
THE INGRAM CONJECTURE

M. BARGE, H. BRUIN, S. ŠTIMAC

Abstract. We prove the Ingram Conjecture, i.e., we show that the inverse limit
spaces of tent maps with different slopes in the interval [1, 2] are non-homeomorphic.
Based on the structure obtained from the proof, we also show that every self-homeo-
morphism of the inverse limit space of a tent map is pseudo-isotopic, on the core, to
some power of the shift homeomorphism.

1. Introduction

Apart from their interest within continuum theory, inverse limit spaces play a key role

in the description of uniformly hyperbolic attractors [35, 36], global ‘Hénon-like’ strange

attractors [6] and the structure emerging from homoclinic tangencies in dynamical

systems [5]. They find further use in the area of (substitution) tiling spaces [1] which,

in some cases, are covering spaces of the type of inverse limit spaces with which we are

concerned with in this paper; namely, those with a single tent map Ts : [0, 1] → [0, 1],

x 7→ min{sx, s(1 − x)} as bonding map. Such inverse limit spaces can be embedded

in the plane as global attractors of homeomorphisms [27, 34, 13] and immersed in the

plane as global attractors of skew product maps [20].

Inverse limit spaces are notoriously difficult to classify. In this paper, we solve in the

affirmative the classification problem known as the Ingram Conjecture:

Theorem 1.1 (Ingram Conjecture). If 1 ≤ s < s′ ≤ 2, then the corresponding

inverse limit spaces lim←−([0, 1], Ts) and lim←−([0, 1], Ts′) are non-homeomorphic.

This is the main outstanding conjecture regarding dynamics on continua, dating

back to at least the early nineties. In the “Continua with the Houston problem book”

in 1995 [22, page 257], Ingram writes

The [...] question was asked of the author by Stu Baldwin at the [...]

summer meeting of the AMS at Orono, Maine, in 1991. ... There is
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a related question which the author has considered to be of interest

for several years. He posed it at a problem session at the 1992 Spring

Topology Conference in Charlotte for the special case (that the critical

point has period) n = 5.

It is clear that if two interval maps are topologically conjugate, then their inverse limit

spaces are homeomorphic. Thus it may be more natural to ask the question for the

‘fuller’ logistic family fa(x) = ax(1 − x), a ∈ [0, 4], which includes (infinitely) renor-

malizable maps (see Definition 6.1). It is well-known [26] that each logistic map with

positive topological entropy is semi-conjugate to a tent map Ts with log s = htop(fa),

and these semi-conjugacies collapse (pre)periodic intervals to points. The effect of

renormalization on the structure of the inverse limit space is well-understood, see [4]:

it produces proper subcontinua that are periodic under the shift homeomorphism and

homeomorphic with the inverse limit space of the renormalized map. The solution of

the Ingram Conjecture then leads to an analogous result for logistic maps.

As the parameter a for the logistic map fa is increased, a new periodic point of period

k appears when the graph of fk
a is tangent with the diagonal. If such a tangency happens

at parameter value a∗ and location (x, x) then there is an ε > 0 and a pair of continuous

curves a 7→ x−(a), a 7→ x+(a) of k-periodic points with x−(a∗) = x = x+(a∗) so that

x−(a) is repelling and x+(a) is attracting under fk
a , for a∗ < a ≤ a∗ + ε. This is called

a saddle-node bifurcation and {x−(a), x+(a)} is called a saddle-node pair. For each a,

let ∼sn be the equivalence relation that identifies saddle-node pairs and let Ω(fa) be

the non-wandering set of fa (see Definition 6.2). The reduced non-wandering set of fa

is Ω(fa)/ ∼sn.

Theorem 1.2. In the parameter range (1, 4], two logistic maps have homeomorphic

inverse limit spaces if and only if they are conjugate on their reduced non-wandering

sets.

There have been several partial results to the Ingram Conjecture, e.g. Barge and

Diamond [3], which solved the period n = 5 case, and [33, 15]. The Ingram Conjecture

was shown to hold when the critical point is periodic by Kailhofer [23] (see also [9]),

or has finite orbit by Štimac [32]. More recently, the case where the critical point is

non-recurrent was solved in [30]. Further results that classify certain features of inverse
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limit spaces of tent maps with non-periodic recurrent critical orbits were obtained in

e.g. [11, 29, 14].

Our solution to the Ingram Conjecture gives more information about the set of self-

homeomorphisms on lim←−([0, 1], Ts): we show that any such homeomorphism behaves

like an iterate of the shift homeomorphism σ.

The critical point 1
2

of Ts is denoted by c, and we write ci = T i(c). Although Ts is

defined on [0, 1], there is a forward invariant interval [c2, c1] = [s(1− s/2), s/2], called

the core, on which Ts is surjective. We call lim←−([c2, c1], Ts) the core of the inverse limit

space. The space lim←−([0, 1], Ts) is the union of the core of the inverse limit and a ray C

converging onto it.

Recall that the composant of x ∈ X is defined as the union of all proper subcontinua

of X containing x. For 1 < s < 2, lim←−([0, 1], Ts) has only three composants: the

entire inverse limit space, C, and lim←−([0, 1], Ts) \ {(. . . , 0, 0, 0)}. But for s >
√

2,

lim←−([c2, c1], Ts) is indecomposable and hence has uncountably many pairwise disjoint

composants, each of which is dense. If s >
√

2 and the orbit of c is finite, the composants

of lim←−([c2, c1], Ts) are the same as the arc-components. Otherwise, the composants can

be very complicated. For 1 < s ≤ √
2, the core has just two proper composants that

overlap in a single arc-component.

Theorem 1.3. Given s ∈ [1, 2], for every homeomorphism h : lim←−([0, 1], Ts) ª, there is

an R ∈ Z such that h, restricted to the core lim←−([c2, c1], Ts), is pseudo-isotopic to σR,

i.e., it permutes the composants of the core of the inverse limit in the same way as σR.

The zero-composant C of lim←−([0, 1], Ts) containing the endpoint α := (. . . , 0, 0, 0) is

important in our proof of the Ingram Conjecture; the “core” version of the Ingram

Conjecture is still outstanding. Our proof relies on the properties of so-called link-

symmetric arcs in the composant C. Inverse limit spaces are chainable, and w.r.t. nat-

ural chains, a homeomorphism h : lim←−([0, 1], Ts′) → lim←−([0, 1], Ts) maps link-symmetric

arcs to link-symmetric arcs. From this we derive that maximal link-symmetric arcs in

lim←−([0, 1], Ts′) centered at so-called salient points s′i map to link-symmetric arcs cen-

tered at salient points si+M ∈ lim←−([0, 1], Ts) for some M ∈ Z and all sufficiently large

i ∈ N.

This in turn implies that h maps so-called q-points close to p-points, while ‘translat-

ing’ their levels by a fixed number M . This shows that h effectively fixes the folding
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pattern of the zero-composant, with the Ingram Conjecture as an easy consequence.

Additional arguments show that every self-homeomorphism of lim←−([0, 1], Ts), when re-

stricted to the core, is pseudo-isotopic to a power σR of the shift for some R ∈ Z.

We give the basic definitions in the next section. In Section 3 we investigate the

lengths of maximal link-symmetric arcs, leading in Section 4 to the proof that a home-

omorphism between two unimodal inverse limit spaces induces a shift of indices of

salient points, and more generally, acts as a shift on the levels of q-points and p-points.

This leads to the proof of the Ingram Conjecture. In Section 5, we prove the results

on pseudo-isotopy. Section 6, finally, is devoted to the proof of Theorem 1.2 on logistic

maps.

2. Definitions

Let N := {1, 2, . . . } and N0 := {0, 1, 2, . . . }. Let Ts : [0, 1] → [0, s/2], Ts(x) =

min{sx, s(1− x)} be the tent map with slope s ∈ [1, 2] and critical point c = 1
2
. Write

ci = ci(s) := T i
s(c), so in particular c1 = s

2
and c2 = s(1− s

2
).

The inverse limit space lim←−([0, 1], Ts) is the collection of backward orbits

{x = (. . . , x−2, x−1, x0) : Ts(xi−1) = xi ∈ [0, s/2] for all i ≤ 0},
equipped with metric d(x, y) =

∑
n≤0 2n|xn−yn| and induced (or shift) homeomorphism

σ = σs given by

σ(. . . , x−2, x−1, x0) = (. . . , x−2, x−1, x0, Ts(x0)).

Let πp : lim←−([0, 1], Ts) → [0, 1], πp(x) = x−p, be the p-th projection map. Since Ts

fixes 0, lim←−([0, 1], Ts) contains the endpoint α := (. . . , 0, 0, 0). The proper composant

of lim←−([0, 1], Ts) containing this point is denoted by C; it is a ray converging from α to,

but disjoint from, the core of the inverse limit space lim←−([c2, c1], Ts).

Frequently, the Ingram Conjecture is posed for slopes s, s′ ∈ [
√

2, 2] only, because

for 0 < s ≤ √
2, lim←−([c2, c1], Ts) is decomposable. Since lim←−([0, 1], Ts) is a single point

for s ∈ (0, 1) and an arc for s = 1, we will always assume that all slopes s are greater

than 1. The next two lemmas show how to reduce the case s ∈ (1,
√

2] to s ∈ (
√

2, 2].

Lemma 2.1. For 21/2n+1 ≤ s ≤ 21/2n
, n ∈ N, the core of the inverse limit space

lim←−([c2, c1], Ts) is homeomorphic with two copies of lim←−([0, 1], Ts2) joined at their end-

points.
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Proof. For this range of s, Ts([c2, p]) = [p, c1] and Ts([p, c1]) = [c2, p]), where p := s
s+1

is

the positive fixed point of Ts. It follows that lim←−([c2, c1], Ts) is homeomorphic with two

copies of lim←−([p, c1], T
2
s ) joined at the endpoint (. . . , p, p, p). Direct calculation shows

that, if L is the orientation preserving affine homeomorphism from [p, c1] onto [0, c1(s
2)],

then L ◦ T 2
s ◦ L−1 = Ts2 on [0, c1(s

2)] and hence lim←−([p, c1], T
2
s ) is homeomorphic with

lim←−([0, 1], Ts2). ¤

Lemma 2.2. Suppose that 21/2n
< s ≤ 21/2n−1

and 21/2n′
< s′ ≤ 21/2n′−1

, n, n′ ∈ N,

and suppose that lim←−([0, 1], Ts) is homeomorphic with lim←−([0, 1], Ts′). Then n = n′ and

assuming that the Ingram Conjecture holds for slopes >
√

2, then also lim←−([0, 1], Ts2n−1 )

is homeomorphic with lim←−([0, 1], T(s′)2n−1 ).

Proof. For 21/2 < s < 2, lim←−([0, 1], Ts) consists of a ray C winding onto an inde-

composable continuum, namely lim←−([c2, c1], Ts). It follows from Lemma 2.1 that for

21/2n
< s < 21/2n−1

, lim←−([0, 1], Ts) consists of a ray winding onto a pair of rays, each

winding onto a pair of rays,. . . , each winding onto a pair of rays, each of which winds

onto an indecomposable continuum. There are 2n−1 of these indecomposable continua,

each homeomorphic with the core of the inverse limit space lim←−([0, 1], Ts2n−1 ). Hence

if lim←−([0, 1], Ts) is homeomorphic with lim←−([0, 1], Ts′), then n = n′ and lim←−([0, 1], Ts2n−1 )

is homeomorphic with lim←−([0, 1], T(s′)2n−1 ). To cover the remaining cases, note that if

s = 21/2n−1
, then the only alteration needed in the above description of lim←−([0, 1], Ts)

is that at the penultimate level, instead of a pair of rays winding onto a pair of inde-

composable subcontinua, we just have two indecomposable subcontinua (each homeo-

morphic with lim←−([0, 1], T2)) joined at their common endpoint. It is clear in this case

that if lim←−([0, 1], Ts′) is homeomorphic with lim←−([0, 1], Ts), then s′ = s. ¤

Definition 2.3. The arc-length or d̄ metric on C is defined as

d̄(x, y) = sp|x−p − y−p|
for each p so that πp : [x, y] → [0, 1] is injective.

