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Problem A1
Show that for each n we can find an n-digit number with all its digits odd which is divisible by 5n. 

Solution
Induction on n. For n = 1 we have 5. So suppose N works for n. Consider the five n+1 digit numbers 10n + N, 3·10n + N, 5·10n + N, 7·10n, 9·10n. We may take out the common factor 5n to get the five numbers k, k + h, k + 2h, k + 3h, k + 4h, for some k and h = 2n+1. Since h is relatively prime to 5, the five numbers are all incongruent mod 5 and so one must be a multiple of 5. 

Problem A2
A convex polygon has all its sides and diagonals with rational length. It is dissected into smaller polygons by drawing all its diagonals. Show that the small polygons have all sides rational. 

Solution
It is not hard to see that it is sufficient to prove the result for convex quadrilaterals. For in the case of an n-gon any side of a small polygon is either a side of the n-gon (in which case there is nothing to prove) or a segment of a diagonal. Suppose the diagonal is AiAj. Suppose the points of intersection along this diagonal are (in order) P0 = Ai, P1, P2, ... , Pm = Aj. Suppose Pk is the intersection of AiAj with ArAs. Then using the quadrilateral AiArAjAs we deduce that P0Pk (= AiPk) is rational. Hence PhPk = P0Pk - P0Ph is rational. So all the segments of the diagonal are rational. 
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It is immediate from the cosine rule that the angles in a triangle with rational sides have rational cosines. So cos x, cos y and cos(x+y) are rational (using triangles ABD, BCD, ADC). Using the formula for cos(x+y) it follows that sin x sin y is rational. Now sin2y = 1 - cos2y is rational, so sin x/sin y is rational. 

Now area APD = (AD·PD sin x)/2 and area CPD = CD·PD sin y)/2, so AP/PC = area APD/area CPD = (sin x/sin y)(AD/CD) = rational. But AP + PC is rational, so AP is rational. Similarly for the other segments. 

Problem A3
Given a sequence S1 of n+1 non-negative integers, a0, a1, ... , an we derive another sequence S2 with terms b0, b1, ... , bn, where bi is the number of terms preceding ai in S1 which are different from ai (so b0 = 0). Similarly, we derive S2 from S1 and so on. Show that if ai ≤ i for each i, then Sn = Sn+1. 

Solution
Note that the derived sequence bi also satisfies bi ≤ i (since there are only i terms preceding bi). We show that bi ≥ ai for each i. That is obvious if ai = 0. If ai = k > 0, then since each of the first k terms (a0, a1, ... , ak-1) must be < k, we certainly have bi ≥ k. 

Next we show that if bi = ai, then further iterations do not change term i. If bi = ai = 0, then none of the terms before ai differ from 0, so all the terms before bi are also 0. But that means the corresponding terms of the next iteration must also all be 0. If bi = ai = k > 0, then since a0, a1, ... , ak-1 all differ from ai, the remaining terms (if any) ak, ak+1, ... , ai-1 must all be the same as ai. But that implies that each of bk, bk+1, ... , bi-1 must also be k. Hence if the next iteration is c0, c1, ... then ci = k also. 

Now we use induction on k. Clearly term 0 is always 0. Considering the two cases, we see that term 1 does not change at iteration 1. So suppose that term i does not change at iteration i. If term i+1 does change at iteration i+1, then it must have changed at all previous iterations. So it must have started at 0 and increased by 1 at each iteration. 

Problem B1
ABC is a triangle. A circle through A and B meets the sides AC, BC at D, E respectively. The lines AB and DE meet at F. The lines BD and CF meet at M. Show that M is the midpoint of CF iff MB·MD = MC2. 

 Solution
[image: image2.jpg]



If MB·MD = MC2, then BM/MC = CM/MD, so triangles CMD and BMC are similar, so ∠MCD = ∠MBC. But ABED is cyclic, so ∠MBC = ∠DAE, so AE is parallel to CF. But now we can reverse the argument, but "reflecting" about BM so that we interchange A and E, and C and F, to conclude that MB·MD = MF2. 

Suppose conversely that MC = MF. Applying Ceva's theorem to triangle BCF, we have that (BA/AF)(1)(CE/EB) = 1, so BA/AF = BE/EC so AE is parallel to CF. We can now use the argument above to show that MB·MD = MC2. 

Problem B2
Prove that for any positive reals x, y, z we have (2x+y+z)2/(2x2 + (y+z)2) + (2y+z+x)2/(2y2 + (z+x)2) + (2z+x+y)2/(2z2 + (x+y)2) ≤ 8. 

Solution
If the inequality holds for x, y, z, then it also holds for kx, ky, kz, so it is sufficient to prove the result for x+y+z=3. The first term becomes (x+3)2/(2x2+(3-x)2) = (1/3) (x2+6x+9)/(x2-2x+3) = (1/3) (1 + (8x+6)/(2+(x-1)2) ≤ (1/3) (1 + (8x+6)/2) = 4/3 + 4x/3. Similarly for the other terms, so the whole expression ≤ (4/3 + 4x/3) + (4/3 + 4y/3) + (4/3 + 4z/3) = 8. 

Problem B3 

A positive integer is written at each vertex of a hexagon. A move is to replace a number by the (non-negative) difference between the two numbers at the adjacent vertices. If the starting numbers sum to 20032003, show that it is always possible to make a sequence of moves ending with zeros at every vertex. 

Solution 

It is possible to get stuck, so the result is not trivial. For example: 

  1 1

0     0

  1 1

We show that provided the sum of the numbers is odd, we can always find a sequence of moves which give either (1) a lower maximum number, and odd sum, or (2) all zeros. Since the starting sum is odd, that is sufficient. 

Note that no move increases the maximum. The first step is to show that if the sum is odd, we can find moves which give just one number odd. For convenience we refer to the numbers as 

  A B

F     C

  E D

We also use the letters to refer to moves. So, for example, B means the move replacing B. Since the sum is odd, either A+C+E is odd or B+D+F is odd. wlog A+C+E is odd. Suppose just one of A,B,C is odd. wlog it is A. Making the moves B, F, A, F, D and working mod 2 we get successively: 

  1 B       1 1       1 1       0 1       0 1       0 1

F     0   F     0   1     0   1     0   0     0   0     0

  0 D       0 D       0 D       0 D       0 D       0 0

Similarly, if all of A, B, C are odd, then B, F, D, E, C we get mod 2: 

  1 B       1 0       1 0       1 0       1 0       1 0

F     1   F     1   0     1   0     1   0     1   0     0

  1 D       1 D       1 D       1 0       0 0       0 0

So wlog A is odd and all the other numbers are even. Suppose that the maximum is M. We show how to reduce M. There are two cases. Suppose first that M is even so that A < M. Then we make the moves B, C, D, E, F giving (mod 2): 

  1 0       1 1       1 1       1 1       1 1       1 1

0     0   0     0   0     1   0     1   0     1   0     1

  0 0       0 0       0 0       0 1       1 1       1 1

The first four moves do not change A, which is neither 1 nor M, so the last move must reduce F, so the new maximum must be an odd number. But it must be ≤M, which is even, so the new maximum is <M and the sum is still odd. 

