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Abstract
Some splines can be defined as solutions of differential multi-point

boundary value problems (DMBVP). In the numerical treatment of DM-
BVP, the differential operator is discretized by finite differences. We con-
sider one dimensional discrete hyperbolic tension spline introduced in [2],
and the associated specially structured pentadiagonal linear system.

Error in direct methods for the solution of this linear system depends
on condition numbers of corresponding matrices. If the chosen mesh is
uniform, the system matrix is symmetric and positive definite, and it is
easy to compute both, lower and upper bound, for its condition. In the
more interesting non-uniform case, matrix is not symmetric, but in some
circumstances we can nevertheless find an upper bound on its condition
number.

1 Introduction

In [2] Costantini et al. introduced discrete hyperbolic tension splines as a gen-
eralization of discrete cubic splines, which were mentioned for the first time
by Malcolm [8]. The idea of univariate discrete tension spline is the following:
Given ni ∈ N, i = 0, . . . , N , find a discrete function uij , j = −1, . . . , ni + 1,
i = 0, . . . , N satisfying the difference equations:[

Λ2
i −

(
pi

hi

)2

Λi

]
uij = 0, j = 1, . . . , ni − 1, i = 0, . . . , N, (1)

where

Λiuij =
ui,j−i − 2ui,j + ui,j+1

τ2
i

, τi =
hi

ni
,

subject to the discrete smoothness conditions:

ui−1,ni−1 = ui,0

ui−1,ni−1+1 − ui−1,ni−1−1

2τi−1
=

ui,1 − ui,−i

2τi
, i = 1, . . . , N

Λi−1ui−1,ni−i = Λiui,0
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interpolation conditions:

ui,0 = fi, i = 0, . . . , N, uN,nN = fN+1,

and boundary conditions:

Λ0u0,0 = f ′′
0 , ΛNuN,nN = f ′′

N+1.

Parameters pi ≥ 0 are referred to as tension parameters ; hi := xi+1−xi are mesh
related, and the mesh solution {uij} we call, according to [2, 7] discretized differ-
ential multi-point boundary value problem, or discrete DMBVP for short. While
in univariate case there seems to be no advantage in using discrete DMBVP,
compared to interpolating tension splines [9, 10], the situation is completely
different in multivariate case, where this approach can be generalized relatively
easy. The generalization of the classical tension spline to multivariate case is
hindered by the fact that there are no Chebyshev systems in more then one
dimension [12]. This is true even of tensor product splines, if we want to have
different sets of tension parameters in each direction.

On the other side, stability and other numerical properties of discrete tension
splines rely heavily on the condition of the associated linear systems, especially
so in the non-uniform case which involves nonsymmetric matrices. In the rest
of the paper, we give some new and sharper estimates than known previously.

First, let us recall from [2] the linear system arising from (1) accompanied
by interpolation and boundary conditions. One must determine the solution u
to the linear system Au = b, where

u = (u01, . . . , u0,n0−1, u11, . . . , uN1, . . . , uN,nN−1)
T ,

b = (−(a0 + 2)f0 − τ2
0 f ′′

0 , 0, . . . , 0,

− f1,−γ0,n0−1f1,−γ1,1f1,−f1, 0, . . . , 0,

− fN+1,−(aN + 2)fN+1 − τ2
Nf ′′

N+1)
T ,

with

γi−1,ni−1−1 = −
(

4 + ωi−1 + 2
1 − ρi

ρi

)
γi,1 = −(4 + ωi + 2(ρi − 1)),

i = 1, . . . , N , while matrix A is pentadiagonal, of the form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 − 1 a0 1
a0 b0 a0 1
1 a0 b0 a0 1

· · ·
1 a0 b0 a0

1 a0 η0,n0−1 δ0,n0−1

δ1,1 η1,1 a1 1
a1 b1 a1 1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)
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where the following notation is used:

ai = −(4 + ωi), bi = 6 + 2ωi, (3)

ωi =
(

pi

ni

)2

, i = 0, . . . , N, (4)

ρi =
τi

τi−1
, i = 1, . . . , N, (5)

ηi−1,ni−1−1 = 6 + ωi−1 +
1 − ρi

1 + ρi
, ηi,1 = 6 + ωi +

ρi − 1
ρi + 1

, (6)

δi−1,ni−1−1 =
2

ρi(ρi + 1)
, δi,1 = 2

ρ2
i

ρi + 1
. (7)

2 Symmetric case

Let us first consider the uniform case, i.e., τi = τ . Then the system matrix is

A = C + D,

where

C = diag(C0, . . . , CN ), Ci = B2
i − ωiBi, (8)

Bi =

⎡
⎢⎢⎢⎢⎣

−2 1
1 −2 1

· · ·
1 −2 1

1 −2

⎤
⎥⎥⎥⎥⎦ , (9)

and

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
. . .