If x, y ∈ C, then we denote by [x, y] the arc between x and y, and by (x, y) the

interior of the arc [x, y]. We write x ¹ y if x ∈ [α, y], i.e., d̄(α, x) ≤ d̄(α, y).

Definition 2.4. A continuum is chainable if for every ε > 0, there is a cover {`1, . . . , `n}
of open sets (called links) of diameter < ε such that `i∩ `j 6= ∅ if and only if |i− j| ≤ 1.
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Such a cover is called a chain. Clearly the interval [0, s/2] is chainable. We call a

sequence Cp, p ∈ N0, a natural chaining, and each Cp a natural chain, of lim←−([0, 1], Ts),

if

(1) there is a chain {I1
p , I2

p , . . . , In
p } of [0, s/2] such that `j

p := π−1
p (Ij

p) are links of

Cp;

(2) each point x ∈ ∪p
i=0T

−i
s (c) is a boundary point of some link Ij

p ;

(3) for each i there is j such that Ts(I
i
p+1) ⊂ Ij

p .

Let us define width(Cp) := maxj |Ij
p |. If width(Cp) < εs−p/2 then mesh(Cp) := max{diam(`) :

` ∈ Cp} < ε, which shows that lim←−([0, 1], Ts) is indeed chainable.

Condition 3. ensures that Cp+1 refines Cp (written Cp+1 ¹ Cp).

Definition 2.5. Let p ∈ N0. A point x = (. . . , x−2, x−1, x0) ∈ C is called a p-point if

x−p−j = c for some j ∈ N0. For the largest such j, the number Lp(x) := j is called

the p-level. In particular, x0 = T p+j
s (c). The ordered set of all p-points of composant

C is denoted by Ep, and the ordered set of all p-points of p-level l by Ep,l. Given

an arc A ⊂ C with successive p-points x0, . . . , xn, the p-folding pattern of A, denoted

by FPp(A), is the sequence FPp(A) = Lp(x
0), . . . , Lp(x

n). The folding pattern of

composant C, denoted by FP (C), is the sequence Lp(z
1), Lp(z

2), . . . , Lp(z
n), . . . , where

Ep = {z1, z2, . . . , zn, . . . } and p is any nonnegative integer. Let q ∈ N, q > p, and

Eq = {y1, y2, . . . , yn, . . . }. Since σq−p is an order-preserving homeomorphism of C, it

is easy to see that, for every i ∈ N, σq−p(zi) = yi and Lp(z
i) = Lq(y

i). Therefore, the

folding pattern of C does not depend on p.

For the above arc A, the projection πp : A → [0, s/2] need not be injective; so the

folding pattern of A can be very long and A may pass through the same link `j of the

natural chain Cp many times. If Aj is an arc component of A∩ `j, then we say that Aj

goes straight through `j if πp|Aj is injective; otherwise it turns in `j. If Aj turns in `j,

then Aj contains at least one p-point.

Definition 2.6. Let `0, `1, . . . , `k be those links in Cp that are successively visited by

an arc A = [u, v] ⊂ C (hence `i 6= `i+1, `i ∩ `i+1 6= ∅ and `i = `i+2 is possible if A turns

in `i+1). Let Ai ⊂ `i be the corresponding arc components such that Cl Ai are subarcs

of A. We call the arc A

• p-link-symmetric if `i = `k−i for i = 0, . . . , k;
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• maximal p-link-symmetric if it is p-link-symmetric and there is no p-link-symmetric

arc B ⊃ A and passing through more links than A;

• p-symmetric if πp(u) = πp(v) and if for A∩Ep = {x0, . . . , xn} we have Lp(x
i) =

Lp(x
n−i) for every i = 0, . . . , n.

In any of these cases, k is even and the p-point of Ak/2 with the highest p-level is called

the center of A, and the link `k/2 is called the central link of A.

It is easy to see that if A is p-symmetric, then n is even and Lp(x
n/2) = max{Lp(x

i) :

xi ∈ A ∩ Ep}. Clearly, every p-symmetric arc is p-link-symmetric as well, but the

converse does not hold.

Definition 2.7. Given p, let (si)i∈N be the sequence of all p-points such that 0 ≤
Lp(x) < Lp(si) for every p-point x ∈ (α, si). We call p-points satisfying this property

salient.

Since for every slope s > 1 and p ∈ N0, the sequence FP (C) starts as 0 1 0 2 0 1 . . . ,

and since by definition Lp(s1) > 0, we have Lp(s1) = 1. Also, since si = σi−1(s1),

Lp(si) = i, for every i ∈ N. Note that the salient p-points depend on p: if p ≥ q, then

the salient p-point si equals the salient q-point si+p−q.

Let us extend the notion of folding pattern as follows. A sequence e1, . . . , ek is the

folding pattern of T j|H for an interval H ⊂ [0, 1] if ce1 = T j(x1), . . . , cek
= T j(xk),

where x1 < · · · < xk are the critical points of T j on H. (If 0 ∈ H, then the folding

pattern starts with ∗ by convention, just as ∗ denotes the conventional p-level of α.) In

this extended terminology, the p-folding pattern of [α, sj+1] is the same as the folding

pattern of T j on [0, c1], independently of p.

Measured in arc-length, d̄(α, s1) = 1
2
sp, and since σ(si) = si+1 we obtain

(2.1) d̄(α, si) =
1

2
sp−1si for all i ≥ 1.

3. Maximal Link-Symmetric Arcs

In this section we establish upper bounds for the lengths of p-link-symmetric arcs.

The Ingram Conjecture was previously proved for all tent maps with a (pre)periodic

critical point, see [32]. So we assume from now on that the slope s is such that c is

not (pre)periodic. Throughout this section we use the notation T := Ts, ak := T k(a)
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for any point or interval (except for the closest precritical points z−k ∈ T−k(c) in

Definition 3.1 below), and â := 1− a is the symmetric point around c.

Definition 3.1. We call z−k a closest precritical point if T k(z−k) = c and T k maps

[c, z−k] monotonically onto [ck, c]. Clearly, if z−k is a closest precritical points, so is

ẑ−k.

Lemma 3.2. There are infinitely many N and closest precritical points z−N such that

θN := min{|ci − c| : 0 < i ≤ N} > |z−N − c|.

Proof. If c is not recurrent, then θn 6→ 0 and the lemma is trivial. So let us assume

that c is recurrent, but obviously not periodic. Let n be such that |cn − c| = θn.

If x 7→ |T n(x)−c| has a local maximum at c, then T n([c, cn]) 3 c. Indeed, if this were

not the case, then by the choice of n, T n maps [c, cn] in a monotone fashion into [c, cn],

which is clearly impossible for tent maps with slope > 1. So in this case, z−n ∈ [cn, ĉn]

and the lemma holds with N = n.

So assume now that x 7→ |T n(x)−c| has a local minimum at c. Take m ∈ N minimal

such that the closest precritical z−m ∈ [ĉn, cn]. We will show that cj /∈ [ẑ−m, z−m] for

n < j ≤ m. If j = m, then x 7→ |T j(x) − c| has a local maximum at c, and we can

argue as above. So assume by contradiction that cj ∈ [ẑ−m, z−m] for some n < j < m.

If x 7→ |T j(x) − c| has a local maximum at c, then the closest precritical point z−j

satisfies T j([c, z−m]) ⊂ T j([c, z−j]) = [cj, c] ⊂ [ẑ−m, c] or [c, z−m]. This implies that

either [c, z−m] or [ẑ−m, c] is mapped monotonically into itself by T j, which is impossible.

The remaining possibility is that x 7→ |T j(x) − c| has a local minimum at c. In this

case, T j−n maps [z−m, cn] monotonically onto [w, cj]. If c ∈ (w, cj), then m ∈ N cannot

be minimal such that Tm([c, cn]) 3 c. If c /∈ (w, cj), then w ∈ [ĉn, cn] ∩ T (j−n)−m(c),

and since −m < (j − n)−m < 0, m is again not minimal such that Tm([c, cn]) 3 c.

Take N = m and the lemma follows. ¤

Take N0 as in Lemma 3.2 and so large that sN0 > 100. Let N ≥ N0 from Lemma 3.2

be so large that

(3.1) δ := |z−N − c| < |z−N0 − c|/100.

Then |cn− c| ≥ sn|z−n− c| ≥ sN0|z−N − c| > 100δ for every N0 ≤ n ≤ N by the choice

of N0 and |cn − c| > |z−N0 − c| > 100δ for n ≤ N0 by the choice of N .
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Definition 3.3. Given r ∈ H with |r−a|, |r− b| > δ, we say that T n|H is ε-symmetric

around r, if |T n(r + t)− T n(r− t)| < ε whenever both r− t, r + t ∈ H. The point r is

called the center of symmetry.

Mostly we will be interested in ε-symmetries around the midpoint of the interval H,

but we will always specify the center of ε-symmetry, as sometimes there are multiple

centers of ε-symmetry. If width(Cp) < ε and the arc J ⊂ [α, sk] is p-link-symmetric,

then πp+k : J → H := πp+k(J) is one-to-one and T k|H is ε-symmetric.

Definition 3.4. We say that T n|H is ε-periodic of period 2η if |T n(t)−T n(t+2η)| < ε

for all t, t + 2η ∈ H.

If T n|H is ε-symmetric around two centers r1 and r2 such that |r1 − r2| = η, then

T n|H is ε-periodic with period 2η. We will explain this fact in more detail in the proof

of Proposition 3.6, where it is used several times.

Lemma 3.5. Given δ as in (3.1), there exists r0 = r0(δ) such that for every interval

J̃ with |J̃ | ≥ 22δ, there exist l ≤ r0N and an interval J with |J | ≥ 18δ and concentric

with J̃ , such that T l|J is monotone and Jl := T l(J) ⊃ [c− δ, c + δ].

Proof. Let x be the center of J̃ and take m ≥ 0 minimal such that J̃m 3 c; hence Tm|J̃
is monotone.

Clearly, m ≤ (r0 − 1)N for some r0 ≥ 1 depending only on δ. If ∂J̃m is δ-close to c,

then we take J ′ ⊂ J̃ centered at x and slightly smaller such that c ∈ ∂J ′m and m′ > m

minimal such that J ′m′ contains c in its interior. Since |J ′m| > 20δ, it contains z−N or

ẑ−N as in (3.1), and m′ −m ≤ N and |cm′−m − c| ≥ δ by Lemma 3.2.