The second case is M odd, so that A = M. If C > 0 we make the moves B, F, A, F giving (mod 2): 

  1 0       1 1       1 1       0 1       0 1

0     0   0     0   1     0   1     0   0     0

  0 0       0 0       0 0       0 0       0 0

Since C is not 0 or M, the new B must be <M and the other new numbers are all even and hence <M. So the new maximum is <M and the sum is still odd. The same argument works if E > 0 (just reflect about AD). So finally suppose C = E = 0. Then we get (no reduction mod 2): 

  A B       A A       A A       A A       A A       0 A       0 A       0 0

F     0   F     0   A     0   A     0   A     0   A     0   0     0   0     0

  0 D       0 D       0 D       0 D       0 0       0 0       0 0       0 0
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Problem A1
Let S be a set with 2002 elements and P the set of all its subsets. Prove that for any n (in the range from zero to |P|) we can color n elements of P white, and the rest black, so that the union of any two elements of P with the same color has the same color. 

Solution
Let S have m elements and P be the set of its subsets. We show by induction on m that a coloring is possible for any n ≤ |P|. If m = 1, we color both subsets black for n = 0, the empty set white (and the other subset black) for n = 1, and both subsets white for n = 2. Suppose now that a coloring is possible for m (and any n). Consider a set S with m+1 elements. Let b be any element of S. For n ≤ 2m, use induction to color just n subsets of S - {b} white and color black all subsets of S which include b. Then the union of two white subsets is still a subset of S - {b} and hence (by assumption) white. The union of two black subsets of S - {b} is black for the same reason. If one black subset includes b, then so does the union, which must therefore be black. For n > 2m, we have 2m+1 - n < 2m, so we can find a coloring for 2m+1 - n and then swap the colors. 

Problem A2
The triangle ABC satisfies the relation cot2A/2 + 4 cot2B/2 + 9 cot2C/2 = 9(a+b+c)2/(49r2), where r is the radius of the incircle (and a = |BC| etc, as usual). Show that ABC is similar to a triangle whose sides are integers and find the smallest set of such integers. 

Solution
Answer: a =13, b = 40, c = 45. 

Let the incenter be I. Consider the triangle IBC. It has angle IBC = B/2, angle ICB = C/2 and height r. Hence a = r cot B/2 + r cot C/2. With the two similar relations for the other sides, that gives 2r cot A/2 = (b + c - a), 2r cot B/2 = (c + a - b), 2r cot C/2 = (a + b - c). So the given relation becomes: 49( (b + c - a)2 + 4(c + a - b)2 + 9(a + b - c)2) = 36(a + b + c)2. 

Multiplying out is a mistake. It leads nowhere. It is more helpful to change variable to d = b + c - a, e = c + a - b, f = a + b - c giving 49(d2 + 4e2 + 9f2) = 36(d + e + f)2, or 13d2 + 160e2 + 405f2 - 72(de + ef + fd) = 0. We would like to express this as (hd + ke)2 + (h'e + k'f)2 + (h''f + k''d)2 = 0. Presumably 13 = 32 + 22. Then 72 = 2·3·something and 2·2·something, giving 12 and 18. Squares 144, 324. Fortunately, we see that 160 = 122+ 42, 405 = 182 + 92 and 2·4·9 = 72. So putting that together we get: (2d - 18f)2 + (3d - 12e)2 + (4e - 9f)2 = 0. 

So we conclude that b + c - a = 9(a + b - c) = 4(c + a - b), or 5a + 4b = 5c, 5a + 3c = 5b, or a = 13k, b = 40k, c = 45k. We get the smallest triangle with integer sides by taking k = 1. 

Problem A3
p(x) is a polynomial of degree n with real coefficients and leading coefficient 1. Show that we can find two polynomials q(x) and r(x) which both have degree n, all roots real and leading coefficient 1, such that p(x) = q(x)/2 + r(x)/2. 

Solution
The easiest way to show that a polynomial has a root between a and b is to show that it changes sign. So the idea is to take some polynomial that obviously changes sign n times. Then if we take k s(x) and -k s(x) + 2p(x), for sufficiently large k the sign of -k s(x) + 2p(x) should be dominated by s(x). That does not quite deal with the leading coefficient. But we know that ultimately the leading term dominates, so something like k s(x) + xn and -k s(x) - xn + 2p(x) ought to work. 

Specifically, put s(x) = (1 - x)(2 - x)(3 - x) ... (n-1 - x). It is zero at x = 1, 2, 3, ... , n-1. It is alternately positive and negative at x = 1/2, 1 1/2, ... , n - 1/2. Suppose n is even. Let M = nn so that xn < M on the interval [0, n]. Clearly, if we take k sufficiently large (in relation to M), then k s(x) + xn has the same sign as s(x) at x = 1/2, 1 1/2, ... , n - 1/2. In particular, it is negative at x = n - 1/2, but, whatever k, if x is sufficiently large k s(x) + xn is positive. So k s(x) + xn changes sign at least n times and hence has n real roots. 

Similarly, for k sufficiently large (in relation to M and the max value of 2p(x) over the interval [0, n] ), -k s(x) - xn + 2p(x) will have the opposite sign to s(x) at x = 1/2, 1 1/2, ... , n - 1/2 and in particular will be negative at x = 1/2. But the leading term in - k s(x) - xn + 2p(x) is xn and n is even, so for x sufficiently negative, the sign will be positive. Thus - k s(x) - xn + 2p(x) also changes sign at least n times and hence has n real roots. 

Exactly similar arguments work for n odd. We get n-1 sign changes from the k s(x) term and one extra for x large and positive or large and negative (this time k s(x) has the same sign at x = 1/2 and x = n - 1/2, but xn has different signs for large positive and large negative). 

Problem B1
Find all real-valued functions f on the reals such that f(x2 - y2) = x f(x) - y f(y) for all x, y. 

Solution
Answer: f(x) = kx for some real k. 

