £;' € C, be the link

'An example is the tent-map where ¢; has symbolic itinerary (kneading sequence) v = 100101201301*
01°.... Then the two-sided itineraries of folding points are limits of {¢7(v)};>0. The only such two-sided
limit sequences are 1°°.1°° and {07(1°°.01%°) : j € Z}. Since they all have left tail ...1111, these folding

points belong to the arc-component of the point (..., p,p, p) for the fixed point p = T+~ This use of two-sided

symbolic itineraries was introduced for inverse limit spaces in [6].
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containing both ¢(x) and salient p-point s;, where [ = L,(c®(x)). Suppose that the arc-

component W, of £5 containing o(x) does not contain any folding point. Then h(z) € W,.

Proof. Since W, does not contain any folding point, it contains finitely many p-points. Note
that W, contains at least one p-point since o®(x) € W, is a p-point. Since €, is dense in
K, there exists a sequence (W;);en of arc-components of £;t such that W; C &y, F'P,(W;) =
FP,(W,) for every i € N, and W; — W, in the Hausdorff metric. Let (z;);en be a sequence
of g-points such that for every i € N, L,(z;) = L,(z), x; — x and o®(x;) € W;. Obviously
(z:)ien C €, Ly(cf(x;)) = Ly(c®(x)) and o®(x;) — ofi(z). Since h is a homeomorphisms,
h(xz;) — h(z). Tt follows by the construction in the proof of [2, Proposition 4.2] that h(x;) € W;
for every i € N. Therefore h(x) € W,. O

Corollary 3.2. Let h : K, — K, be a homeomorphism pseudo-isotopic to of. Then h

permutes arc-components of K, in the same way as o,

Proof. Since h is a homeomorphism, h maps arc-components to arc-components. Let 2 be
an arc-component of K . Let us suppose that 2 contains a folding point, say x. Then
h(z) = o®(z) implies h(A) = o(2A).

Let us assume now that 2 does not contain any folding point; in particular this means that 2
has no endpoint. There exist ¢, p € Ny such that h(C,) < C, and that h(2) is not contained in
a single link of C,. Then 2l is not contained in a single link of C,. Since 2 cannot go straight
through all the links of C,, we can find a link ¢, € C, and arc-component V' € ¢, N2 of ¢,
such that V' contains at least one g-point, say . Let (5 € C, be such that | = Ly(c"(z)).
Let W C ;! be arc-component containing of{(z). Since 2 does not contain any folding point,
h(2l) does not contain any folding point implying W does not contain any folding point. Then,
by Lemma 3.1, h(z) € W implying h(2) = (). O

Lemma 3.3. Let h: Ky — K, be a homeomorphism that is pseudo-isotopic to the identity.
Then h preserves orientation of every arc-component 2, i.e., given a parametrization ¢ : R —
A (or ¢ :[0,1] - A or ¢ :[0,00) — A) that induces an order < on A, then x < y implies
h(z) < h(y).

Proof. Let us first suppose that h : Ky — K, is any homeomorphism. Then, by [2, Theorem
1.2] there is an R € Z such that h, restricted to the core, is pseudo-isotopic to off, i.e., h
permutes the composants of the core of the inverse limit in the same way as of*. Therefore,

by Corollary 3.2, it permutes the arc-components of the inverse limit in the same way as 0.
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Let 2,2’ be arc-components of the core such that h,cf : A — A, and let 2,y € A, = < v.
We want to prove that h(z) < h(y) if and only if o®(z) < of(y). Since h and o are
homeomorphisms on arc-components, each of them could be either order preserving or order
reversing. Therefore, to prove the claim we only need to pick two convenient points u,v € 2,
u < v, and check if we have either h(u) < h(v) and o%(u) < o%(v), or h(v) < h(u) and
oft(v) < of(u). If A contains at least two folding points, we can choose u,v to be folding
points. Then h(u) = of(u) and h(v) = o¥(v) and the claim follows.