If at iterate m′ the other boundary point of J ′ is δ-close to c, then m′−m < N . We

take the interval J ′′ ⊂ J ′ centered at x slightly smaller such that c ∈ Tm′
(∂J ′′) and

take m′′ > m′ minimal such that c is an interior point of Tm′′
(J ′′). Since Tm′

(z−N) ∈
Tm′

(J ′′), and by (3.1) again, m ≤ m′ ≤ m′′ ≤ m + N and ∂J ′′m′′ is not δ-close to c. In

each case, there is l ≤ r0N and J ∈ {J̃ , J ′, J ′′} so that the lemma holds. ¤

For interval H =: [a, b] with center x we formulate the following property:

(3.2) c ∈ H and δ < min{|c− a|, |c− b|, |c− x|}.
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Proposition 3.6. Assume that s ∈ [1, 2] is such that c is not (pre)periodic. There

exists ε > 0 such that if H satisfies (3.2), then T n|H is not ε-symmetric around its

midpoint x for any n ∈ N0.

Proof. We will prove Proposition 3.6 using the induction hypothesis:

(IHn) if H satisfies (3.2), then T n|H is not ε-symmetric around x.

Take N0, N and δ as in (3.1), r0 as in Lemma 3.5 and H that satisfies (3.2).

Let ε ∈ (0, δ) be so small that

(3.3) ε < min{|ci − cj| : 0 ≤ i < j ≤ (2 + r0)N}.
Since c lies off-center in H by at least δ, by the choice of ε, (IHk) holds for all

k ≤ (2 + r0)N . Assume now that (IHj) holds for all j < n. We will prove (IHn), but

first, continuing with the interval J̃ of Lemma 3.5, we prove the following lemma.

Lemma 3.7. Let J̃ be an interval of length |J̃ | ≥ 22δ centered at ck for some 1 ≤ k ≤
2N . If T j|J̃ is ε-symmetric around ck for some 0 ≤ j ≤ n, then the interval Jl := T l(J)

from Lemma 3.5 satisfies condition (3.2).

Proof. We know already from Lemma 3.5 that Jl ⊃ [c − δ, c + δ]. Hence if (3.2) fails,

then η := |ck+l−c| ≤ δ. Since T l|J is monotone, j > l. Therefore T j−l|Jl
is ε-symmetric

around ck+l and symmetric around c, and it follows that T j−l|Jl
is ε-periodic with period

2η. Indeed, by symmetry around c, T j−l|Jl
is ε-symmetric around the symmetric point

ĉk+l (see Figure 1). Hence T j−l|Jl
must also be ε-symmetric around the points c± 2η,

which are the reflections of c in ck+l and ĉk+l, etc. Extending these symmetries, we

see that |T j−l(t) − T j−l(t + 2η)| < ε for all t, t + 2η ∈ Jl, so T j−l|Jl
is ε-periodic with

period 2η. Even more, T j−l|Jl
is ε-symmetric around c + 2iη on every separate subarc

Pi := [c + (2i− 1)η, c + (2i + 1)η] ⊂ Jl.

c− 2η ĉk+l c ck+l c + 2η · · · Jl

η︷ ︸︸ ︷

︸ ︷︷ ︸
P0

︸ ︷︷ ︸
P2

Figure 1. T j−l|Jl
is ε-symmetric around ck+l and symmetric around c,

implying that T j−l|Jl
is ε-periodic with period 2η.
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Recall that 1 ≤ k ≤ 2N and l ≤ r0N , so we have η > ε by the choice of ε in (3.3).

Since |Jl| ≥ 18δ = 18|z−N−c|, one of the components of Jl\{c}, say the one containing

z−N > c, has length ≥ 9δ. We can take r ≤ N minimal such that z−r ∈ [c+ δ, c+8.9δ].

Take i ∈ Z such that if

(3.4) z−r ∈
{

(c, c + 4.3δ], then c + 2iη ∈ (z−r + 0.1δ, z−r + 2.1δ),

(c + 4.3δ, c + 8.9δ], then c + 2iη ∈ (z−r − 2.1δ, z−r − 0.1δ).

Let H ⊂ Jl be the longest interval centered at x := c+2iη on which T r|H is monotone.

Then H 3 z−r, and T j−l|H and T j−l−r|Hr are ε-symmetric around x. We will show that

Hr satisfies (3.2). Indeed, since |z−r − c| ≤ 9δ < |zN0 − c|/10 (so r > N0) by (3.1) and

|x− z−r| ≥ δ/10, we have |xr− c| = sr|x− z−r| ≥ 2N0/2δ/10 > δ. If |z−r− ∂H| ≥ δ/10,

then |c− ∂Hr| > δ for the same reason. If on the other hand there is a point y ∈ ∂H

such that |y − z−r| < δ/10, then y has to be a precritical point. By the choice of r,

y = z−r′ ∈ (c + 8.9δ, c + 9δ] for some r′ < r. By the choice of N and Lemma 3.2,

|yr − c| = |cr−r′ − c| ≥ δ.

This shows that Hr satisfies (3.2), but also T j−l−r|Hr is ε-symmetric around xr, and

this contradicts (IHj−l−r), proving this lemma. ¤

Combining the induction hypothesis (IHn) and Lemma 3.7, we have proved the

following stronger property.

Corollary 3.8. If J̃ is centered at ck for some 1 ≤ k ≤ 2N and |J̃ | ≥ 22δ, then T j|J̃
is not ε-symmetric around ck for j ≤ n.

Now we continue the induction on n and assume by contradiction that T n|H is ε-

symmetric around midpoint x for some H satisfying (3.2) and for ε satisfying (3.3).

Let [a′, b′] := H ′ ⊂ H be centered around x such that c ∈ ∂H ′. Assume without loss

of generality that c = a′ is the left endpoint of H ′, and let L and R be intervals of

length δ at the left and right side adjacent to H ′. Since |H ′| ≥ δ, so H ′ 3 z−N or ẑ−N ,

there is 0 < k ≤ N minimal such that c ∈ H ′
k. Clearly |H ′

k| > |Lk| = |Rk| ≥ 100δ. We

distinguish four cases:

Case I: H ′
k satisfies (3.2). Then by (IHn−k), T n−k|H′

k
cannot be ε-symmetric around

x, and neither can T n|H′ or T n|H .

Case II: |xk − c| < δ, see Figure 2 (left). If the length of the interval T n−k([xk, c])

exceeds ε, then since T n−k is also symmetric around c, T n−k must be ε-symmetric on
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︷ ︸︸ ︷H

L H ′
R

a′ = c x b′

?
T k

PPP
PPP

Lk

H ′
k Rk

ck xk b′k

?
T

````
````

Rk+1

````
````

Lk+1

```````````Ã̀ÃÃÃÃÃÃÃÃÃ
ck+1ck+1

xk+1

ck+1 ≈ b′k+1

c1

︷ ︸︸ ︷H

L H ′
R′

a′ = c x b′

?
T k+1

PPP
PPP
Lk+1

H ′
k+1 PPP PPP

R′
k+1

ck+1 xk+1
c1 ≈ b′k+1

?
T j+1

````````
````````

Lk+j+2

ÃÃÃÃÃÃÃÃ
ÃÃÃÃÃÃÃÃR′

k+j+2

```````````Ã̀ÃÃÃÃÃÃÃÃÃ
ck+j+2

cj+2

c1 ≈ xk+j+2
︸︷︷︸
hook

Figure 2. An illustration of Cases II (left) and IV (right).

H ′
k both with center xk and with center x̂k, and therefore ε-periodic on H ′ with period

2η := 2|xk − c|. We use the same argument as in the proof of Lemma 3.7: T n−k is

ε-symmetric on each interval Pi := [c+(2i− 1)η, c+(2i+1)η] for each i ∈ Z such that

Pi ⊂ H ′
k. Since |H ′

k| ≥ 100δ ≥ 100η, Pi ⊂ H ′
k for at least −25 ≤ i ≤ 25. Take r ≤ N

minimal such that [z−r − δ/10, z−r + δ/10] ⊂ H ′
k, and i ∈ Z as in (3.4), and H ′′ ⊂ H ′

such that H ′′
k is the maximal interval centered at c + 2iη on which T r is monotone. As

before, T n−(k+r)|H′′
k+r

is the ε-symmetric but H ′′
k+r satisfies (3.2). This would contradict

(IHn−(k+r)), so it cannot occur.

If on the other hand the length of T n−k([xk, c]) is less than ε, then we might as

well have chosen x such that xk = c. This means that the intervals Lk+1 and Rk+1

are adjacent, see Figure 2 (bottom left). More precisely, they are adjacent except for

an error which does not show at ε-scale under the iterate T n−(k+1), so by a negligible

adjustment, we can assume that they form an interval of length ≥ 100δ with center

ck+1. Since k + 1 ≤ 2N , Corollary 3.8 implies that T n−(k+1)|Lk+1∪Rk+1
and hence T n|H

are not ε-symmetric around x.

Case III: |a′k − c| < δ. Since k ≤ N , the choice of δ renders this impossible.

Case IV: |b′k−c| < δ, see Figure 2 (right). Replace R by the largest interval R′ ⊂ H∪R
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with R′∩R 6= ∅ such that c ∈ ∂R′
k and T k|R′ is monotone. If c ∈ ∂R′

l for some 0 ≤ l < k,

then R′
k = [c, ck−l], so |R′

k| ≥ δ by Lemma 3.2. Also rename H ′ \ R′ to H ′. Hence

T k+1|L∪H′∪R′ has three branches, sδ ≤ |R′
k+1| and 100δ ≤ |Lk+1| ≤ |H ′

k+1|.
Let j > 0 be minimal such that T k+j+1(H ′) 3 c. If H ′

k+j+1 = [ck+j+1, cj+1], which

is centered at xk+j+1, satisfies (3.2), then we can invoke (IHn−(k+j+1)), so assume that

this is not the case. Since |L| ≥ δ, so L 3 z−N or ẑ−N , we have j ≤ k + j + 1 ≤ N .

Therefore both |cj+1 − c| > δ and |ck+j+1 − c| ≥ δ.

Thus if (3.2) fails, we must have |xk+j+1− c| < δ. If in the remaining n− (k + j +1)

iterates, the arc [xk+j+1, c] grows to length > ε, then, as in Case II, T n|H′ must contain

a large ε-periodic arc, to which we apply the same argument as in Case II (i.e., the

argument of Lemma 3.7). The remaining possibility is that xk+j+1 is so close to c that

on an ε-scale, we may as well assume that xn+k+1 = c.

Both ck+j+2 = a′k+j+2 and cj+2 ≈ b′k+j+2 are local minima of T k+j+2|L∪H′∪R′ , see

Figure 2 (bottom right). Assume without loss of generality that cj+2 < ck+j+2, so

R′
k+j+2 has a small extra hook before joining up with Lk+j+2. As we assumed that

T n|H is ε-symmetric around x, the effect of this hook needs to be ‘ε-repeated’ near a′

in L. But Lk+j+2 and R′
k+j+2 overlap, so in R′, the same effect needs to be ε-repeated

next to the first hook. Continuing this way, we find that T n−(k+j+2) is ε-periodic over

the entire length of R′
k+j+2.

Take i minimal such that R′′ := T i(R′
k+j+2) 3 c. Since |R′

k| ≥ δ we have j+i+2 < N ,

|R′′| ≥ 100δ and |∂R′′ − c| ≥ δ. Therefore T n−(k+j+i+2)|R′′ is ε-periodic of period 2η,

where the length of the hook after i more iterates is η := |cj+i+2 − ck+j+i+2| > ε,

because k + j + i + 2 ≤ 2N and by the choice of ε in (3.3). If η < 10δ < |R′′|/10, then

T n−(k+j+i+2)|R′′ is ε-periodic with at least 5 adjacent intervals P of length 2η around

the center of which T n−(k+j+i+2)|R′′ is ε-symmetric. So we can find a new interval

H ′′ ⊂ R′′ centered around the center of one of these P s such that H ′′ satisfies (3.2).