Putting y = 0, f(x2) = x f(x). Hence f(x2 - y2) = f(x2) - f(y2). So for any non-negative x, y, we have f(x - y) = f(x) - f(y). Hence also f(x) = f(x + y - y) = f(x + y) - f(y), so f(x + y) = f(x) + f(y) for non-negative x, y. Also f(0) = f(02) = 0 f(0) = 0, and for non-negative y, f(-y) = f(0 - y) = f(0) - f(y) = -f(y). Hence also f(-y) = -f(y) for negative y. So we have f(x + y) = f(x) + f(y) for non-negative x and any y. But now if x is negative, f(x + y) = -f(-x - y) = - (f(-x) - f(y) ) = f(x) + f(y). So f(x + y) = f(x) + f(y) for all x and y. 

Now for any x we have f(x) + f(x - 1) = f(2x - 1) = f( x2 - (x - 1)2) = x f(x) - (x - 1) f(x - 1) = x f(x - 1) + x f(1) - (x - 1) f(x - 1) = x f(1) + f(x - 1), so f(x) = x f(1). So if f(1) = k, then f(x) = kx. It is trivial to check that this does indeed satsify the equation given for any k. 

Problem B2
Show that we can link any two integers m, n greater than 2 by a chain of positive integers m = a1, a2, ... , ak+1 = n, so that the product of any two consecutive members of the chain is divisible by their sum. [For example, 7, 42, 21, 28, 70, 30, 6, 3 links 7 and 3.] 

Solution
We write a ↔ b if (a + b) divides ab. The starting point is that for n > 1 we have n ↔ n(n - 1). As slight variants we also have 2n ↔ n(n - 2) for n > 2, and in any case where a ↔ b, then also ma ↔ mb (for m > 0). That allows us to link n > 2 and 2n, thus: n ↔ n(n - 1) ↔ n(n - 1)(n - 2) = n(n - 2) ↔ 2n. 

To go much further we need some inspiration. Note that n(n - 3) + 2 = (n - 1)(n - 2). So 2(n - 1)(n - 2) ↔ n(n - 3)(n - 1)(n - 2). That is critical, for it is a general way of allowing us to reduce the largest factor. Thus for n > 3, n ↔ n(n - 1) ↔ n(n - 1)(n - 2) ↔ n(n - 1)(n - 2)(n - 3) ↔ 2(n - 1)(n - 2) ↔ (n - 1)(n - 2) ↔ n - 1. But linking n and n-1 obviously allows us to link any two integers > 3. That leaves 3 itself, but the question already shows how to link that to at least one integer > 3, which is all we need. 

Problem B3
A tromino is a 1 x 3 rectangle. Trominoes are placed on an n x n board. Each tromino must line up with the squares on the board, so that it covers exactly three squares. Let f(n) be the smallest number of trominoes required to stop any more being placed. Show that for all n > 0, n2/7 + hn ≤ f(n) ≤ n2/5 + kn for some reals h and k. 

Solution
A tromino may be placed in n - 2 positions in each row and column, so there are 2n2 - 4n possible positions in total. Placing a tromino occupies or blocks at most 14 of these positions (5 parallel and 9 perpendicular). Hence any placement of (2n2 - 4n)/14 = n2/7 - 2n/7 trominoes will block further trominoes. So f(n) >= n2/7 - 2n/7. 

If we place trominoes roughly like this: 

x x x o o x x x o o x x x o o x x x o o x

o x x x o o x x x o o x x x o o x x x o o 

o o x x x o o x x x o o x x x o o x x x o

x o o x x x o o x x x o o x x x o o x x x

x x o o x x x o o x x x o o x x x o o x x

x x x o o x x x o o x x x o o x x x o o x

it is obvious that no further trominoes are possible and the number of occupied squares is about 3n2/5. Hence the number of trominoes is about n2/5. But we need to do some tidying up in relation to edge effects. 

The safe way to deal with partial trominoes at the beginning or end of rows is to pull them completely onto the board. Each complete group of five cells in a row needs a tromino, but we may need one extra at the start and one extra at the end. So [n/5] + 2 will always suffice for the row. Thus n2/5 + 2n will suffice for the board and so f(n) ≤ n2/5 + 2n. 

17th Mexico 2003
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Problem A1 

Find all positive integers with two or more digits such that if we insert a 0 between the units and tens digits we get a multiple of the original number. 

Answer 

15, 18, 45, or any muliple of 10 

Solution 

Let the number be n. Let n' be the number obtained by inserting the 0. n must also divide 10n and hence 10n - n'. If the last digit of n is d, then 10n - n' = 9d. So n must divide 9d. In particular, n must be a 2 digit number. For example if d = 9, we need a two digit number ending in 9 that divides 81. There are none. Similarly, we check d = 8 giving n = 18, d = 7 no solutions, d = 6, no solutions, d = 5 giving n = 15 or 45, d = 4 so solutions, d = 3 no solutions, d = 2 no solutions, d = 1 no solutions. Finally if d = 0, then any number works. 

Problem A2 

A, B, C are collinear with B betweeen A and C. K1 is the circle with diameter AB, and K2 is the circle with diameter BC. Another circle touches AC at B and meets K1 again at P and K2 again at Q. The line PQ meets K1 again at R and K2 again at S. Show that the lines AR and CS meet on the perpendicular to AC at B. 

Solution 
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We show that ARSC is cyclic. We have ∠PRA = ∠PBA (circle diameter AB) = ∠PQB (circle PBQ) = ∠SQB (same angle) = ∠SCB. Hence ∠ARS + ∠SCA = 180o, so ARSC is cyclic. Let K3 be the circle ARSC. Then AR is the radical axis of K3 and K1, CS is the radical axis of K3 and K2, and the perpendicular to AC at B is the radical axis of K1 and K2, and the three radical axes concur. 

Problem A3 

At a party there are n women and n men. Each woman likes r of the men, and each man likes r of then women. For which r and s must there be a man and a woman who like each other? 

Answer 

r + s > n 

Solution 

Consider the number of pairs (W,M), where W is a woman and M a man. If no pair like each other, then the nr pairs (W,M) where W likes M and the ns pairs (W,M), where M likes W must all be distinct. But the total number of available pairs is n2, so we must have nr + ns ≤ n2 and hence r + s ≤ n. 

Conversely, suppose r + s ≤ n. Label the women W1, W2, ... , Wn and the men M1, M2, ... , Mn. Let woman Wi like men Mi+k for k = 0, 1, 2, ... , r-1, and let man Mi like women Wi+k for k = 1, 2, ... , s (we use the cyclic subscript convention, so Wn+1 means W1 etc). Then it is clear that no woman and man like each other. 

Problem B1 

The quadrilateral ABCD has AB parallel to CD. P is on the side AB and Q on the side CD such that AP/PB = DQ/CQ. M is the intersection of AQ and DP, and N is the intersection of PC and QB. Find MN in terms of AB and CD. 