Let us suppose now that 2 contains at most one folding point. Then there exist ¢,p € Ny
such that h(C,) < C, and ¢-points u,v € 2, u < v (on the same side of the folding point if
there exists one) such that of(u) and o (v) are contained in disjoint links of C, each of which

does not contain the folding point of 2, if there exists one.

Let 4,3+ € C, with j = Ly(c®(u)) and k = L,(c"(v)) be links containing o®(u) and
of(v) respectively. Let W, C ¢, and W, C £+ be arc-components containing ¢ (u) and
of(v) respectively. Then W, and W, do not contain any folding point and by Lemma 3.1
h(u) € W, and h(v) € W,. Therefore obviously h(u) < h(v) if and only if o%(u) < oft(v).

If h is a homeomorphism that is pseudo-isotopic to the identity, then R = 0 and the claim of

lemma follows. O

Corollary 3.4. If h is pseudo-isotopic to the identity, then the arc A connecting x and h(x)

is a single point, or A contains no folding point.

Proof. Since h is pseudo-isotopic to the identity,  and h(x) belong to the same composant,
and in fact the same arc-component. So let A be the arc connecting = and h(z). If © = h(z),
then there is nothing to prove. If h(zx) # x, say z < h(x), and A contains a folding point y,
then z < y = h(y) < h(x), contradicting Lemma 3.3. O

In particular, any homeomorphism h that is pseudo-isotopic to the identity cannot reverse
the bar of a sin i—continuum. The next lemma strengthens Lemma 3.1 to the case that W, is

allowed to contain folding points.

Lemma 3.5. Let h : Ky — K, be a homeomorphism that is pseudo-isotopic to the identity.
Let ¢, p € Ny be such that h(C,) < C,. Let x be a ¢g-point in the core of K and let £ € C, be
such that [ = Ly(x). Let W, C £} be an arc-component of /3! containing x. Then h(x) € W,.

Proof. It W, does not contain any folding point the proof follows by Lemma 3.1 for R = 0.
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Let W, contain at least one folding point. If x is a folding point, then h(z) = x € W, by
Theorem 1.1. If W, contains at least two folding points, say y and z, such that = € [y, z] C W,
then h(x) € [y, 2] C W, by Corollary 3.4.

The last possibility is that z € (y, z) C W,, where z € W, is a folding point, y ¢ W,, i.e., y is
a boundary point of W, and (y, z) does not contain any folding point. Since & is dense in K,
there exists a sequence (Wj);en of arc-components of £ such that W; C & and W; — (y, 2]
in the Hausdorff metric. Note that in this case there exists the sequence of p-points (m;);en,
where m; is the midpoint of W;, and for this sequence we have m; — z and L,(m;) — oo.
Also, for every i large enough, every W; contains a ¢-point x; with L,(z;) = L,(z), and for
the sequence of g-points (z;);en we have z; — x. Obviously (z;)ien C € and L,(z;) = Ly(x).
By the proof of [2, Proposition 4.2] applied for R = 0 we have h(z;) € W; for every i. Since
h is a homeomorphisms, h(z;) — h(x). Therefore, h(x) € (y, z) C W,. O

Proposition 3.6. Let h : Ky — K, be a homeomorphism. If z* — z and A" = [2", h(z")],
then A" — A := [z, h(z)] in Hausdorff metric.

Proof. We know that h is pseudo-isotopic to ot for some R € Z; by composing h with 0~ % we
can assume that R = 0. By Corollary 3.2, h preserves the arc-components, and by Lemma 3.3,

preserves the orientation of each arc-component as well.

Take a subsequence such that A™ converges in Hausdorff metric, say to B. Since z, h(z) € B,
we have B D A. Assume by contradiction that B # A. Fix ¢,p arbitrary such that h(C,)
refines C,, and such that m,(B) # m,(A) and a fortiori, that there is a link ¢ € C, such that
(N A=( and 7m,(¢) contains a boundary point of m,(B).