0
1 1
1 1

0
. . .

0
1 1

1
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For a nonsingular matrix A we are interested in estimating the spectral condition
number

κ2(A) = ‖A‖2‖A−1‖2 =
σmax(A)
σmin(A)

, (10)
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where σmax(A) and σmin(A) are the biggest and the smallest singular value of
A. If A is symmetric and positive definite (10) is equivalent to

κ2(A) =
λmax(A)
λmin(A)

,

where λmax(A) and λmin(A) are the biggest and the smallest eigenvalue of A.
Furthermore, we can compare eigenvalues of matrices by the Weyl’s theorem [4],
pp. 181:

Theorem 1 Let A, B ∈ Cn×n be Hermitian and let the eigenvalues λi(A),
λi(B) and λi(A + B) be arranged in increasing (in fact nondecreasing) order

λmin = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax.

For each k = 1, . . . , n we have

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B).

For our purposes, let us substitute k = 1, A = C, B = D in Weyl’s theorem to
obtain

λmin(C) + λmin(D) ≤ λmin(A) ≤ λmin(C) + λmax(D), (11)

and k = 1, A = D, B = C to obtain

λmin(C) + λmin(D) ≤ λmin(A) ≤ λmin(D) + λmax(C). (12)

By substituting k = n, A = C, B = D we have

λmax(C) + λmin(D) ≤ λmax(A) ≤ λmax(C) + λmax(D), (13)

and finally, substitution of k = n, A = D, B = C gives

λmin(C) + λmax(D) ≤ λmax(A) ≤ λmax(C) + λmax(D). (14)

Relations (11) and (12) give

λmin(C) + λmin(D) ≤ λmin(A)
≤ min{λmin(C) + λmax(D), λmin(D) + λmax(C)}, (15)

and, similarly, (13) and (14) give

max{λmax(C) + λmin(D), λmin(C) + λmax(D)} ≤ λmax(A)
≤ λmax(C) + λmax(D).

(16)

From the structure of C in (8)–(9), we obtain

λmin(C) = min
i

[
4
(

1 − cos
π

ni

)2

+ 2ωi

(
1 − cos

π

ni

)]
,

λmax(C) = max
i

[
4
(

1 + cos
π

ni

)2

+ 2ωi

(
1 + cos

π

ni

)]
,

λmin(D) = 0,

λmax(D) = 2.
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By substituting these eigenvalues into (15) and (16) we obtain

λmin(C) ≤ λmin(A) ≤ min{λmin(C) + 2, λmax(C)},
max{λmax(C), λmin(C) + 2} ≤ λmax(A) ≤ λmax(C) + 2,

and
max{λmax(C), λmin(C) + 2}
min{λmin(C) + 2, λmax(C)} ≤ κ2(A) ≤ λmax(C) + 2

λmin(C)
. (17)

In addition, simple upper bound for the λmax(A) can be obtained by Gersh-
gorin’s theorem

λmax(A) ≤ 16 + 4ωi. (18)

Coupling (17) and (18) together, we obtain

max{λmax(C), λmin(C) + 2}
min{λmin(C) + 2, λmax(C)} ≤ κ2(A) ≤ min{λmax(C) + 2, 16 + 4ωi}

λmin(C)
.

We have estimated conditions of matrices A with various relationships be-
tween pi and ni. As the reference point we calculated spectral condition number
of each A by using accurate SVD [3].

Example 1 Let us take test matrices A all of order 60, with equal tension
parameters pi for all blocks, but with different structures of inner blocks. The
first family of matrices consists of matrices with ten blocks Ci of order 6, while
in the second family the block C0 is of order 24, and the other nine blocks are
of order 4. Our estimator gives:

pi 0.0 0.01 0.1 1.0 10 100
κ2(A) 375.0 375.0 374.6 341.7 50.6 19.5
lower bound 7.1 7.1 7.1 7.1 9.1 18.6
upper bound 407.9 407.9 407.5 371.7 54.5 19.6

Table 1: Estimates for the first family of matrices A.

pi 0.0 0.01 0.1 1.0 10 100
κ2(A) 31713.9 31717.7 31694.6 29905.2 8664.1 5756.6
lower bound 7.9 7.9 7.9 7.9 13.8 648.3
upper bound 64331.6 64331.6 64272.7 58990.0 10664.6 5789.5

Table 2: Estimates for the second family of matrices A.