But this contradicts (IHn−(k+j+i+2)).

If η ≥ 10δ, then we let H ′′ be the arc of length 22δ centered at ck+j+i+2. Again,

since k + j + i+2 ≤ 2N , the iterate T n−(k+j+i+2) cannot be ε-symmetric on H ′′ around

ck+j+i+2 by Corollary 3.8. But then the assumed ε-symmetry of T n|H does not extend

beyond H ′, and Case IV follows.

This proves the inductive step and the proof of Proposition 3.6 is complete. ¤
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Let κ := min{i ≥ 3 : ci ≥ c}. Then κ < ∞ provided 1 < s < 2. Let · · · < c−3 <

c−2 < c−1 < c0 = c be the successive precritical points on the left of c with T j(c−j) = c.

Since cκ−1 < c < cκ, we have c2−κ < c2 < c3−κ. Let δ = |z−N − c| as in (3.1) be so

small (i.e., N as in Lemma 3.2 so large) that

(3.5) δ <
1

30
min{|c−1 − c−2|, |c−1 − ĉ1|, |c2 − c2−κ|},

where ĉ1 = 1− c1 = 1− s/2. Assume that s ∈ [1, 2] is such that c is not (pre)periodic,

and take ε is as in (3.3) in the proof of Proposition 3.6.

Let (Ai)i∈N be the sequence of maximal p-link-symmetric arcs with center si for every

i ∈ N. Recall that (si)i∈N is the sequence of salient p-points (see Definition 2.7) and

that width(Cp) := maxj |Ij
p |.

Lemma 3.9. If width(Cp) < ε, then Ai contains exactly κ salient p-points for each

i ≥ κ− 1, namely si−κ+2, si−κ+3, . . . , si+1, and si−κ+2 is an interior point of Ai.

Proof. Let H be the interval centered at c2 such that c is the left endpoint of Hκ−2 :=

T κ−2(H). Then |H| ≥ 22δ by the choice of δ, so by Proposition 3.6 and Lemma 3.7 in

particular, T p+i−1|H cannot be ε-symmetric around c2.

J

¡¢¡¢¡¢

¡¡¡

¤¤¤

si−κ+1 si−κ+2 si−κ+3 si si+1
( )
L R

?
πp+i

c1−κ c2−κ c3−κ c c1
¡¢

?
T

XXXXXXXXXXz
@

@@R

c1−κ

c3−κ c
c1¤£c2︸︷︷︸

H

Figure 3. The arc J and its image under πp+i and T ◦ πp+i = πp+i−1.

Let J = [x, si+1] be such that J 3 si and d̄(si, si+1) = d̄(x, si), where d̄ is defined in

Definition 2.3. Then πp+i−1 maps J in a 2-to-1 fashion onto [c2, c1], with πp+i−1(si) = c1

and πp+i−1(si+1) = c2. Therefore J is p-symmetric and also p-link-symmetric around

si. Since c2−κ < c2 < c3−κ, we have πp+i−1(J) 63 c2−κ. Extend J on either side by

equally long arcs L and R such that πp+i−1(L ∪R) = H, see Figure 3. Since T i−1|H is
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not ε-symmetric around c2, Ai 6⊃ L∪J ∪R provided width(Cp) < ε. Hence Ai 63 si−κ+1

as claimed. ¤

Remark 3.10. The bound κ in this lemma is not sharp if Ts has a periodic critical

point. For example, for the tent map with c2 < c = c3 < c1, the folding pattern is

FP (C) = ∗ 0 1 0 2 0 1 3

maximal p-symmetric︷ ︸︸ ︷
1 0 2 0 4 0 2 0 1 3 1 0 5 0 1 3 1 0 2 0 4 0 2 0 1 6 1 0 2 0 4 0 2︸ ︷︷ ︸

maximal p-link-symmetric

0 1 . . .

where p-levels of salient p-points are underlined and ∗ denotes the conventional p-level

of α. Since c has period 3, so ca = ca+3b for all a, b ∈ N, p-link-symmetric arcs can

be longer than p-symmetric arcs. Indeed, the maximal p-symmetric arc centered at

salient point s5 stretches from s3 to s6, while maximal p-link-symmetric arc centered

at s5 stretches almost from α to some point with p-level 2. This property holds for all

salient points: the maximal p-link-symmetric arc around si contains sj for all j ≤ i+1.

A pre-periodic example is s = 2, i.e., lim←−([0, 1], Ts) is the Knaster continuum.

Lemma 3.11. Assume that width(Cp) < ε and fix i ∈ N, i > κ− 1, and let `i and `i−1

be the links of Cp containing si and si−1 respectively. Let y be such that si−1 ≺ y ≺ si

and y is not contained in the same arc-component of `i as si, nor in the same arc-

component of `i−1 as si−1. Then the maximal p-link-symmetric arc J with center y

contains at most one salient p-point, and J ⊂ Ai.

Proof. Let · · · < c−2 < c−1 < c0 = c be the successive precritical points to the left of c

with T j(c−j) = c. Since Ai contains si+1 and its symmetric point around si (at least as

boundary points), we have πp+i(Ai) ⊃ [ĉ1, c1] ⊃ [c−1, c]. Let H := πp+i(J) with center

x := πp+i(y) ∈ [c−1, c]. Assume by contradiction that J contains two salient p-points,

or that J 6⊂ Ai. Then |H| ≥ 22δ by the choice of δ in (3.5).

Let w := (c−1 + c)/2. We distinguish four cases.

(1) c − δ < x < c. If |T i([x, c])| ≤ ε, then we cannot ‘ε-distinguish’ x from c,

violating our assumption that y and si do not belong to the same arc-component

of the same link. If |T i([x, c])| > ε, then T i is ε-symmetric on H with centers x

and c, so T i is ε-periodic on H with period 2|x−c|. This leads to a contradiction

by the argument of the proof of Lemma 3.7.

(2) w ≤ x ≤ c − δ. Then H satisfies (3.2), so by Proposition 3.6, T i|H cannot be

ε-symmetric around x.
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(3) c−1 + δ/s ≤ x < w. Then by assumption H contains one of c, c−2 or ĉ1 (whence

|H| ≥ 22δ), and hence T (H ∩ [c−2, c] ∩ [ĉ1, c]) satisfies (3.2), so T i|H cannot be

ε-symmetric around x by Proposition 3.6.

(4) c−1 < x < c−1 + δ/s. If |T i([c−1, x])| ≤ ε, then we cannot ‘ε-distinguish’ x from

c, violating the assumption that y and si−1 are not contained in the same arc

component of `i−1. If |T i([c−1, x])| > ε and again, H by assumption contains

one of c, c−2 or ĉ1 (so |H| ≥ 22δ), then T i−1 is ε-periodic on T (H) which again

leads to a contradiction by the argument of the proof of Lemma 3.7.

This proves the lemma. ¤

4. Link-Symmetric Arcs and Homeomorphisms

In this section we study the action of homeomorphisms h : lim←−([0, 1], Ts′) → lim←−([0, 1], Ts)

on salient q-points and q-points in general. Let q, p, g ∈ N0 be such that

h(Cq) ¹ Cp ¹ h(Cg).

Recall that we assumed the slopes s′ and s to be such that the critical points c′ and

c are not (pre)periodic. Clearly h maps the zero-composant C′ of lim←−([0, 1], Ts′) to

the zero-composant C of lim←−([0, 1], Ts), and in particular the endpoint α′ of C′ to the

endpoint α of C. Let κ′ := min{i ≥ 3 : c′i ≥ c′}, where c′i = T i
s′(c

′). Let us denote

the salient q-points (i.e., associated with Cq) by s′i and the salient g-points by s′′i .

Therefore, salient q-point s′i is the same as salient g-point s′′i+q−g. Similarly, let A′
i

be the maximal q-link-symmetric arc centered at s′i while as before, Ai denotes the

maximal p-link-symmetric arc centered at si

Since A′
i is q-link-symmetric, and h(Cq) ¹ Cp, the image Di := h(A′

i) ⊂ C is p-link-

symmetric and therefore has a well-defined center, we denote it as mi, and a well-defined

central link `p (see Definition 2.6). In fact, h(s′i) and mi belong to the central link `p

and mi is the p-point with the highest p-level of all p-points of the arc component of

`p which contains h(si). Let Mi := Lp(mi).

Theorem 4.1. Mi+1 = Mi + 1 for all sufficiently large integers i ∈ N.

Proof. Without loss of generality we can assume that s′ ≥ s, so that κ′ ≥ κ. We prove

first that if N ≥ κ is so large that mN lies beyond the κ-th salient p-point of C, then

Lp(y) < MN , for every y ∈ (α,mN); i.e., mN is salient.
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Assume by contradiction that there exists y ∈ (α, mN) such that Lp(y) ≥ MN . By

taking Lp(y) maximal with this property, we can assume that y = sj−1 ≺ mN ≺ sj for

some j > κ. More precisely, mN is not contained in the same arc-component of the link

containing sj−1 as sj−1, and similarly for sj. Lemma 3.11 implies that DN contains at

most one salient p-point and that DN ⊂ Aj. Let us denote by B the p-link-symmetric

arc such that sj is the center of B, DN ⊂ B ⊂ Aj and ∂DN ∩ ∂B 6= ∅ (see Figure 4).

Since Cp ¹ h(Cg), the arc B′′ = σq−g ◦ h−1(B) is g-link-symmetric and contains the arc

σq−g ◦ h−1(DN) = σq−g(A′
N). The center z′′ of B′′ is the center of the arc component

of the central link `g of B′′ containing σq−g ◦ h−1(sj). By Lemma 3.9, A′
N contains κ′

salient q-points s′N−κ′+2, . . . , s
′
N , s′N+1.

s′N

A′N︷ ︸︸ ︷
-
h

mN

DN︷ ︸︸ ︷
sj︸ ︷︷ ︸
B︸ ︷︷ ︸
Aj

@
@
@R
σq−g ¡

¡
¡ª

σq−g ◦ h−1

s′′N+q−g

σq−g(A′N )︷ ︸︸ ︷
z′′

︸ ︷︷ ︸
B′′

Figure 4. The relations between relative salient points and arcs in Cq

(left), Cp (right), and Cg (bottom).

The map σq−g maps the κ′ salient q-points s′i ∈ A′
N to the κ′ salient g-points s′′i+q−g ∈

σq−g(A′
N), and B′′ contains at least these κ′ salient g-points. If the center z′′ of B′′ is

not salient, then B′′ contains at most one salient g-point by Lemma 3.11, so we have

a contradiction. Otherwise, if z′′ is salient, then even if z′′ is the right-most salient

g-point of σq−g(A′
N), then still B′′ contains κ′ − 1 salient g-points on the left of the

center z′′, contradicting Lemma 3.9. Therefore, mN is salient.

Let us consider the arc DN+κ′−2 = h(A′
N+κ′−2). Since Lq(s

′
i+1) − Lq(s

′
i) = 1, the

arc [s′i, s
′
i+1] contains a q-point of every q-level less than i, so contains q-points of q-

levels 1 and 2. Therefore, πq([s
′
i, s

′
i+1]) = [c2, c1]. Note that two different points from

s′N , . . . , s′N+κ′−1 ∈ A′
N+κ′−2 can be mapped into the same link, say `p of Cp, but cannot

be mapped into the same arc component of `p. Indeed, if h([s′i, s
′
i+1]) ⊂ A, where A is
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a arc component of `p, then h(Cq) ⊂ `p, a contradiction. Therefore, sMN
, . . . , sMN+κ′−1

are all different.