Let d, = max{L,(y) : y is p-point in A"}. If D := supd, < oo (if A™ contains no p-point,
then we set D = 0 be default), then we can pass to the chain C,;p and find that all A™’s go
straight through C,p, hence the limit is a straight arc as well, stretching from z to h(x), so

B = A. Therefore D = oo, and we can assume without loss of generality that d,, — oo.

Since the link in ¢ is disjoint from A but m,(¢) contains a boundary point of 7,(B), the arcs
A™ intersects ¢ for all k sufficiently large. Therefore A™ N ¢ separates x™ from h(x™); let
W™ be a component of A™ N ¢ between z™ and h(z™). Since m,(¢) contains a boundary
point of m,(B), W™ contains at least one p-point for each k. Lemma 3.5 states that there
is y™ € W™ such that h(y™) € W™ as well, and therefore z™ < y™ h(y™) < h(z™) (or
Y™ < " h(z™) < h(y™)), contradicting that h preserves orientation. O

Let us finally prove Theorem 1.3:
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Proof of Theorem 1.3. Fix R such that h is pseudo-isotopic to o®. Then ¢~ o h is pseudo-
isotopic to the identity. So renaming o~ o h to h again, we need to show that h is isotopic
to the identity.

If = is a folding point of K, then h(x) = x by Theorem 1.1. In this case, and in fact for
any point such that h(z) = x, we let H(z,t) = x for all t € [0,1]. If h(z) # x, then x and
h(x) belong to the same arc-component, and the arc A = [z, h(x)] contains no folding point
by Corollary 3.4. By Lemma 2.2, A contains only finitely many p-points, so there is m such

that m,, : A — m,,(A) is one-to-one. In this case,
H(x,t) = m,'|a[(1 = ) (2) + tmm (h(2))].

Clearly ¢t — H (-, t) is a family of maps connecting h to the identity in a single path as t € [0, 1].
We need to show that H is continuous both in z and ¢, and that H(-,t) is a bijection for all
te0,1].

Let z € K, and (2",t") — (z,t). If h(z) = z, then H(z,t) = z, and Proposition 3.6 implies
that H(2",t") — z = H(z,t). So let us assume that h(z) # z. The arc A = [z, h(2)] contains
no folding point, so by Lemma 2.2, for all z € A, there is ¢(x) > 0 and W(z) € N such that
B.(z)(x) contains no p-point of p-level > W(x). By compactness of A, € := inf,cqe(x) > 0
and sup,c 4 W (z) < oo, whence there is m > p+ W such that V := 7.} o m,,(A) is contained

in an e-neighborhood of A that contains no p-point.

By Proposition 3.6, there is NV such that A™ C V for all n > N, and in fact m,,(A") — 7, (A).
It follows that H(z",t") — H(z,1).

To see that  +— H(-,t) is injective for all ¢ € [0, 1], assume by contradiction that there
is tp € [0,1] and = # y such that H(z,ty) = H(y,ty). Then z and y belong to the same
arc-component 2, which is the same as the arc-component containing h(x) and h(y). The
smallest arc J containing all four point contains no folding point by Corollary 3.4. Therefore
there is m such that m,, : J — m,(J) is injective, and we can choose an orientation on 2
such that x < y on J, and m,,(z) < 7, (y). Since t — 7, o H(x,t) is monotone with constant

speed depending only on z, we find
Tm () < T (y) < T o H(x,tg) = mm 0 H(y,to) < T 0 h(y) < 7 0 h(x)
This contradicts that h preserves orientation on arc-components, see Lemma 3.3.

To prove surjectivity, choose x € K arbitrary. If h(x) = z, then H(z,t) = z for all t € [0, 1].
Otherwise, say if h(z) > x, there is y < z in the same arc-component as x such that h(y) = x.

The map t — H(-,t) moves the arc [y, z] continuously and monotonically to [h(y), h(z)] =
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[z, h(x)]. Therefore, for every t € [0, 1], there is y; € [y, 2| such that H(y;,t) = x. This proves

surjectivity.

We conclude that H(z,t) is the required isotopy between h and the identity. O

1]

[10]
[11]

[12]
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