As expected, conditions of matrices with equal-sized blocks are lower than
conditions of matrices with blocks of widely varying size. Moreover, for suffi-
ciently large pi we are very close to the reference condition number.
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Nonsymmetric case

For non-uniform meshes, we proceed in the same way, by considering the split-
ting A = C + E, where symmetric, positive definite C is equal to C from the
symmetric case, and E is the nonsymmetric replacement for D. We have

‖A‖2 = ‖C + E‖2 ≤ ‖C‖2 + ‖E‖2 = λmax(C) +
√

λmax(ET E). (19)

Diagonal blocks of E are ⎡
⎢⎣

2
ρi + 1

2
ρi(ρi + 1)

2ρ2
i

ρi + 1
2ρi

ρi + 1

⎤
⎥⎦ (20)

instead of
[

1 1
1 1

]
in D. It is easy to compute that

(ET E)i =
4(1 + ρ4

i )
(ρi + 1)2

⎡
⎢⎣ 1

1
ρi

1
ρi

1
ρ2

i

⎤
⎥⎦ .

Also, if λ is eigenvalue of A, then kλ is eigenvalue of kA, and we need to compute
the eigenvalues of ⎡

⎢⎣ 1
1
ρi

1
ρi

1
ρ2

i

⎤
⎥⎦ ,

which are readily found to be

λmin = 0, λmax =
1 + ρ2

i

ρ2
i

,

thus

λmax(ET E) = max
i

(
4(1 + ρ4

i )
(ρi + 1)2

· 1 + ρ2
i

ρ2
i

)
= max

i

4(1 + ρ4
i )(1 + ρ2

i )
ρ2

i (ρi + 1)2
.

Previous formula, together with (19) gives

‖A‖2 ≤ λmax(C) + max
i

2
ρi(ρi + 1)

√
(1 + ρ4

i )(1 + ρ2
i ).

We also need to bound ‖A−1‖2. According to Corollary 3.1.5. from [5], if singular
values of A and eigenvalues of H(A) = 1

2 (A + A∗) are nonincreasingly ordered,
for each singular value of A we have

σk(A) ≥ λk(H(A)), k = 1, . . . , n. (21)
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On the other hand we can write H(A) as

H(A) =
1
2
(A + AT ) = C +

1
2
(E + ET ).

Let F = 1
2 (E + ET ). By Weyl’s theorem, we obtain lower bound for H(A):

λmin(C) + λmin(F ) ≤ λmin(H(A)). (22)

Now (10), (19) and (22) yield

κ2(A) ≤ ‖A‖2

λminH(A)
≤ λmax(C) +

√
λmax(ET E)

λmin(C) + λmin(F )
. (23)

It remains to derive a lower bound for λmin(F ). From (20), it is easy to calculate
that diagonal blocks Fi of F have the form⎡

⎢⎢⎣
2

ρi + 1
1 + ρ3

i

ρi(ρi + 1)
1 + ρ3

i

ρi(ρi + 1)
2ρi

ρi + 1

⎤
⎥⎥⎦ .

Eigenvalues of F are zeros and

λ(Fi) = 1 ±
√

(ρ4
i + 1)(ρ2

i + 1)
ρi(ρi + 1)

.

Also, it is easy to check that min λ(Fi) ≤ 0 and min λ(Fi) = 0 if and only if
ρi = 1. For each ρi we have the following graph:

ρi

λmin(Fi)
1 2 3 4

−1
−2
−3
−4
−5
−6

Obviously, minimal λmin(C) + λmin(F ) is non-negative in some small neigbour-
hood of 1 depending on nk and ωk.

Example 2 There exist nonsymmetric matrices such that (23) is useless (de-
nominator of the right-hand side is less then 0), their condition being much
higher than the condition of corresponding symmetric matrices.
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For example, if A has seven blocks of order 6, with pi’s equal to 1 for all
blocks, and h = (4.2, 0.1, 4.1, 0.5, 4.1, 0.1, 4.4), then κ2(A) = 59083.4. If we
change h such that hi = ni for all i, i.e., if A is symmetric, then the condition
of a such matrix is 341.6.

If we have sufficiently big pi’s, and if put ni ≈ hi, then instead of τ = τi = 1
we have τi ≈ 1, and conditions do not differ significantly from conditions of
corresponding symmetric matrices.