So, the arc DN+κ′−2 is p-link-symmetric and contains at least κ′ salient p-points,

sMN
, . . . , sMN+κ′−1

. By Lemma 3.9, the maximal p-link-symmetric arc AMN+κ′−2
cen-

tered at the salient p-point sMN+κ′−2
contains κ salient p-points, sMN+κ′−2−κ+2, . . . ,

sMN+κ′−2
, sMN+κ′−2+1. Therefore, DN+κ′−2 ⊆ AMN+κ′−2

, κ′ = κ, sMN+i
= sMN+i and

MN+i = MN + i for all 0 ≤ i ≤ κ − 1. By induction we get MN+i = MN + i for all

i ∈ N0 as well. ¤

Every salient p-point si ∈ C can be contained in at most two links of Cp, and one of

them is always the central link of Ai, which we will denote by `si
p . Let Ksi

be the arc

component of `si
p containing si. Given a p-point x ∈ C with Lp(x) = l, there can be two

links of Cp containing x, but one of them is always `sl
p . We denote the arc component

of `sl
p containing x by Kx. Let `

s′i
q ∈ Cq and Ks′i ⊂ `

s′i
q be the similar notation related

to C′ and Cq. Also, for a q-point x′ of C′ with Lq(x
′) = k let the arc component of `

s′k
q

containing x′ be denoted by Kx′ .

Proposition 4.2. There exists M ∈ Z such that the following holds:

(1) Let l ∈ N and let x′ be a q-point with Lq(x
′) = l. Then u := h(x′) ∈ `

sl+M
p and

the arc component Ku ⊂ `
sl+M
p containing u, also contains a p-point x such that

Lp(x) = l + M .

(2) For l ∈ N0 and i ∈ N, the number of q-points in [s′i, s
′
i+1] with q-level l is the

same as the number of p-points in [sM+i, sM+i+1] with p-level M + l.

Proof. (1) Recall that the set of q-points in C′ is denoted by E ′
q. By Theorem 4.1, there

exists M ∈ Z such that ai := h(s′i) ∈ `
sM+i
p for every i ∈ N0 and the arc component

Kai
of `

sM+i
p contains sM+i. Therefore, statement (1) is true for all salient q-points.

Also h([s′1, s
′
2]) = [a1, a2], sM+1 ∈ Ka1 and sM+2 ∈ Ka2 . Let q-point x′1 ∈ [s′2, s

′
3]

be such that the arc [s′1, x
′
1] is q-symmetric with center s′2. Then h([s′1, x

′
1]) is p-link-

symmetric with center sM+2. Since there exists a unique p-point b1 such that the arc

[sM+1, b1] is p-symmetric with center sM+2, we have h(x′1) ∈ Kb1 , see Figure 5. Also

Lq(x
′
1) = 1 and Lp(b1) = M + 1.

We have h([s′2, s
′
3]) = [a2, a3], sM+2 ∈ Ka2 and sM+3 ∈ Ka3 . Let the q-point x′2 ∈

[s′3, s
′
4] be such that the arc [s′2, x

′
2] is q-symmetric with center s′3. Therefore h([s′2, x

′
2])
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s′1 . . . s′2 . . . x′1 . . . s′3 . . . x′1,2 . . . x′2 . . . s′4 . . .

q-symmetric︷ ︸︸ ︷

︸ ︷︷ ︸
q-symmetric

︸ ︷︷ ︸
q-symmetric

@
@

@R
h

. . . sM+1 . . . sM+2 . . . b1 . . . sM+3 . . . b1,2 . . . b2 . . . sM+4 . . .

p-symmetric︷ ︸︸ ︷

︸ ︷︷ ︸
p-symmetric

︸ ︷︷ ︸
p-symmetric

Figure 5. The configuration of symmetric arcs.

is p-link-symmetric with center sM+3. There exists a unique p-point b2 such that the

arc [sM+2, b2] is p-symmetric with center sM+3, so h(x′2) ∈ Kb2 . Also Lq(x
′
2) = 2 and

Lp(b2) = M + 2. Since [s′2, x
′
2] is q-symmetric, there exists a q-point x′1,2 ∈ [s′3, x

′
2]

such that the arc [x′1, x
′
1,2] is q-symmetric with center s′3. Then h([x′1, x

′
1,2]) is p-link-

symmetric with center sM+3. Since there exists a unique p-point b1,2 such that the arc

[b1, b1,2] is p-symmetric with center sM+3, we have h(x′1,2) ∈ Kb1,2 , see Figure 5. Also

Lq(x
′
1,2) = 1 and Lp(b1,2) = M + 1.

The proof of (1) follows by induction. Suppose at step k we have h([s′k, s
′
k+1]) =

[ak, ak+1], sM+k ∈ Kak
and sM+k+1 ∈ Kak+1

, see Figure 6. Let again q-point x′k ∈
[s′k+1, s

′
k+2] be such that the arc [s′k, x

′
k] is q-symmetric with center s′k+1. Then h([s′k, x

′
k])

is p-link-symmetric with center sM+k+1. The unique p-point bk such that [sM+k, bk] is

p-symmetric with center sM+k+1 satisfies h(x′k) ∈ Kbk
. Also Lq(x

′
k) = k and Lp(bk) =

M + k.

Let us suppose by induction that for every q-point x′ ∈ Eq, Lq(x
′) > 0, x′ ≺ x′k,

we have u = h(x′) ∈ `
sr+M
p , where r = Lq(x

′), and the arc component Ku ⊂ `
sr+M
p

contains a p-point x such that Lp(x) = r +M . Since Lq(x
′
k) = k, Lq(s

′
k+1) = k +1 and

Lq(s
′
k+2) = k + 2, for every q-point x′ ∈ (s′k+1, s

′
k+2), x′ 6= x′k, we have Lq(x

′) < Lq(x
′
k).

Hence for every q-point y′ ∈ (x′k, s
′
k+2) there exists a q-point x′ ∈ (s′k+1, x

′
k) such that

the arc [x′, y′] is q-symmetric with center x′k. So the arc h([x′, y′]) is p-link-symmetric
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s′k s′k+1 x′ x′k y′ s′k+2 x′k+1 s′k+3

q-symmetric︷ ︸︸ ︷

?
h

sM+k

≈ h(s′k)

sM+k+1 x bk y sM+k+2

≈ h(s′k+2)

bk+1

≈ h(x′k+1)

sM+k+3

≈ h(s′k+3)
︸ ︷︷ ︸

p-link-sym.

Figure 6. The relative point in the induction step. Here ≈ stands for
“belongs to the same arc component in the same link”.

with center bk. The induction hypothesis implies that for u = h(x′), the arc component

Ku ∈ `
sr+M
p contains a p-point x such that Lp(x) = r + M , where r = Lq(x

′).

Since Lp(bk) = M + k, Lp(sM+k+1) = M + k + 1 and Lp(sM+k+2) = M + k + 2, we

have Lp(v) < Lp(bk) for every p-point v ∈ (sM+k+1, sM+k+2), v 6= bk. Hence for every

p-point v ∈ (bk, sM+k+2) there exists a p-point w ∈ (sM+k+1, bk) such that the arc [w, v]

is p-symmetric with center bk. Therefore, and since h([x′, y′]) is p-link-symmetric with

center bk, there exists a unique p-point y such that the arc [x, y] is p-symmetric with

center bk. Also, h(y′) ∈ Ky and Lp(y) = Lp(x), so Lp(y) = Lq(y
′) + M . This proves

that for every q-point x′ ∈ Eq, Lq(x
′) > 0, x′ ≺ s′k+2, we have u = h(x′) ∈ `

sr+M
p ,

where r = Lq(x
′), and the arc component Ku ⊂ `

sr+M
p contains a p-point x such that

Lp(x) = r + M .

Next h([s′k+1, s
′
k+2]) = [ak+1, ak+2], sM+k+1 ∈ Kak+1

and sM+k+2 ∈ Kak+2
. Let the

q-point x′k+1 ∈ [s′k+2, s
′
k+3] be such that the arc [s′k+1, x

′
k+1] is q-symmetric with center

s′k+2. Then h([s′k+1, x
′
k+1]) is p-link-symmetric with center sM+k+2. Since there exists a

unique p-point bk+1 such that the arc [sM+k+1, bk+1] is p-symmetric with center sM+k+2,

it follows that h(x′k+1) ∈ Kbk+1
. Also, Lq(x

′
k+1) = k + 1 and Lp(bk+1) = M + k + 1.

Since [s′k+1, x
′
k+1] is q-symmetric with center s′k+2 and [sM+k+1, bk+1] is p-symmetric

with center sM+k+2, the same argument as above shows that for every q-point x′ ∈ Eq,

Lq(x
′) > 0, x′ ≺ x′k+1, we have u = h(x′) ∈ `

sr+M
p , where r = Lq(x

′), and the arc

component Ku ⊂ `
sr+M
p contains a p-point x such that Lp(x) = r +M . This proves the

induction step.

(2) Let x be a p-point such that Lp(x) > 0 and v = h−1(x) lies beyond the κ-th

salient g-point. Since h−1 is also a homeomorphism and h−1(Cp) ≺ Cg, (1) implies
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that there exists M ′ such that v ∈ `
s′′
r+M′

g , where r = Lp(x). Also the arc component

Kv ⊂ `
s′′
r+M′

g contains a g-point x′′ such that Lg(x
′′) = r + M ′.

Let x′ be a q-point such that Lq(x
′) > 0, x′ lies beyond the κ-th salient g-point and

u = h(x′) lies beyond the κ-th salient p-point. Then u ∈ `
sr′+M
p , where r′ = Lq(x

′),

and the arc component Ku ⊂ `
sr′+M
p contains a p-point x such that Lp(x) = r′ + M .

Also v = h−1(x) ∈ `
s′′
r′+M+M′

g and the arc component Kv ⊂ `
s′′
r′+M+M′

g contains a g-point

x′′ such that Lg(x
′′) = Lq(x

′) + M + M ′. Since h−1 ◦ h = id, we have x′′ = x′. Also

Lg(x
′′) = Lq(x

′) + q− g implies that M + M ′ = q− g. Since the number of q-points in

[s′i, s
′
i+1] with q-level l, l ∈ N0, is the same as the number of g-points in [s′′q−g+i, s

′′
q−g+i+1]

with g-level q− g + l, it follows that this number is the same as the number of p-points

in [sM+i, sM+i+1] with p-level M + l. ¤

Definition 4.3. A point x ∈ lim←−([0, 1], Ts) is called a folding point if it has no closed

neighborhood that is homeomorphic to a Cantor set of arcs.

Proof of Theorem 1.1. Folding points x = (. . . , x−2, x−1, x0) are characterized by the

fact that each entry x−k belongs to the omega-limit set ω(c) of the turning point c = 1
2
,

see [29]. If the critical point c of Ts has (eventual) period n, then lim←−([c2, c1], Ts)

contains exactly n folding points. If, on the other hand, ω(c) is infinite, then there are

infinitely many folding points.

