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The object of present analysis are numerical solutions of the elliptic boundary value problems in terms of
monotone schemes. We assume that the elliptic differential operator has the divergence form, with measur-
able coefficients satisfying the strict ellipticity condition. The basic idea of monotone schemes can be found
in [MW], without the analysis of convergence of approximate solutions. Convergence proofs for C spaces can
be found in [SMMM], and for L1(�

d)-spaces in [LR2] with the restriction on dimension (d = 2 and d = 3);
an extension for d > 3 can be found in [LR3]. Here we consider schemes possessing stencils enclosed by rect-
angles with vertices at grid-knots, and extend published results by constructing schemes with stencils stretching
far from basic grid-rectangles, so being conceptually closer to the original idea in [MW]. The schemes are not
derived from finite difference operators approximating differential operators, but rather from a general princi-
ple which ensures the convergence of approximate solutions. In the case of the classical elliptic problem, this
general principle is necessary and sufficient to prove convergence in Hölder spaces.
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1 Discretization schemes

We study elliptic operators on R2 in divergence form defined by

A(x) = −
2∑

i,j=1

∂iaij(x)∂j +
2∑

j=1

∂j

(
bj(x) · ) + c(x), (1)

assuming that the functions aij = aji, bi, i, j = 1, 2 and c are measurable on R2, c ≥ 0 and aij(x) converge
to constant values as |x| increases. We require the existence of M, M, 0 < M ≤ M , such that M |x|2 ≤∑2

i,j=1 aij(x)ziz̄j ≤ M |x|2 holds for x ∈ R2, z ∈ C (strong ellipticity). Let the orthogonal coordinate system
in R2 be determined by unit vectors ei, and let us, for each n ∈ N, define a numerical grid Gn on R2 by vectors
x =

∑2
l=1 hi(n) klel, where the grid-steps hi(1) are fixed and hi := hi(n) = 2−nhi(1). For a domain D with

Lipshitz boundary we denote discretizations of D as Gn(D) = Gn ∩ D.
Standard approach to discretizations of differential operators is based on finite differences approximating

∂i, ∂i∂j . Instead, we can use constructions avoiding finite difference operators altogether. Let r ∈ N 2. In order
to write the entries of the system matrix An in the concise form, we use the abbreviations:

a±+
ij (r) = aij

(
x +

1
2
(± r1h1e1 + r2h2e2)

)
,

a±−
ij (r) = aij

(
x +

1
2
(± r1h1e1 − r2h2e2)

)
,
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and aαβ
ij = aαβ

ij (1) by convention. Non-trivial off-diagonal entries to An have the form:

(
An

)
xx±h1e1

= − 1
h1

(
1
h1

a±+
11 − r1

r2h2
|a±+

12 (r)|
)

,(
An

)
xx±h2e2

= −
(

1
h2

a+±
22 − r2

r1h1
|a+±

12 (r)|
)

,(
An

)
xx±(r1h1e1−r2h2e2)

= − 1
r1r2h1h2

a±∓
12 (r),

(2)

while diagonal elements are negative sums of the off-diagonal ones. A matrix is said to have the compartmental
structure if it has positive diagonal entries, non-positive off-diagonal entries and positive or zero column sums. If
A is compartmental, then B = AT is a matrix of positive type [Yo].

If a12 ≤ 0 and

inf
x∈Gn

{
1

rihi
aαβ

ii − 1
rjhj

|aγδ
12(r)|

}
> 0, α, β, γ, δ ∈ {+,−},

the constructed matrix An is compartmental; we call it the first extended scheme. The second extended scheme
can be constructed analogously, and it has compartmental structure for a 12 ≥ 0.

If An is compartmental, or of positive type, then the obtained numerical scheme is monotone. For a matrix
An on Gn we define numerical neighborhoods

N (x) = {y ∈ Gn : x = hk, y = hl, (An)kl �= 0}.
Numerical neighborhoods for two extended schemes are depicted in Figure 1.

Fig. 1 Possible numerical neighborhoods: (a),(b) classical schemes; (c),(d) extended schemes
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(a): a12 ≥ 0, (b): a12 ≤ 0 (c): a12 ≥ 0 (d): a12 ≤ 0
h1 = h2, r1 = r2 = 1 h1 = h2, r1 = 3, r2 = 1

2 Convergence of numerical solutions

Differential operator (1) is associated with a bilinear form a on Ẇ 1
2 (D) × Ẇ 1

2 (D). To avoid unessential tech-
nical complexity, we assume here that the differential operator is A = − ∑

ij ∂iaij∂j . The standard variational

formulation for a weak Ẇ 1
2 (D)-solution has the form:

a(v, u) = 〈 v |µ 〉, for any v ∈ Ẇ 1
2 (D). (3)

where µ is a linear functional on Ẇ 1
2 (D). By using discretizations An of the differential operator and discretiza-

tions of µ, we can approximate (3) by linear systems of the form

Anun = µn. (4)

Each grid-solution un on Gn(D) is embedded into the linear space of hat functions on Gn(D) as in [LR3], thus
leading to a continuous approximate solution u(n). The sequence U = {u(n) : n ∈ N} converges strongly in
W 1

2 (R2) to the unique solution u ∈ W 1
2 (R2) ∩ Ẇ 1

2 (D) of (3).
Regularity properties of approximate solutions of the converging sequences U follow from the well-known

results of DeGiorgi type. We can use criteria developed by [LU] as in our approach [LR3], to get the following
expected result: if µ is a bounded function on D, then the sequence U has convergent subsequences in the Hölder
space C(α)(D) with certain α > 0. This important result, and the fact that the spaces of hat functions with centers
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at grid-knots of Gn(D) are finite-dimensional, makes it possible to prove the main convergence result [LR3]. If
µ is a Radon measure on Borel subsets of D, then the sequence U converges strongly in the Banach space
L̇

(α)
1 (D) [St].

(5)

3 Example

We consider the differential operator A = − ∑2
ij=1 ∂iaij∂j with the diffusion tensor

a =
[

σ2 α(x)
α(x) 1

]
, α(x) = ρ1D0(x), ρ2 < σ2,

where σ2 is a positive number, ρ is a real number and D0 = (1/4, 3/4)2.
Let D = (0, 1)2 ⊂ R2 and ∂D be its boundary. The function x 	→ u∗(x1, x2) = x1x2 is the unique solution

to the boundary value problem

(
Au

)
(x) = f(x) for x ∈ D,

u|∂D = u∗|∂D,

where

f(x) = −2 ρ 1D0(x) − ρ

4

[
δ
(
x1 − 1

4

)
− 3δ

(
x1 − 3

4

)
+ δ

(
x2 − 1

4

)
− 3δ

(
x2 − 3

4

)]
.

The set R2 is discretized by the grid Gn of grid-knots xkl = hke1+hle2, k, l ∈ Z, where h is a grid-step. In order
to get a discretization of D suitable for numerical handling, we assume h = 1/N where N = 4M . In this way we
have discretizations Gn(D) of the open square D = (0, 1)2 defined by grid-knots xkl = (xk, yl), 1 ≤ k, l < N .

If |ρ| > 1 then the first and second standard schemes do not provide us with system matrices having the
compartmental structure. By insisting on an equal step size h in both directions, we are forced to use the first
or second classical scheme. To demonstrate the efficiency of the proposed schemes, we choose ρ = 2 and
r1 = 1, r2 = 3 as illustrated in Figure 1 (c), to ensure the compartmental structure of the system matrix. Contour
lines of the solution are shown in Figure 2.

Fig. 2 Contour lines for the example.
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