Answer 

MN = AB·CD/(AB+CD) 

Solution 
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AMP and QMD are similar, so AM/MQ = AP/DQ. PNB and CNQ are similar, so PN/NC = PB/CQ. But AP/DQ = PB/CQ (given), so AM/MQ = PN/NC and hence MN is parallel to AB. 

Also MN/CD = PM/(PM+MD) = AP/(AP+DQ). Similarly, MN/AB = QM/(QM+MA) = DQ/(AP+DQ). Hence MN/CD + MN/AB = 1. 

Problem B2 

Some cards each have a pair of numbers written on them. There is just one card for each pair (a,b) with 1 ≤ a < b ≤ 2003. Two players play the following game. Each removes a card in turn and writes the product ab of its numbers on the blackboard. The first player who causes the greatest common divisor of the numbers on the blackboard to fall to 1 loses. Which player has a winning strategy? 

Answer 

first 

Solution 

Consider the numbers on the board before the losing move. They must have gcd d > 1. If d is not a prime, then it has some proper factor k, so the card (1,k) can still be played. Contradiction. So d must be prime, and every pair (a,b) with d dividing ab must have been played. There are 2002 pairs (a,d), because a can be any of 1, 2, 3, ... , 2003 except d. Similarly, there are 2002 pairs (a,2d), provided that 2d ≤ 2003. However, this double-counts the pair (d,2d). So if d is chosen so that 2d < 2003 < 3d, then there will be 4003 possible pairs. The first player can bring this about by playing (1,997). Then the possible plays are (k,997) for k = 2, 3, ... , 996, 998, 999, ... , 2003 (2001 possibilities), and (k,1994) for k = 1, 2, ... , 996, 998, 999, ... , 1993, 1995, 1996, ... , 2003 (2001 possibilities). So there are an even number of moves available and the first player will win (the only way the second player can reduce the number of moves available is by losing). 

Problem B3 

Given a positive integer n, an allowed move is to form 2n+1 or 3n+2. The set Sn is the set of all numbers that can be obtained by a sequence of allowed moves starting with n. For example, we can form 5 → 11 → 35 so 5, 11 and 35 belong to S5. We call m and n compatible if Sm ∩ Sn is non-empty. Which members of {1, 2, 3, ... , 2002} are compatible with 2003? 

Answer 

166, 333, 500, 667, 1001, 1335, 1502 

Solution 

Let D be the operation a → 2a+1, and T the operation a → 3a+2. Note first that D and T commute, and they are obviously injective. Now we claim that if a = Dmb = Tnc, then we can find d such that b = Tnd and c = Dmd. We use induction on m. 

Consider first m = 1. Note that k is odd iff Tk is odd. Now a = Db, so a is odd. But a = Tnc, so c is odd. Hence we can find d such that c = Dd. Then Db = DTnd, so b = Tnd, and the result is true for m = 1. 

Suppose it is true for m and that a = Dm+1b = Tnc. Then Tnc is odd, so c is odd, so c = De. Hence Dmb = Tne. So, by induction, we can find d such that b = Tnd, e = Dmd. Then c = Dm+1d, b = Tnd, as required. So the result is true for m+1 and hence for all m. 

It follows that if a = DrTsb = DmTnc, then b and c can both be obtained from some d. (wlog r ≥ m, so Dr-mTsb = Tnc. If s ≥ n, then we are home since c = Dr-mTs-nb, if not then Dr-mb = Tn-sc and we use the result just proved.) 

Thus if we take m to be the smallest number which can lead to n, then we have n = DrTsm for some r,s and so the numbers which can lead to n are just DaTbm for 0 ≤ a ≤ r, and 0 ≤ b ≤ s. (For if k leads to n, then we can find d which leads to m and k, but d cannot be smaller than m, so d = m.) 

Thus if k ∈ S2003 ∩ Sn, then 2003 and n can both be obtained from some d. Working backwards, we find that 2003 = D2T 166, where 166 is not odd and not 2 mod 3, so cannot be obtained from anything else. Hence the only numbers that lead to numbers derived from 2003 are those that derive from 166. We get 333 = D 166, 500 = T 166, 667 = D2166, 1001 = DT 166, 1335 = D3166, 1502 = T2166 (the others are all ≥ 2003). 

101st Kürschák 2001
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Problem 1
Given any 3n-1 points in the plane, no three collinear, show that it is possible to find 2n whose convex hull is not a triangle. 

Solution
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The difficulty is that extra points can reduce the number of points in the convex hull. Consider for example the configuration above. If we take at least one point from each arc, then the convex hull is a triangle. So we can pick at most 2n points to get a convex hull which is not a triangle. 

On the other hand, if we have N > 4 points with convex hull not a triangle, then it is easy to remove a point and still have the convex hull not a triangle. If there is an interior point then we can remove that. If there are no interior points, then the convex hull has N points and we can remove any point to get a convex hull of N-1 > 3 points. 

So if the result is false, then if we take any N ≥ 2n of the points the convex hull must be a triangle. Suppose the convex hull of the 3n-1 points is A1, B1, C1. If we remove A1, then the convex hull is a triangle. Now B1 must be one of the vertices of this triangle, for if it belonged to a triangle XYZ of other points, then it could not be part of the convex hull of the whole set. Similarly for C1. So the convex hull after removing A1 must be A2B1C1 for some A2. We can now remove A2 and the convex hull must be A3B1C1 for some A3, and so on. Finally, we remove An-1 to get AnB1C1 as the convex hull of the remaining 2n points. 

Similarly, we can define B2, B3, ... , Bn, so that the convex hull after removing B1, B2, ... Bi is A1Bi+1C1, and we can define C2, C3, ... , Cn, so that the convex hull after removing C1, C2, ... , Ci is A1B1Ci+1. 
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But now we have 3n points Ai, Bj, Ck chosen from 3n-1, so two must be the same. The Ai are all distinct, and similarly the Bj and the Ck. So wlog we have Ai = Bj for some i,j. Now if we remove all the As, all the Bs and C1 from the original set we are left with at least n-1 points (because we are removing at most 2n distinct points) and these must belong to the interior of the blue triangle AiB1C1 and the yellow triangle A1BjC1 = A1AiC1. But the interiors are disjoint, so we have a contradiction. 

Problem 2
k > 2 is an integer and n > kC3 (where aCb is the usual binomial coefficient a!/(b! (a-b)!) ). Show that given 3n distinct real numbers ai, bi, ci (where i = 1, 2, ... , n), there must be at least k+1 distinct numbers in the set {ai + bi, bi + ci, ci + ai | i = 1, 2, ... , n}. Show that the statement is not always true for n = kC3. 