Since folding points map to folding points under a homeomorphism, lim←−([0, 1], Ts)

and lim←−([0, 1], Ts′) must have the same cardinality of folding points. If this cardinality

is finite, then the Ingram Conjecture was proved in [32]. So from now on, we can

assume that the critical points of Ts and Ts′ have infinite orbits. Therefore the above

proposition shows that

FPq([s
′
k, s

′
k+1]) = FPp+M([sM+k, sM+k+1]) = FPp([sk, sk+1]),

for every positive integer k, and therefore FP (C′) = FP (C).

Since orbits of c and c′ are infinite, we have ci, c
′
i 6= c for all i ∈ N. Note that

c = c′ = 1/2, c1, c
′
1 > c, c2, c

′
2 < c and FPp([α, s2]) = ∗ 0 1 0 2 = FPq([α

′, s′2]). It is

well-known (see e.g. [12]) that s = s′ if and only if ci and c′i are on the same side of c

for all i ∈ N (i.e., if the kneading sequences of Ts and Ts′ are the same). Therefore, we

only need to prove that FP (C) = FP (C′) if and only if ci and c′i are on the same side

of c for all i ∈ N. We prove this by induction.
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Let us suppose that ci and c′i are on the same side of c for all i ≤ k, and that

FPp([α, sk]) = FPq([α
′, s′k]). Let us denote by x the first p-point on the left of sk (i.e.,

x ∈ [α, sk] and between x and sk there are no other p-points), and let x′ be the first

q-point on the left of s′k. Let l = Lp(x) = Lq(x
′).

If l = 0, then Lp(σ(x)) = 1 = Lq(σ(x′)). If ck+1, c
′
k+1 < c, then FPp([σ(x), sk+1]) =

FPp(σ([x, sk])) = 1 0 k+1 = FPq([σ(x′), s′k+1]). If ck+1, c
′
k+1 > c, then FPp([σ(x), sk+1]) =

1 k + 1 = FPq([σ(x′), s′k+1]). Similarly ck+1 < c and c′k+1 > c, or vice versa, implies

FPp([σ(x), sk+1]) 6= FPq([σ(x′), s′k+1]).

If l 6= 0, then since x ∈ (sk−1, sk), we have l < k − 1, i.e., l + 1 < k, and by the

induction hypothesis cl+1 and c′l+1 are on the same side of c. Therefore, if ck+1 and c′k+1

are on the same side of c as cl+1, then FPp([σ(x), sk+1]) = l+1 k+1 = FPq([σ(x′), s′k+1]).

If ck+1 and c′k+1 are on the same side of c, but on the opposite side of cl+1, then

FPp([σ(x), sk+1]) = l+1 0 k +1 = FPq([σ(x′), s′k+1]). Similarly, ck+1 < c and c′k+1 > c,

or vice versa, implies FPp([σ(x), sk+1]) 6= FPq([σ(x′), s′k+1]).

In every case we conclude that ci and c′i are on the same side of c for all i ≤ k + 1 if

and only if FPp([α, sk+1]) = FPq([α
′, s′k+1]), and by induction that ci and c′i are on the

same side of c for all i ∈ N if and only if FP (C) = FP (C′).

This proves the Ingram Conjecture. ¤

5. Pseudo-isotopy

Throughout this section, h : lim←−([0, 1], Ts) → lim←−([0, 1], Ts) will be an arbitrary self-

homeomorphism. We will extend Proposition 4.2 in order to prove the result on pseudo-

isotopy. Note that (1) and (2) of Proposition 4.2 together show that h induces an order

preserving injection hq,p from Eq to Ep such that hq,p(Eq,i) = Ep,M+i = Ep+M,i for every

i ∈ N0, where Er,l denotes the set of all r-points with r-level l (see Definition 2.5). In

fact hq,p is an order preserving bijection from Eq to Ep+M and is defined as follows:

Definition 5.1. Let x ∈ Eq. If x = s′i for some i ∈ N, we define hq,p(s
′
i) = sM+i ∈ Ep.

For all other x ∈ Eq, there exists i ∈ N such that x ∈ (s′i, s
′
i+1). By Proposition 4.2,

the number of q-points of (s′i, s
′
i+1) is the same as the number of (p + M)-points

of (sM+i, s
′
M+i+1). Let (s′i, s

′
i+1) ∩ Eq = {x0, . . . , xn} and (sM+i, s

′
M+i+1) ∩ Ep+M =

{y0, . . . , yn}. We define hq,p(x
i) = yi, i = 0, . . . , n.

The next lemma shows that hq,p is essentially independent of q and p.
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Lemma 5.2. If q1, p1 ∈ N are such that h(Cq1) ≺ Cp1 ≺ h(Cq) ≺ Cp, then hq1,p1|Eq1
=

hq,p|Eq1
.

Proof. By Proposition 4.2, h(Cq) ≺ Cp implies that there exists M ∈ Z such that

hq,p(Eq,i) = Ep,M+i for every i ∈ N0. Also, h(Cq1) ≺ Cp1 implies that there exists

M1 ∈ Z such that hq1,p1(Eq1,i) = Ep1,M1+i for every i ∈ N0. Let r, l ∈ N be such that

q1 = q + r and p1 = p + l. Since Eq+r,i = Eq,r+i, we have

hq,p(Eq+r,i) = hq,p(Eq,r+i) = Ep,M+r+i,

and also

hq+r,p+l(Eq+r,i) = Ep+l,M1+i = Ep,M1+l+i.

We want to prove that M + r = M1 + l. To see this it suffices to pick a convenient

point x in Eq+r,j for some j ∈ N, and to prove that hq,p(x) = y = hq+r,p+l(x). Then the

fact that y ∈ Ep,M+r+j and y ∈ Ep,M1+l+j implies that M + r + j = Lp(y) = M1 + l + j.

For us, the convenient choice of x ∈ Eq+r ⊂ Eq is a salient (q + r)-point.

Let us denote the salient (q + r)-points by ŝ′i and the salient (p + l)-points by ŝi,

while as before s′i denotes the salient q-points and si denotes the salient p-points. Note

that the salient (q + r)-point ŝ′i is the same as the salient q-point s′i+r, and the salient

(p+l)-point ŝi is the same as the salient p-point si+l. Let us denote the maximal (q+r)-

link-symmetric arc with the center ŝ′i by Â′
i, and the maximal (p+l)-link-symmetric arc

with the center ŝi by Âi, while as before A′
i denotes the maximal q-link-symmetric arc

with the center s′i, and Ai denotes the maximal p-link-symmetric arc with the center si.

Note that h(Â′
i) ⊆ ÂM1+i, h(A′

i+r) ⊆ AM+i+r and ŝ′i = s′i+r. Also, the center of ÂM1+i

is ŝM1+i = sM1+i+l and the center of AM+i+r is sM+i+r. Therefore, sM+i+r = sM1+i+l

and M + r = M1 + l. ¤

Corollary 5.3. R = M + p− q does not depend on M, p, q.

Proof. By Lemma 5.2, M1 + l = M + r. Therefore R1 = M1 + p1− q1 = M1 + (p + l)−
(q + r) = M + r + p− q − r = R. ¤

Definition 5.4. We call an arc B ⊂ C a p-bridge if the boundary points of B are

p-points with p-level 0, and if Lp(x) 6= 0 for every p-point x ∈ Int B.

Corollary 5.5. Let B′ ⊂ C be a (q + 1)-bridge and ∂B′ = {a′, b′}. There exists a

(p + M + 1)-bridge B such that for ∂B = {a, b} we have h(B′) ⊂ Ka ∪ B ∪ Kb and
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h(a′) ∈ Ka, h(b′) ∈ Kb, where Ka and Kb are the arc-components of the link `
sM+1
p of

Cp containing a and b respectively.

Proof. Proposition 4.2 dealt with points in Eq,j for j ≥ 1, but bridges involve points of

level zero. Since Eq,1 = Eq+1,0, in this corollary we can work with (q + 1)-bridges.

For each j ≥ 1, Eq,j is contained in a single link `
s′j
q ∈ Cq and by Proposition 4.2, for

`
sM+j
p ⊇ h(`

s′j
q ), every point of h(Eq,j) is contained in an arc component of `

sM+j
p which

contains a p-point of Ep,M+j = Ep+M,j. Since Eq+1,0 = Eq,1 and Ep+M+1,0 = Ep+M,1,

every point of h(Eq+1,0) = h(Eq,1) is contained in an arc component of `
sM+1
p which

contains a point of Ep+M,1 = Ep+M+1,0.

Every two adjacent points of Eq+1,0 are the boundary points of a (q + 1)-bridge, and

every two adjacent points of Ep+M+1,0 are the boundary points of a (p+M +1)-bridge.

We also have hq,p+M(Eq+1,0) = hq,p+M(Eq,1) = Ep,M+1 = Ep+M+1,0. Therefore, for

every (q + 1)-bridge B′ there exists a (p + M + 1)-bridge B such that hq,p+M(B′) = B.

More precisely, for every (q+1)-bridge B′ and ∂B′ = {a′, b′}, there exists a (p+M +1)-

bridge B such that for ∂B = {a, b} we have h(B′) ⊂ Ka ∪ B ∪ Kb with h(a′) ∈ Ka

and h(b′) ∈ Kb. Note that if B′ is a (q + 1)-bridge with center z′ and ∂B′ = {a′, b′}
and B′ is contained in a single link `

s′1
q+1, then h(B′) is contained in the arc component

Ka = Kb which contains also a (p + M + 1)-point z such that Lp+M+1(z) = Lq+1(z
′).

So the arc component Ka contains a (p + M + 1)-bridge B with center z and we have

again h(B′) ⊂ Ka ∪B ∪Kb. ¤

Example 5.6. A sin 1
x
-continuum is a homeomorphic copy of

(
{0} × [−1, 1]

)
∪

{
(x, sin

1

x
) : x ∈ (0, 1]

}

and the arc {0}× [−1, 1] is called the bar of the sin 1
x
-continuum. Assume that s >

√
2

is such that the inverse limit lim←−([0, 1], Ts) contains a sin 1
x
-continuum H. (Such s

exist in abundance, cf. [2] and [14].) Then {σ−n(H)}∞n=0 is a sequence of pairwise

disjoint sin 1
x
-continua with diam(σ−n(H)) → 0 as n →∞. There is then a sequence of

disjoint neighborhoods Un of σ−n(H) with diam(Un) → 0. For each n, Un ∩C contains

arbitrarily long arcs. Pick a sequence of arcs An ⊂ Un ∩ C of arc-length ≥ n + 1, and

construct a bijection h : lim←−([0, 1], Ts) ª such that h is the identity on lim←−([0, 1], Ts) \
∪nAn and on each An, h fixes ∂An, but moves some points in An homeomorphically

such that there is xn ∈ An with d̄(xn, h(xn)) = n. Since diam(Un) → 0, we find that h
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is continuous and bijective. Finally the compactness of lim←−([0, 1], Ts) implies that h is

a homeomorphism. Even though h is isotopic to the identity, supx∈C d̄(x, h(x)) = ∞.

Therefore we cannot assume that a general self-homeomorphism of lim←−([0, 1], Ts) has

an R ∈ Z such that supx d̄(h(x), σR(x)) < ∞. Block et al. [8, Theorem 4.2] used

this property to conclude that h and σR are pseudo-isotopic, i.e., they permute the

composants of lim←−([c2, c1], Ts) in the same way. However, since σ−R◦h preserves (q+1)-

bridges for some R ∈ Z and q sufficiently large, we can still follow the argument from

[8].