For example, we can take matrix A with 6 blocks of order 4, and pi = 12
for all i. For symmetric As we could take, for example, hi = 5 for all i. The
following table gives conditions and their upper bounds for both symmetric As,
and slightly perturbed nonsymetric An with h = (5.01, 4.9, 5.01, 5.0, 4.95, 5.2).

κ2(As) bound for κ2(As) κ2(An) bound for κ2(An)
14.6976 15.3153 14.6985 15.3355

Table 3: Conditions of symmetric As and “close” nonsymetric An.

3 Componentwise perturbations

For a linear system Ax = b, perturbations ∆A and ∆b such that (A + ∆A)(x +
∆x) = b + ∆b are componentwise perturbations if

|∆A| ≤ ε|A|, |∆b| ≤ ε|b|,
where | · | denotes pointwise absolute value (|A|ij = |Aij |) for some ε > 0. Note
that componentwise perturbations will not perturb zeros in A and b.

Skeel ([11], Theorem 2.1) shows that

‖∆x‖∞
‖x‖∞ ≤ ε

‖ |A−1| |A| |x| + |A−1 |b| ‖∞
(1 − ε‖|A1| |A|‖∞)‖x‖∞ ,

introducing

cond(A, x) : =
‖ |A−1| |A| |x| ‖∞

‖x‖∞ ,

and an upper bound for cond(A, x) as

cond(A) = ‖ |A−1| |A| ‖∞.

If D is the row scaling of A such that DA has unit 1-norm, Chandrasekaran
and Ipsen in [1] note that

κ∞(A)
κ∞(D)

≤ cond(A) ≤ κ∞(A).
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This shows that cond(A) ≈ κ∞(A) if rows of A are not badly scaled.
If A of order n is symmetric and positive definite, it is easy to bound cond(A)

by using eigenvalue decomposition of A, A = UΛUT , where U is unitary and Λ
is diagonal matrix of eigenvalues. Then we have

|A−1| = |UΛ−1UT | ≤ |U | |Λ−1| |UT |,

It is easy to show that

|A−1|ij ≤
n∑

k=1

1
λk(A)

|uikujk| ≤
n∑

k=1

1
λk(A)

=: µ.

Now,

|A−1| ≤ µG, G =

⎡
⎢⎢⎢⎣

1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1

⎤
⎥⎥⎥⎦ ,

and

(|A−1||A|)ij ≤ µG|A| = µ

n∑
i=1

|A|ij . (24)

For fixed j, the right-hand side of (24) does not depend on i, and therefore

cond(A) ≤ µ

n∑
j=1

n∑
i=1

|A|ij . (25)

If A is symmetric and defined by (2), then n =
∑N

i=0(ni − 1). From (9) and
Weil’s theorem it follows that

µ ≤
N∑

i=0

ni−1∑
j=1

1
λj(Ci)

.
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From (25) and (2)–(7) we obtain

cond(A) ≤ µ

[ N∑
i=0

[
(ni − 3)bi + 2(ni − 2)|ai| + 2(ni − 2)

]
+ (b0 − 1) + (bN − 1)

+
N∑

i=1

ηi−1,ni−1−1 +
N∑

i=1

ηi,1 +
N∑

i=1

δi−1,ni−1−1 +
N∑

i=1

δi,1

]

= µ

[ N∑
i=0

(16ni − 40 + 4niωi − 10ωi)

+ 10 + 2ω0 + 2ωN +
N∑

i=1

(6 + 2ωi−1) +
N∑

i=1

(6 + 2ωi) + 2N

]

= µ

[ N∑
i=0

(16ni − 40 + 4niωi − 10ωi) + 10 + 4
N∑

i=0

ωi + 14N

]

= µ

[
16

N∑
i=0

ni + 4
N∑

i=0

niωi − 6
N∑

i=0

ωi − 26N − 30
]
.

Comparing bounds κ∞(A) ≤ √
n·κ2(A) and cond(A) may not be easy. Also, if A

is nonsymmetric, no similar techniques exist to obtain componentwise bounds.

4 Conclusion

It is not always true that discretized DMBVP is well conditioned; it depends on
ni and ωi. The ill-conditioning appearing for widely varying block sizes reflects
the ill-posedness of the interpolation problem in which data points are dense in
one region, and sparse in another. We have tested various cases and estimated
the condition number using accurate SVD [3]. Numerical experiments seem to
be in accordance with the apriori estimates we have obtained.

Since the choice of tension parameters comes from practical applications,
like shape preserving approximation (see [6] and references therein), it is our
hope that such a choice of tension parameters can be made, that both, shape-
preserving requirements, and numerical stability can be achieved. The delicate
balance between the two is at this moment not completely understood.
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