Solution
Suppose there are at most k distinct numbers. Then there are at most kC3 and hence <n distinct sets of 3 numbers chosen from them. So for some i ≠ j we must have {ai + bi, bi + ci, ci + ai} = {aj + bj, bj + cj, cj + aj}. But the set {ai, bi, ci} is uniquely determined by {ai + bi, bi + ci, ci + ai}, so {ai, bi, ci} = {aj, bj, cj}. Contradiction. 

Suppose we take S to be the set {30, 31, 32, ... , 3k-1}. Take all n = kC3 subsets of 3 elements and for each such subset Ai take {ai, bi, ci} so that {ai + bi, bi + ci, ci + ai} = Ai. Obviously ai, bi, ci are distinct, so we have to show that if (3a + 3b - 3c)/2 = (3r + 3s - 3t)/2, where a, b, c are distinct and r, s, t are distinct, then {a,b,c} = {r,s,t}. We have 3a + 3b + 3t = 3r + 3s + 3c. There are two cases. If a = t, then since the representation base 3 is unique, we must have one of r, s, c equal to b and the other two equal to a. Since c ≠ a, and c ≠ b that is impossible. So a, b, t must all be distinct and hence {a, b, t} = {r, s, c}. Since c ≠ a or b, we must have c = t and hence {a, b} = {r, s} and so {a, b, c} = {r, s, t} as required. 

For example, if k = 4, then n = 4 and we can take: 
a1, b1, c1 = -5/2, 7/2, 11/2 
a2, b2, c2 = -23/2, 25/2, 29/2 
a3, b3, c3 = -17/2, 19/2, 35/2 
a4, b4, c4 = -15/2, 21/2, 33/2 

Problem 3
The vertices of the triangle ABC are lattice points and there is no smaller triangle similar to ABC with its vertices at lattice points. Show that the circumcenter of ABC is not a lattice point. 

Solution
Let the points A, B, C have coordinates A (0,0), B(a,b), C(c,d). Suppose the circumcenter D (x,y) is a lattice point. Then AD2 = AB2, so x2 + y2 = (x-a)2 + (y-b)2. Hence a2 + b2 is even. Hence a + b and a - b are even. Similarly, c + d and c - d are even. So the points X = ((a+b)/2, (a-b)/2) and Y = ((c+d)/2, (c-d)/2) are lattice points. 

But AX2 = (a+b)2/4 + (a-b)2/4 = (a2+b2)/2 = AB2/2. Similarly AY2 = AC2/2. XY2 = (a+b-c-d)2/4 + (a-b+c-d)2/4 = ((b-c)2 + (a-d)2)/2 = BC2/2. So AXY is similar to ABC and smaller. Contradiction. 

16th Irish 2003
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Problem B1 

A triangle has side lengths a, b, c with sum 2. Show that 1 ≤ ab + bc + ca - abc ≤ 1 + 1/27. 

Solution 

Thanks to José Nelson Ramírez 

wlog a ≥ b ≥ c, so b+c = 2-a. Since a,b,c form a triangle we have a < 1. Put m = ab+bc+ca-abc-1. We have m = a(b+c) + bc(1-a) = a(2-a)+bc(1-a)-1 = (1-a)(bc+a-1) (*). 

Since c > 0, we have b < 1. Hence (b-1)(c-1) > 0, so bc + a - 1 > 0. Thus each term in (*) is > 0, so m > 0. 

We have bc ≤ (b+c)2/4 = (1 - a/2)2, so bc + a - 1 ≤ a2/4. So (*) gives m ≤ a2(1-a)/4. Thus it is sufficient to show that 27a2(1-a) ≤ 4, or 27a3 - 27a2 + 4 ≥ 0. But this factorises as (3a+1)(3a-2)2, and we are done. 

Problem A5 

Let R be the reals and R+ the positive reals. Show that there is no function f : R+ → R such that f(y) > (y - x) f(x)2 for all x, y such that y > x. 

Solution 

We have f(2) > (2-1)f(1)2 ≥ 0, so f(2) = k > 0 for some k. Now f(2+d) > dk2 > 2 for d > 2/k2. So for some h we have f(h) > 2. Now we claim that f(h + 1 + 1/2 + 1/22 + ... + 1/2n) > 2n+2. We have f(h+1) > f(h)2 > 22, so it is true for n = 0. Suppose it is true for n. Then f(h + 1 + 1/2 + 1/22 + ... + 1/2n+1) > (1/2n+1)f(h + 1 + 1/2 + 1/22 + ... + 1/2n)2 > (1/2n+1)22n+4 = 2n+3, so it is true for n+1 and hence for all n. But now consider f(h+3). Putting y = h+3, x = h + 1 + 1/2 + 1/22 + ... + 1/2n = h+2-1/2n, we have y-x > 1+1/2n > 1. Hence f(y) > f(x)2 > 22n+4. But that holds for all n, which is impossible. So no such function can exist. 

15th Irish 2002
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Problem A4 

Define the sequence a1, a2, a3, ... by a1 = a2 = a3 = 1, an+3 = (an+2an+1 + 2)/an. Show that all terms are integers. 

Solution 

After looking at the first few terms we conjecture that an = 4an-1 - an-2 for n even, 2an-1 - an-2 for n odd. It is certainly true for n = 3, 4, 5. Suppose it is true for 2m, 2m+1. 

Then to establish it for 2m+2 we require (a2m+1a2m + 2)/a2m-1 = 4a2m+1 - a2m or a2m+1a2m + 2 = 4a2m+1a2m-1 - a2ma2m-1 (*). But a2m+1a2m = a2m+1(4a2m-1 - a2m-2) by induction. Adding 2 = a2m+1a2m-2 - a2ma2m-1, we get (*). 

Similarly, to establish it for 2m+3 we require (a2m+2a2m+1 + 2)/a2m = 2a2m+2 - a2m+1 or a2m+2a2m+1 + 2 = a2ma2m+2 - a2ma2m+1 (**). But we have a2m+2a2m+1 = a2m+2(2a2m - a2m-1) by induction and 2 = a2m+2a2m-1 - a2ma2m+1. Adding gives (**). That completes the induction. So the new recurrence relations are true for all n. It follows immediately that an is always an integer. 

Problem B3 

Let Q be the rationals. Find all functions f : Q → Q such that f(x + f(y) ) = f(x) + y for all x, y. 