Proof of Theorem 1.3. Let P = s/(1+s) > 1/2 be the orientation reversing fixed point

of Ts and Q the center between c2 and c1. Let ε = mesh(Cp) in Definition 2.4. Without

loss of generality, we can take ε/2 < min{|c − P |, |c − Q|}. Let x ∈ lim←−([0, 1], Ts) \
C = lim←−([c2, c1], Ts) be arbitrary. Recall that the composant of x in lim←−([c2, c1], Ts) is

the union of all proper subcontinua of lim←−([c2, c1], Ts) containing x. Without loss of

generality we can fix q ∈ N such that πq+1(x) ≥ P . Fix p ∈ N and M ∈ Z as in

Proposition 4.2 such that h(Cq) ¹ Cp and h sends (q+1)-bridges to (p+M +1)-bridges

in terms of Corollary 5.5. Let R = M + p − q, so p + M + 1 = q + R + 1. Since

by Corollary 5.3, R does not depend on q and p, we can take q and p larger than |R|
without loss of generality.

Recall that the links `k
p of Cp are of the form `k

p = π−1
p (Ik

p ) of width ≤ εs−p/2. The

map σ−R maps the chain Cp to a chain C̃p−R whose links are of the form π−1
p−R(Ik

p ) and

hence also with width ≤ εs−p/2; this chain is coarser than Cp−R if R < 0. Furthermore,

the σ−R-image of a (q + R + 1)-bridge is a (q + 1)-bridge.

Take h̃ = σ−R◦h. Since h(Cq) ¹ Cp, we have h̃(Cq) ¹ C̃p−R and h̃ sends (q+1)-bridges

to (q + 1)-bridges, but the ‘error’ allowed in Corollary 5.5, i.e., the arc-components

of links from Cp, must now be replaced by arc-components of links of C̃p−R. Recall

that width(Cp) = maxj |Ij
p |, and |πp−i(`

j
p)| = |πp(`

j
p)|si = |Ij

p |si, for every 0 ≤ i ≤
p. Therefore, πp−R(˜̀jp−R) = πq−M(˜̀jq−M) ≤ εs−p/2, and πq+1(˜̀

j
p−R) = πq+1(˜̀

j
q−M) =

πq−M(˜̀jq−M)s−M−1 ≤ εs−p−M−1/2. Thus, the (q + 1)-th projection of links of C̃p−R are

intervals of length ≤ εs−(p+M+1)/2 = εs−(q+R+1)/2, see Figure 7.

The (q + 1)-bridges that are small enough to belong to one or two links of Cq will

map to arcs contained in the link ˜̀
p−R. Since πq+1(x) ≥ P and εs−(q+1)/2 < |c − P |,

no such short bridge can be close to x. On the longer (q + 1)-bridges of Cq that map
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Figure 7. The (p−R)-th and (q +1)-th projection of ‘the bridge’ h̃(B)

with relevant link ˜̀
p−R. The picture is suggestive of M +1 ≤ 0; if instead

M + 1 > 0, then h̃(B) contains fewer (q + 1)-points than (p−R)-points.

outside of ˜̀
p−R, h̃ acts as a trivial one-to-one correspondence, sending the first such

bridge to the first, the second to the second, etc.

Find a sequence (xn)n∈N ⊂ C such that xn → x. Then for large n, xn belongs to

a long (q + 1)-bridge, and by the above argument, h̃(xn) and xn belong to the same

(q + 1)-bridge up to an ‘error’ of at most εs−(q+R+1)/2. Take Hn = [h̃(xn), xn] and a

subsequence such that Hnj
→ H in Hausdorff topology. Clearly H is a continuum and

x, h̃(x) ∈ H. Since πq+1(x) ≥ P , the arcs Hnj
belong to arcs whose (q + 1)-projections

belong to [c − εs−(q+R+1)/2, c1] for all sufficiently large j. Since q + R + 1 ≥ 1 and

ε/2 < c−Q, we have Q < c− ε/2 < c− εs−(q+R+1)/2 implying [c− εs−(q+R+1)/2, c1] ⊂
[Q, c1].

Therefore πq+1(Hnj
), πq+1(H) ⊂ [Q, c1], and since [Q, c1] is a proper subset of [c2, c1]

and the inclusion holds for arbitrarily large q, H is a proper subcontinuum of lim←−([c2, c1], Ts).

It follows that h̃(x) and x belong to the same composant of lim←−([c2, c1], Ts). Apply σR

to find that h(x) and σR(x) belong to the same composant as well. ¤
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Pseudo-isotopy of h implies that the number of composants being mapped to them-

selves is the same for hn and σnR. This number grows like snR, which in [9] provides

a proof of the Ingram conjecture for tent maps with periodic critical point. In this

situation, [9] in fact also shows that h is isotopic to a power of the shift. Due to the

existence of composants that are not arc-connected, this is not so clear in the general

case.

Remark 5.7. Not every pseudo-isotopy is an isotopy. For instance, a homeomorphism

flipping the bar of a sin 1
x
-continuum cannot be isotopic to the identity. If the bonding

map is a quadratic map within the first period doubling cascade, then the inverse

limit space is a finite collection of sin 1
x
-continua, see [7], and we can indeed construct

homeomorphism that are pseudo-isotopic but not isotopic to the identity. Among those

tent maps Ts, s ∈ [
√

2, 2], whose inverse limit space is known to contain sin 1
x
-continua,

both in [2] and [14], the topology is much more complicated, as more than a single

ray can be expected to accumulate on their bars. Thus the following question is very

relevant:

Is every self-homeomorphism of lim←−([0, 1], Ts) isotopic to a power of the

shift?

We know this to be true if c is periodic or non-recurrent [9, 10], but this case is simpler,

because the only proper subcontinua of lim←−([c2, c1], Ts) are arcs or points.

6. The Logistic Family

In this section we prove of Theorem 1.2. Logistic maps are by far the best studied

unimodal maps, and we give here a list of its properties that simplify our task, although

they are not essential: Theorem 1.2 works for arbitrary C2 families just as well.

The map fa(x) = ax(1 − x) has negative Schwarzian derivative, i.e., Sfa := f ′′′a

f ′a
−

3
2
(f ′′a

f ′a
)2 < 0 wherever defined. Due to Singer [31], this implies that every p-periodic

point x with multiplier |(f p
a )′(x)| ≤ 1 is attracting from at least one side, and has

the critical point in its immediate basin of its orbit, i.e., there is a point y ∈ orb(x)

such that ∩kf
pk
a ([y, c]) = {y}. Another consequence of the Schwarzian derivative being

negative [19] is that every interval K on which fn|K is a homeomorphism for all n ≥ 0

must be attracted by a periodic attractor, so there are no wandering intervals. The
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absence of wandering intervals was proved for general C2 families, see [25, Theorem

6.2. page 156].

Much more complicated results have been proved for the logistic family as well.

The entropy htop(fa) is a non-decreasing function of its parameter, see Douady &

Hubbard [17] and Milnor & Thurston [26]. Furthermore, if fa and fb are topological

conjugate and have no periodic attractor, then a = b. This is known as “denseness of

hyperbolicity” and was proved in [21, 24].

The logistic family (fa)a∈[0,4] is richer than the tent family (Ts)s∈[0,2] in the sense that

it allows renormalization of all types.

Definition 6.1. A unimodal map f : [0, 1] → [0, 1] with critical point c is renormaliz-

able if there is a neighborhood J 3 c and period p ≥ 2 such that

(6.1) f p(J) ⊂ J, f p(∂J) ⊂ ∂J and J, f(J), . . . , f p−1(J) have disjoint interiors.

In this case, fp : J → J is a new unimodal map; it is called a renormalization of f .

If fa is renormalizable, then fp
a |J is conjugate with another member, fa′ , of the logistic

family. This is because the logistic family is full in the sense that it witnesses every

possible combinatorial type of unimodal map without wandering intervals, [25, Section

II.4]. The renormalization of a unimodal map can itself be renormalizable, etc. This

gives rise to infinitely renormalizable maps, for which there is a nested sequence (Jk)k≥1

of pk-periodic neighborhoods of c, such that C := ∩k∪pk−1
j=0 f j(Jk) is an invariant Cantor

set, called a solenoidal attractor. It coincides with ω(c), is Lyapunov stable and the

orbit of Lebesgue-a.e. point converges to C; yet arbitrarily close to C there are periodic

orbits that are not contained in C.

Definition 6.2. We call a point x non-wandering if for every neighborhood U 3 x,

there is n ≥ 1 such that fn(U) ∩ U 6= ∅. The collection Ω(f) of non-wandering points

is called the non-wandering set. The reduced non-wandering set of a logistic map fa,

Ω(fa)/∼sn, is the non-wandering set of fa with each saddle-node pair identified to a

point. This set inherits an order from [0, 1], and we say that two logistic maps fa and

fb : [0, 1] → [0, 1] are order-preserving conjugate on their reduced non-wandering sets

if there is an order preserving homeomorphism h : Ω(fa)/ ∼sn→ Ω(fb)/ ∼sn such that

fb ◦ h([x]) = h ◦ fa([x]) for all [x] ∈ Ω(fa)/ ∼sn.
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Clearly, periodic points are non-wandering, as are points in the closure of the set of

periodic points. For logistic maps, the only wandering points are those that belong to

the basin of a periodic attractor (but are not periodic themselves), or that belong to

the basin of a solenoidal attractor.

Let us describe in some detail the first periodic doubling cascade, occurring at pa-

rameters 1 = a0 < a1 < a2 < . . . on the parameter interval [0, a∞], see Figure 8 where

a∞ = limk ak is the so-called Feigenbaum-Coullet-Tresser parameter [16, 18], at which

fa has the simplest kind of solenoidal attractor. The map fa∞ is also called the 2∞-

map, because it has periodic points of period 2k for all k, and none of higher period

in the Sharkovskĭı order. These dynamics are not present in the tent family. It is also

well-known that htop(fa) = 0 if and only if a ≤ a∞, see [28]. The inverse limits spaces

lim←−([0, 1], fa) for a ∈ [0, a∞] were described in [7].

-
a0 a0 = 1 2 a1 = 3 1 +

√
5 a2 = 1 +

√
6 a∞ ≈ 3.57 ã2 ã1 ≈ 3.68

period 1 interval︷ ︸︸ ︷ period 2 interval︷ ︸︸ ︷ period 4︷ ︸︸ ︷period 8︷︸︸︷

︸ ︷︷ ︸
single point

︸ ︷︷ ︸
single arc

︸ ︷︷ ︸
sin 1

x
-continuum

︸︷︷︸
C + double sin 1

x
-continuum

c fixed per. doub. c period 2 per. doub. 2∞ map

period 4

interval

disappears

period 2

interval

disappears

Figure 8. Sketch (not to scale) of the bifurcations in the first pe-
riod doubling cascade. The upper braces indicate parameter intervals
in which Jk is the smallest periodic interval as in (6.1). The lower braces
indicate parameter intervals where the inverse limit space is as indicated.

• For a ∈ [0, a0], fa has a single fixed point 0, attracting every x ∈ [0, 1]. The

inverse limit lim←−([0, 1], fa) is a single point (. . . , 0, 0, 0).

• At a = a0, the fixed point 0 becomes unstable and splits off another stable fixed

point pa = a−1
a

with multiplier f ′a(pa) = 2− a, attracting every point x ∈ (0, 1).

For all a ∈ (a0, a1 = 3], pa remains stable and lim←−([0, 1], fa) is a single arc.

