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First Selection Test

1. Let (an) be a sequence for real numbers so that a; =} and for each positive integer n
we
a5
R
Prove that for every positive integer n we have ay + az + -+ +ay < 1.
Proof: Let b, = n‘T The recurrence becomes bny1 = b2 —b, +1. We have the following
identity:

1 1
b(bn — 1) it (bnsr — 1)
Thisis equivalent to j-pl- = ottt — -1 which is clear from the recurrence.
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[image: image3.png]2. Consider the sequence (an ) <o defined by ao = a1 = 1 and a1 = 1da,
Prove that for any n > 0,2a, — 1is a perfect square.

> 1

Proof: This problem is a classical one. It is almost identical to problem 3 from the
1999 Romanian Selection Test for the Balkan Mathematical Olympiad.

The characteristic equation of the recurrence is 2* — 14z + 1 = 0 and the roots are
u=7-4V3v = 7 A 43, Then it is easy to find that an = c1u™ + 20", where

“:%v ’W
Now
@ = z‘f\f:‘uﬂ\f}uz‘f\;zu 137
_ 2v3-3 2v3+3
T a3 ToE GV - v




[image: image4.png]Therefore

(2v3-3)(2+ V3P" + (2V3+3)(2 - V3" — 2v3

20, -1 =
2v3
_ (2V3-3P@+ VBT +3(2— VBT - 2VB2v3 - 3)
- 2v3(2v3 - 3)
_(@2VE-3)2+ VAP + (V3@ - VB - 2v3(2VE - 3)
- 2v3(2V3 - 3)

Since (2v3 - 3)(2 + V3)" - (V3(2 — V3)" = V3(2v3 — 3) we clearly get that
9a, 1 (2VB-3)2+ By ~ (V32 - VA)'f
s 2V3(2v3 - 3)
Therefore 2a, — 1 is a perfect square in Q[v3] <= 2v3(2v3 - 3) is a square. But

2V3(2v3 - 3) = 3(4 - 2/3) = (V3(1 = V3)P. Now it is easy to see that 2a, — 1 is
integer. Since its square root is in Q[v/3] = it is also in Z L]




[image: image5.png]3. Let a,b be two positive (> 0) real numbers. For n € N* define 2., as the sum of digits
of [an +b]. Prove that (z,),-; contains a constant subsequence.
Proof: Consider the interval I,,, = [1079,107+9 + 10 with p > 0. Since an + b is an
arithmetic progression then there are at least | !2=2| numbers of form an + b in this
interval. Therefore there at least [ 12=2| — 1 numbers of type [an + b] in the interval.
But a number in this interval looks like this:

100
»

Qaa..

The sum of digits of this number is equal to § = 1+ay+as+. ..+a,. Now 1< § < 149g
because the a;-s are digits in the decimal base. Consider intervals I, for all p > 0.
Then in each such interval there are at least |24 — 1. Choose ¢ > logyg2a +b and
fix it. Then this implies that | 2=| —1 > 1 so in each interval I, there is at least one
number of the requested form. Since there is an infinite number of I, intervals there
is an infinite number of numbers |an +b| in them. But all such numbers have sums
of digits in the set {1,2,...,1+ 9¢}. By the pigeonhole principle there is an infinite
set of number of type |an +b] inside intervals I, that have the same sum of digits.
S0 (,)azn has an infinite constant subsequence. »





[image: image6.png]1. Let py, pp € N. Define recurrently p,.2 to be the smallest prime divisor of pn + pni1.

Prove that the real number
z =0.amaz
obtained by adjoining the digits of all a; is rational.
Proof: Clearly it is enough to prove that the sequence p, becomes periodic after a
certain moment onwards. If a subsequence of g, = max(p,, p;1) is bounded by M
then there are < N? possible pairs (p,, pos1) 0 at least two pairs will be equal. Since
the rest of a sequence is determined by such a pair it means that the sequence becomes
periodic. Therefore all we need to do is show boundedness.
Let p, = p, Pasr = g be two consecutive primes in the sequence. If they are both odd
then poya = 2. If g+ 2 is not a prime then p, 5 < /2 < max(2, )/2 and this means
that gois < gny1- If ¢ + 2 is prime then g + 4 is not (by divisibility with 3) unless
g =3 in which case we have that the sequence is periodic with period 9 (manually).
Therefore pn4 < (q+4)/2 and this cannot be 2 because g+ 2 is a prime. This means
that pnys = 2 and this means that guis < (g + 4)/2 < gs1.
If p,q are not both odd then one of them is 2 so we may chose the two primes that
come immediately after them and they have to be odd (unless p and g are both 2 in
which case the sequence is constant ).
We have found a subsequence (constructed step by step) of g, that is bounded by g,
for some fixed n so we are done.
n




[image: image7.png]If () is & sequence so that we have the recurrence 45 = uz, 41 +vz,, then we construct
the characteristic equation of the recurrence:

2% —uz —

0

with roots a,b. Note that z,, = a" and z, = b" satisfy the given recurrence because a* =
wa+v,b? = ub+v. Alsoifa=bthena =b= % and so z, = na" also satisfies the recurrence.

1fa+ bthen find c1,cs € B 50 that 21 = c1a + e, 25 = ¢16* + c2°. Then we know that
2 = c10" + c2b" verifies the recurrence. Also o1,z> uniquely determine both the constants
c1,¢5 and the sequence z,. Therefore the sequence satisfying the given recurrence has to be
2 = 10" + c3b" with ¢, ¢, determined above.

Similarly ifa = bthen the sequence has to be ,, = c,a"+cynb™ where ¢y, ¢, are determined
from 2, = 1+ cb and zy = 10 + 2067

We are going to use the following property of the quadratic extanesions of the rationals:

Lemma 1 Ifd is square free and z € Q[Vd) so that 2* € Z then z € Z.

Proof: Let 2 = p+qvd with p,g € Q. Then 2 = 7 + d¢? + 2pgv/d € Z. So pg = 0.
1f p =0 then dg? € Z and this means that the denominator of ¢* has to divide d. But d is
square-free so this cannot happen unless the denominator of g is 1, ie. ¢ € Z. Similarly if
we assume that ¢ = 0 then p € Z. So z € Z[Vd].
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