Answer 

f(x) = x or f(x) = -x 

Solution 

Suppose f(0) = k. Putting x = 0, f(f(y)) = k + y. Suppose f(x) = f(y), then f(f(x)) = f(f(y)), so k + x = k + y, so x = y. Hence f is injective. But putting y = 0, f(x + k) = f(x), so x = x + k. Hence k = 0. Hence also f(f(x)) = x. 

f(x+y) = f(x + f(f(y)) ) = f(x) + f(y). Hence by a trivial induction, f(nx) = nf(x) for n a positive integer. Now take any x > 0. Put x = r/s with r and s positive integers. Then f(sx) = f(r) = r f(1). But also f(sx) = s f(x), so f(x) = (r/s) f(1) = x f(1). But 0 = f(0) = f(x - x) = f(x) + f(-x), so f(-x) = -f(x) = -x f(1), so we have f(x) = x f(1) for all x. 

Put x = f(1), then 1 = f(f(1)) = f(1) f(1), so f(1) = 1 or -1. It is eaasy to check that both f(x) = x and f(x) = -x work. 

Problem B5 

The incircle of the triangle ABC touches BC at D and AC at E. The sides have integral lengths and |AD2 - BE2| ≤ 2. Show that AC = BC. 

Solution 

Let the side lengths be a, b, c as usual. We have CE = CD = (a+b-c)/2. By the cosine rule we have AD2 = AC2 + CD2 - 2AC·CD cos C = b2 + (a+b-c)2/4 - b(a+b-c) cos C. Similarly, BE2 = a2 + (a+b-c)2/4 - a(a+b-c) cos C. So BE2 - AD2 = a2 - b2 - (a+b-c)(a-b) cos C. Again by the cosine rule, we have cos C = (a2 + b2 - c2)/2ab, so BE2 - AD2 = a2 - b2 - (a+b-c)(a-b) (a2 + b2 - c2)/2ab = ((a-b)/2ab) (a2(-a+b+c) + b2(a-b+c) + c2(a+b-c) ). 

Suppose a ≠ b. wlog a > b. Suppose a-b = k ≥ 2. Then, dropping the b2 and c2 terms, we get: BE2 - AD2 > k/(2b(b+k)) (b+k)2(c+k) = (k/2)((b+k)/b)(c+k) > c+k > 2. Contradiction. If k = 1, then using c ≥ 1, we get: BE2 - AD2 ≥ (2(b+1)2 + 2b2 + 1)/(2b(b+1)) > ((b+1)2 + b2)/(b2+b) > (2b2 + 2b)/(b2 + b) = 2. Contradiction. So we must have a = b, as required. 

19th Chinese 2004
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Problem A1 

ABCD is a quadrilateral. E, F, G, H are points on AB, BC, CD, DA respectively such that (AE/EB)(BF/FC)(CG/GD)(DH/HA) = 1. The lines through A parallel to HE, through B parallel to EF, through C parallel to FG, and through D parallel to GH form a quadrilateral E1F1G1H1 (E1 is the intersection of the lines through A and B, F1 is the intersection of the lines through B and C, and so on). Find CF1/CG1 in terms of AH1/AE1. 
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Answer 

CF1/CG1 = 1/(AH1/AE1) 

Solution 

Let the diagonals AC, BD meet at O. Suppose the lines EF and AC meet at P (we consider later what happens if they are parallel). Then the heights of A and C above EF are proportional to PA and PC, so area AEF/area CEF = PA/PC. But area AEF/area BEF = AE/BE, and area CEF/area BEF = CF/BF, so PA/PC = (AE/EB)(BF/CF). Similarly, if GH meets AC at Q, then QA/QC = area AGH/area BGH = (AH/DH)(GD/CG). But (AE/EB)(BF/CF) = (AH/DH)(GD/GC), so PA/PC = QA/QC and hence P and Q coincide. 

Let E1F1 and G1H1 meet at R. Then area PAD/area PDH = AD/DH = area ARH1/area HRH1. Similarly, area PBA/area PBE = BA/BE = area ARE1/area ERE1. Hence (area PAD/area PDH)(area PBE/area PBA) = (area ARH1/area HRH1)(area ERE1/area ARE1). But area PAD/area PBA = DO/BO and area ARH1/area ARE1 = AH1/AE1, so (DO/BO)(area PBE/area PDH) = (AH1/AE1)(area ERE1/area HRH1). Now the bases PE and RE1 of PBE and ERE1 are parallel and the heights are the same, so area PBE/area ERE1 = PE/RE1. Similarly, the bases PH and RH1 of PDH and HRH1 are parallel and the heights are the same, so area PDH/area HRH1 = PH/RH1. Also triangles PHE and RH1E1 are similar (corresponding sides are parallel, so the angles are equal). Hence PE/RE1 = PH/RH1. Hence AH1/AE1 = DO/BO. 

A similar argument gives CG1/CF1 = DO/BO. Hence AH1/AE1 = CG1/CF1. 

It remains to consider the case where EF is parallel to AC. In that case AE/EB = CF/FB. Hence AH/DH = CG/GD, so GH is also parallel to AC. Hence E1F1 and H1G1 are parallel to AC. So AH1/E1H1 = area AH1G1/area E1H1G1 = area CH1G1/area F1H1G1 = CG1/F1G1. Hence AH1/AE1 = CG1/CF1. 

Problem A2 

a1/, a2, a3, ... is a sequence of integers with a1 positive and an = [(1 + 2/n)(an-1 - 1)] + 1. Find an in terms of a1 and n. 

Answer 

If a1 = 3k, then an = 1 + [(n+2)2/4] + (k-1)(n+1)(n+2)/2 
if a1 = 3k+1, then an = 1 + k(n+1)(n+2)/2 
if a1 = 3k+2, then an = (n+1)(1 + k(n+2)/2) 

Solution 

It is convenient to put bn = an - 1, so bn = [bn-1(n+2)/n]. It is a trivial induction that bn = k(n+1)(n+2)/2 is a solution for k a positive integer. Note that in this case we do not need the [ ], so we can add this solution to others. It gives b1 = 3k and hence a1 = 3k+1. 

We claim that bn = n is also a solution. For [(n-1)(n+2)/n] = [(n2+n-2)/n] = [n+1-2/n] = n (for n ≥ 2). We can add this to the previous solution to get bn = n + k(n+1)(n+2)/2 which gives b1 = 3k+1 and hence a1 = 3k+2. 

Finally, we claim that bn = [(n+2)2/4] is also a solution. That implies b2m = (m+1)2 and b2m-1 = m(m+1). Then b2m+1 = [(m+1)2(2m+3)/(2m+1)] = [(m+1)2 + 2(m+1)2/(2m+1)] = [(m+1)2 + (m+1)(2m+1)/(2m+1) + (m+1)/(2m+1)] = [(m+1)(m+2) + (m+1)/(2m+1)] = (m+1)(m+2). Also b2m+2 = [(m+1)(m+2)(2m+4)/(2m+2)] = [(m+2)(m+2)] = (m+2)2, which proves the claim. It gives b1 = 2. Adding to the first solution we get the solution bn = [(n+2)2/4] + (k-1)(n+1)(n+2)/2 which gives b1 = 3k-1 and hence a1 = 3k. 