• At a = a1, pa undergoes a period doubling bifurcation. It becomes unstable

itself, and splits off a stable period 2 orbit q±a =
a+1±

√
(a−1)2−4

2a
with multiplier

(f 2
a )′(q±a ) = 5 − (a − 1)2. For all a ∈ (a1, a2 = 1 +

√
6], q±a remain stable

and lim←−([0, 1], fa) is a sin 1
x
-continuum, consisting of two arc components: the

zero-composant and the bar (an arc containing (. . . , pa, pa, pa)).
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• At a = a2, q±a undergo a period doubling bifurcation. They become unsta-

ble themselves, splitting off a stable period 4 orbit. For all a ∈ (a2, a3], this

period 4 orbit remains stable and lim←−([0, 1], fa) has four arc-components: two

arcs containing (. . . , q−a , q+
a , q−a , q+

a ) and (. . . , q+
a , q−a , q+

a , q−a ) respectively, one ray

containing (. . . , pa, pa, pa) and forming a double sin 1
x
-continuum with the two

arcs, and the zero-composant compactifying on all of the above.

• In general, for a ∈ (ak, ak+1], k ≥ 1, the inverse limit space lim←−([0, 1], fa) has

2k arc-components arranged in a hierarchical manner. There are 2k−1 arcs,

each containing a 2k−1-periodic point of the shift homeomorphism. At the next

level, there are 2k−2 rays, each containing a 2k−2-periodic point and forming a

double sin 1
x
-continuum with two arcs of the first level. The next level consists

of 2k−2 rays, each containing a 2k−2-periodic point, and compactifying on two

double sin 1
x
-continua (including four arcs) of the previous levels. This structure

continues, until, at the highest level, the zero-composant compactifies on all of

the above.

• At a = a∞, this structure contains infinitely many levels, and compactifies on

an additional Cantor set of points x such that x−n ∈ ω(c) for all n ≥ 0.

We see that the inverse limit lim←−([0, 1], fa) is different at every stage of the period

doubling cascade.

Each saddle node bifurcation occurring at a∗ > a∞, is followed by its own period dou-

bling cascade. At a = a∗, a fresh neutrally attracting p-periodic orbit emerges, which

immediately splits into an unstable and a stable p-periodic orbit, but this does not affect

the inverse limit space. For this reason we introduced the reduced non-wandering set

which does not discriminate between the twin p-periodic orbits emerging from a saddle

node bifurcation. The non-wandering sets Ω(fa∗) and Ω(fa∗+ε) are different, but their

reduced non-wandering sets are the same, and their inverse limit spaces homeomorphic.

For a > a∞, fa has positive topological entropy, and Milnor & Thurston [26] showed

that there is an entropy-preserving semi-conjugacy

ψa : [0, 1] → [0, 1] such that ψa ◦ fa = Ts ◦ ψa

for log s = htop(fa). The map ψa collapses to a point every interval K on which the local

entropy htop(fa|K) = limn
1
n

log l(fn
a |K) < htop(fa). Here l(fn

a |K) is the lap-number (i.e.,

the number of maximal intervals of monotonicity) of fn
a |K . This applies to wandering
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intervals (but logistic maps have none) and (pre)periodic intervals, with the exception

of those created in the first period doubling cascade. These 2k-periodic intervals (let us

denote them by Jk), emerge after the critical point becomes 2k−1-periodic. For k = 1

and 2 this happens at a = 2 and 1 +
√

5 respectively, see Figure 8.

For a ∈ (a∞, ãk], the semi-conjugacy ψa does not collapse Jk to a point, but maps it

to a 2k-periodic interval Lk = [1−vk, vk]. One can compute that vk = 1
2
+ 1

2

∏k−1
j=0

s2j−1

s2j
+1

,

and vk or 1− vk is the 2k−1-periodic boundary point, according to whether k is odd or

even. So Lk plays the role of Jk; it exists as long as 1 < s ≤ 21/2k
.

The interval Jk continues to exist until the parameter ãk > a∞, where it disappears in

a homoclinic bifurcation. At this parameter, f 2k

ãk
(c) and f 2k+1

ãk
(c) are the two boundary

points of Jk, and f 2k+1

ãk
(c) is 2k-periodic. The parameters ãk form a decreasing sequence,

and limk ãk = a∞, due to the denseness of hyperbolicity.

Proof of Theorem 1.2. We start with the “if”-direction. Recall that a logistic map

can have at most one periodic attractor. Suppose that fa and fb are conjugate on

their reduced non-wandering sets. If fa and hence fb have no periodic attractor (but

possibly a solenoidal attractor), then denseness of hyperbolicity implies that a = b. In

fact, in this case, the reduced non-wandering set coincides with the non-wandering set,

and (without invoking denseness of hyperbolicity) the conjugacy h : Ω(fa) → Ω(fb)

extends to a conjugacy h : [0, 1] → [0, 1] such that h ◦ fb = fa ◦ h. Hence lim←−([0, 1], fa)

and lim←−([0, 1], fb) are homeomorphic.

If fa and hence fb have a periodic attractor, then they have the same period p and

we can choose attracting p-periodic points xa and xb such that spatial order (f i
a(xa))

p−1
i=0

and (f i
b(xb))

p−1
i=0 are the same. This means that fa and fb are in the same stage of the

same period doubling cascade, and the above description implies that lim←−([0, 1], fa) and

lim←−([0, 1], fb) are homeomorphic.

Now, for the “only if”-direction, assume that lim←−([0, 1], fa) and lim←−([0, 1], fb) are

homeomorphic. We gave a complete description of the inverse limit spaces if a < a∞,

so it suffices to consider the case a∞ < a < b. Given a p-periodic interval J as in (6.1),

define the subcontinuum

(6.2) DJ := {x ∈ lim←−([c2, c1], fa) : xnp ∈ J for all n ≤ 0}.
Clearly, DJ is p-periodic under the shift homeomorphism, and if a′ is the param-

eter such that fa′ is conjugate to f p
a : J → J , then DJ is homeomorphic with
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lim←−([0, 1], fa′). Moreover, all folding points of lim←−([c2, c1], fa) belong to ∪p−1
i=0 σi(DJ),

so points x ∈ lim←−([c2, c1], fa) outside ∪p−1
i=0 σi(DJ) all have Cantor set of arcs neighbor-

hoods in lim←−([c2, c1], fa).

If J is a maximal interval satisfying (6.1), then DJ and its images σi(DJ), 0 < i < p,

are maximal subcontinua in the sense that there is no indecomposable proper subcon-

tinuum of the core lim←−([c2, c1], fa) that properly contains DJ (and similarly for σi(DJ),

0 < i < p). This shows that if lim←−([0, 1], fa) and lim←−([0, 1], fb) are homeomorphic,

then their maximal periodic intervals Ja and Jb must have the same period, and their

respective subcontinua DJa and DJb
must be homeomorphic.

Next we will show that Ja and Jb are also of the same type (i.e., the spatial order of

(f i
a(Ja))

p−1
i=0 and (f i

b(Jb))
p−1
i=0 is the same). For the factor map

Ψa : lim←−([0, 1], fa) → Ψa(lim←−([0, 1], fa)),

(. . . x−2, x−1, x0) 7→ (. . . ψa(x−2), ψa(x−1), ψa(x0)).

Ψa(lim←−([0, 1], fa)) is homeomorphic with lim←−([0, 1], Ts) for log s = htop(fa). Since ψa

collapses a periodic interval J only if it does not emerge from the first period doubling

cascade (i.e., J 6= Jk), we will from now on assume that J is the maximal periodic

interval other than (so possibly contained in some) Jk. We will show (Claims 1 and 2,

below) that Ψa consists of a sequence of quotient maps that, other than squeezing a

single orbit of subcontinua (σi(DJ))p−1
i=0 to p endpoints, has no effect on the topology.

If Ja and Jb are not of the same type, then Ψa(lim←−([0, 1], fa)) and Ψb(lim←−([0, 1], fb))

are homeomorphic with the inverse limit spaces of different tent maps, and, due to

Theorem 1.1, not homeomorphic with each other. Since Ψa and Ψb only squeeze finitely

many well-defined subcontinua to points, lim←−([0, 1], fa) and lim←−([0, 1], fb) could not have

been homeomorphic.

Therefore, Ja and Jb are of the same type, and since the subcontinua DJa and DJb

are homeomorphic, fa|Ja and fb|Jb
must be in the same stage of their period doubling

cascade, and hence their reduced non-wandering sets are conjugate. This finishes the

proof, except for the announced claims:

Claim 1: Let Φa be the quotient map under the equivalence relation x ∼ y if x = y

or x, y both belong to σi(DJa) for the same 0 ≤ i < p. Then Φa(lim←−([0, 1], fa)) has p

endpoints in the core (that are p-periodic under the shift) and no other folding points.
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Proof. Since Ja 6= Jk for any of the 2k-periodic intervals emerging from the first period

doubling cascade, ∂Ja contains a p-periodic orientation preserving point za. Let z̄a =

(. . . fp−1
a (za), za, fa(za), . . . , f

p−1
a (za)); it is a point in DJa and one “half” of its arc-

component serves as the zero-composant of DJa , while the other “half” coils densely in

lim←−([c2, c1], fa) (or densely in DJk if Ja ⊂ Jk for some maximal k), cf. [4]. The image

Φa(DJa) = Φa(z̄a) is now an end-point of the other “half” of the arc-component of z̄a.

A similar statement holds for the points σi(z̄a), 0 < i < p. Since ∪p−1
i=0 DJa contains

all folding points of lim←−([c2, c1], fa), Φa(lim←−([c2, c1], fa)) contains no other folding points

than the p-periodic endpoints Φa(σ
i(z̄a)), 0 ≤ i < p. ¤

Claim 2: Ψa(lim←−([0, 1], fa)) is homeomorphic with Φa(lim←−([0, 1], fa)).

Proof. If K is a maximal interval such that fm
a (K) = Ja for some m ≥ 0, then there is

an open neighborhood U of K on which fm
a : U → fm

a (U) is a diffeomorphism. Take

n ≥ 0 and set

K̄n = {x ∈ lim←−([0, 1], fa) : x−n ∈ K} \ ∪p−1
i=0 σi(DJa).

Since all folding points of lim←−([c2, c1], fa) are contained in ∪p−1
i=0 σi(DJa), K̄n is a zero-

dimensional set of arcs (more precisely, this zero-dimensional set is a Cantor set together

with a countable set coming from the zero-composant). Similarly

Ūn = {x ∈ lim←−([0, 1], fa) : x−n ∈ U} \ ∪p−1
i=0 σi(DJa).

is a zero-dimensional set of open arcs, and Ūn compactly contains K̄n. Set x ∼K̄n
y if

x = y or if x and y both belong to K̄n. It follows that lim←−([0, 1], fa) is homeomorphic

with lim←−([0, 1], fa)/∼K̄n
for each component K of ∪m≥0f

−m
a (Ja) and n ≥ 0.

The collection K := {K̄n : K is component of ∪m≥0 f−m
a (Ja), n ≥ 0} is a null-

sequence, i.e., for fixed δ > 0, there are only finitely many elements in K with

diam(K̄n) > δ. Therefore, if we denote by ∼K the intersection of all equivalence re-

lations ∼K̄n
, K̄n ∈ K, Φa(lim←−([0, 1], fa)) is homeomorphic with Φa(lim←−([0, 1], fa))/ ∼K

which in turn is homeomorphic with Ψa(lim←−([0, 1], fa)). ¤

This proves the claims and hence Theorem 1.2 ¤
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