The sequence is obviously determined by a1 and the recurrence rule, so we have found solutions for all positive integers a1. 

Problem A3 

S is a set of n points. It contains a convex 7-gon and given any convex pentagon in S, there is a point of S inside it. Find the minimum possible value of n. (Note that 5 points are not considered to form a convex pentagon if any of them lies in the convex hull of the other 4, so in particular they cannot form a convex pentagon if three of them are collinear.) 

Answer 

11 

Solution 

We show that there must be at least 4 points inside the convex 7-gon. 

There must be at least one, because there must be a point inside the convex hull formed by 5 of the points. If there is just one, X, then take a line through the point which does not contain any other points in the set. At least 4 points must lie on one side of the line. With X they form a convex pentagon, which must have a point inside. Contradiction. 

If there are just two, X and Y. Take the line through X and Y. It can pass through at most 2 of the 7 points, so at least 3 of the 7 points must lie on one side of the line. With X and Y they form a convex pentagon, which must have a point inside. Contradiction. 

Finally, suppose there are just three, X, Y and Z. Let HZ be the open half-plane on the opposite side of XY to Z. Similarly, let HY be the open half-plane on the opposite side of ZX to Y, and HX the open half-plane on the opposite side of YZ to X. Then HX ∪ HY ∪ HZ is the whole plane outside XYZ. So all 7 vertices of the convex 7-gon belong to HX ∪ HY ∪ HZ. Hence one of HX, HY, HZ contains at least 3 vertices of the 7-gon. With the two points on the line they form convex 5-gon. Contradiction. 

So we have shown that 11 points are necessary. The diagram shows that they are sufficient. 

Problem B1 

a is a real. The sequence of reals x0, x1, ... , xn+1 satisfies x0 = xn+1 = 0 and (xi-1 + xi+1)/2 = xi + xi3 - a3 for i = 1, 2, ... , n. Show that the sequence is uniquely determined by n and a and that |xi| ≤ |a|. 

Solution 

Suppose first a = 0. Suppose some xi > 0. Then take xj to be the largest xi. We have xj > 0 and hence j ≠ 0 or n+1. So (xj-1 + xj+1)/2 = xj + xj3 > xj. So xj-1 or xj+1 > xj. Contradiction. So all xi ≤ 0. Similarly, if some xi < 0, the take xj to be the smallest. But then (xj-1 + xj+1)/2 = xj + xj3 < xj. Contradiction. So all xi ≥ 0. Hence all xi = 0. It is easy to check that for a = 0, x0 = x1 = ... = xn+1 = 0 satisfies the conditions and so is the unique solution for any n. 

Now suppose a > 0. Suppose some xi < 0. Then take xj to be the smallest xi. But then (xj-1 + xj+1)/2 = xj + xj3 - a3 < xj. Contradiction. So all xj ≥ 0. Suppose some xi = 0 for i ≠ 0 or n+1. Then (xi-1 + xi+1)/2 = xi + xi3 - a3 = -a3 < 0, so xi-1 or xi+1 < 0. Contradiction. Thus all the terms except the first and last are positive. Let xj be the largest term. Then we must have xj ≤ a, because otherwise (xj-1 + xj+1)/2 = xj + xj3 - a3 > xj. Contradiction. In fact we must have xj < a, because if xj = a, then (xj-1 + xj+1)/2 = xj + xj3 - a3 = xj and hence xj-1 = xj+1 = a. Repeating, we get eventually x0 or xn+1 = a. Contradiction. 

Now suppose x1 = x. We ignore for the moment the requirement that xn+1 = 0. We show by induction on k that xk and xk-xk-1 are continuous, strictly increasing functions of x. That is obvious for k=1. Put k=2. We have x2 = 2x + 2x3 - 2a3, and x2-x1 = x + 2x3 - 2a3, which are both continuous, strictly increasing functions of x. Suppose it is true for k. Then xk+1 = 2xk + 2xk3 - 2a3 - xk-1 = xk + 2xk3 - 2a3 + (xk - xk-1) and xk+1 - xk = 2xk3 - 2a3 + (xk - xk-1). Since both xk and (xk - xk-1) are both continuous, strictly increasing functions of x, so are xk+1 and (xk+1 - xk). 

In particular, if follows that xn+1 is a continuous, strictly increasing function of x. Put xn+1 = f(x). Now if we take x = a, then x2 = 2a > a, and by a trivial induction xk > a for all k > 1. So, in particular, f(a) > a. On the other hand, if we take x = 0, then x2 = -2a3 < 0, and by a trivial induction xk < 0 for all k > 1. So, in particular f(0) < 0. Thus there must be a unique x in the interval (0,a) such that f(x) = 0. Since x uniquely determines the entire sequence, we have established that the entire sequence is uniquely determined by n and a. 

Now suppose a < 0. If xi is the sequence uniquely determined by n and -a, then it is clear that the sequence -xi is a solution for n and a. Conversely, if yi is a solution for n and a, then -yi is a solution for n and -a and hence must be the unique sequence xi. So the result is also true for a negative. 

Problem B2 

a1 < a2 < ... < an is a sequence of positive integers with ∑ 1/ai ≤ 1. Prove that (∑ 1/(ai2 + x2) )2 ≤ 1/(2a12-2a1+2x2) for any real x. 

Solution 

Appying Cauchy-Schwartz, we have lhs = (∑ (√ai/(ai2+x2))(1/√ai) )2 ≤ (∑ ai/(ai2+x2)2 )(∑ 1/ai) ≤ ∑ ai/(ai2+x2)2. 

Now (ai2+x2)2 > (ai2+x2)2 - ai2 > 0, so ∑ ai/(ai2+x2)2 < (1/2) ∑ (1/(ai2+x2-ai) - 1/(ai2+x2+ai) ). 

Now ai+1 ≥ ai+1, so ai+12-ai+1+x2 ≥ ai2+ai+x2 and hence ∑ (1/(ai2+x2-ai) ≤ 1/(a12+x2-a1) + (∑ 1/(ai2+x2+ai) ) - 1/(an2+x2+an) ≤ 1/(a12+x2-a1) + (∑ 1/(ai2+x2+ai) ). Hence lhs < (1/2) 1/(a12+x2-a1), as required. 

Problem B3 

Show that any sufficiently large integer can be expressed as a sum of distinct positive integers a1, a2, ... , a2004 such that each ai is divisible by its predecessor. 

Solution 

Call an n-sum a sum of n distinct positive integers each divisible by its predecessor. We have 1 + 3·40 + 3·41 + 3·42 + ... + 3·4n-2 = 4n-1, so 22n-2 is an n-sum. We have 22n-2+m = 2m22n-2, so 2N is an n-sum for any N ≥ 2n-2. 

Now suppose M has at least 4n2 binary digits. If at least n of them are 1s, then M is trivially an n-sum. For if M = ∑2ai with a1 < a2 < a3 < ..., then M = 2a1 + 2a2 + ... + 2an-1 + &sumi≥n 2ai. If less than n of the digits are 1s, then there must be a run of at least 2n zeros. So M = &sum1≤i≤k 2ai + 22n+ak ∑ 2bi, where 0< a1 < a2 < a3 < ..., and 0 < b1 < b2 < b3 < ...). But we can express 22n-2 as an (n-k)-sum. Multiplying by 2ak+2 ∑ 2bi gives an (n-k)-sum with every term divisible by 2ak+2 and hence M is an n-sum. 
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Problem 1 

Find all integers 0 < a < b < c such that b - a = c - b and none of a, b, c have a prime factor greater than 3. 

Answer 

(a, b, c) = (k, 2k, 3k), (2k, 3k, 4k) or (2k, 9k, 16k), where k = 2m3n. 

Solution 

It is sufficient to find solutions (A, B, C) without any common factor k which divides A, B and C, for then the complete set of solutions is (kA, kB, kC) with k = 2m3n. 

Put D = B - A, then C = A + 2D, which has the same parity as A, so A and B must have opposite parity. 

Suppose A is odd. Then C is odd and greater than 1, hence a power of 3. If A > 1, then A is also a power of 3, and hence B = (A + C)/2 is also. Contradiction. So A must be 1. Suppose C = 3n. Then B = (A + C)/2 = (1 + (4 - 1)n)/2 = (1 + (-1)n + (-1)n-14n + terms in 42 and higher)/2. Hence n is odd and B = 2 mod 4. But B is a power of 2, so B = 2 and C = 3. 

Suppose A is even, then B is odd and hence a power of 3. If A is divisible by 3, then so is C. Contradiction. So A must be a power of 2. Similarly, C must be a power of 2. If A is divisible by 4, then since C is a larger power of 2, it must also be divisible by 4. Hence 2D = C - A is divisible by 4, so B is divisible by 2. Contradiction. So A must be 2. It is easy to check that (A, B, C) = (2, 3, 4) and (2, 9, 16) are solutions. It remains to show that there are no solutions with B divisible by 27. 

Suppose there is such a solution, then we have A = 2, C a power of 2, B = 3n = 2m - 1 ( (A+C)/2). B = 27 does not work, so B ≥ 81 and hence m ≥ 4. We have 34 = 1 mod 16, so it is easy to check that 34k - 1 = 0 mod 16, 34k+1 - 1 = 2 mod 16, 34k+2 - 1 = 8 mod 16, 34k+3 - 1 = 10 mod 16. So n must be a multiple of 4. But since 34 = 1 mod 5, that means 3n - 1 = 0 mod 5, so B cannot be a power of 2. Contradiction. 

Problem 2 

D is a point on the side AB of the triangle ABC such that AB = 4·AD. P is a point on the circumcircle such that angle ADP = angle C. Show that PB = 2·PD. 
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Solution 

Note that angle APB = angle C, so triangles BAP, PAD are similar. Hence BA/AP = PA/AD, giving PA = 2AD. Also BP/AP = PD/AD, so PB/PD = AP/AD = 2, as required. 

Problem 3 

f is a bijection on the positive integers. Show that there are three positive integers a0 < a1 < a2 in arithmetic progression such that f(a0) < f(a1) < f(a2). Is there necessarily an arithmetic progression a1 < a2 < ... < a2003 such that f(a0) < f(a1) < ... < f(a2003)? 

Solution 

Suppose f(k) = 1. Then certainly f(k) < f(k + h) for any positive integer h. Now consider the sequence f(k+1), f(k+2), f(k+4), f(k+8), f(k+16), ... . Each term is different since k is a bijection. It cannot be always decreasing, since there are only finitely many positive values less than f(k+1). So for some 2n we have f(k + 2n) < f(k + 2n+1). But now k, k + 2n, k + 2n+1 is the required arithmetic progression. 

We can find a bijection which does not even give f(a0) < f(a1) < f(a2) < f(a3) for any arithmetic progression a0 < a1 < a2 < a3. 

For example, take f(n) = 2, 1, 8, 7, ... , 3, 26, 25, ... , 9, 80, 79, ... , 27, ... (for n = 1, 2, 3, ... ). Suppose that f(a0) < f(a1) < f(a2) < f(a3). Now a1 and a2 cannot be in the same block, and a2 and a3 cannot be in the same block, so there must be a complete block between a1 and a3. In other words, if 3n <= a1 < 3n+1, then a3 >= 3n+2 and a3 - a1 > 2·3n+1. But a1 - a0 < 3n+1. So a0, a1, a2, a3 is not an arithmetic progression. 

Problem 4 

Let X be the set of non-negative integers and f : X → X a map such that ( f(2n+1) )2 - ( f(2n) )2 = 6 f(n) + 1 and f(2n) >= f(n) for all n in X. How many numbers in f(X) are less than 2003? 

Answer 

128 

Solution 

Obviously f(2n) + 3 > f(2n+1) > f(2n), so f(2n+1) = f(2n) + 1 or f(2n) + 2. But f(2n)2 + 6 f(n) + 1 and f(2n)2 have opposite parity, so we must have f(2n+1) = f(2n) + 1. Hence f(2n) = 3 f(n). 

So, in particular, f(0) = 0. Hence f(1) = 1. A trivial induction now gives that f is strictly monotonic increasing. Obviously f(128) = 37 = 2187 > 2003. 

f(127) = f(126) + 1 = 3 f(63) + 1 = 3 f(62) + 4 = 9 f(31) + 4 = 9 f(30) + 13 = 27 f(15) + 13 = 27 f(14) + 40 = 81 f(7) + 40 = 81 f(6) + 121 = 243 f(3) + 121 = 243 f(2) + 364 = 729 f(1) + 364 = 1093 < 2003. So the 128 distinct numbers f(0), f(1), ... , f(127) are less than 2003. 

Na siteu

http://www.math.ust.hk/mathematical_excalibur/
puno zanimljivih i korisnih tema i zadataka sa rjesenjima.


- 22 -


