
A BRIEF INTRODUCTION TO LOCAL FIELDS

TOM WESTON

The purpose of these notes is to give a survey of the basic Galois theory of local
fields and number fields. We cover much of the same material as [2, Chapters 1 and
2], but hopefully somewhat more concretely. We omit almost all proofs, except for
those having directly to do with Galois theory; for everything else, see [2].

1. The decomposition and inertia groups

Let L/K be an extension of number fields of degree n. We assume that L/K is
Galois. Let p be a fixed prime of OK and let its ideal factorization in OL be

pOL = Pe1
1 · · ·Per

r .

Recall that the Galois group Gal(L/K) acts on the set {P1, . . . ,Pr}, and this
action is transitive. It follows that our factorization can actually be written as

pOL = (P1 · · ·Pr)e

and each Pi has the same inertial degree f ; we have ref = n.
When one has a group acting on a set, one often considers the subgroups stabi-

lizing elements of the set; we will write these as

D(Pi/p) = {σ ∈ Gal(L/K) | σ(Pi) = Pi} ⊆ Gal(L/K)

and call it the decomposition group of Pi. (Note that we are not asking that such σ
fix Pi pointwise; we are just asking that they send every element of Pi to another
element of Pi.)

It is easy to see how the decomposition groups of different Pi are related: let
Pi and Pj be two primes above p and let σ ∈ Gal(L/K) be such that σ(Pi) = Pj .
Then one checks immediately that

D(Pj/p) = σD(Pi/p)σ−1.

That is, the decomposition groups are all conjugates of each other. Note also that
since Gal(L/K) acts transitively and D(Pi/p) is the stabilizer of an element, we
have

#D(Pi/p) =
n

r
= ef.

Example 1. Let us fix now an example which we will use throughout the paper; it
is an abelian extension, so it does not have quite all of the structure of the general
case, but it should still illustrate our results. Consider the extension Q(ζ15)/Q,
which is a Galois extension of degree 8. We will just write ζ for ζ15 from now on.
The Galois group Gal(Q(ζ)/Q) can be identified with (Z/15Z)∗, where i ∈ (Z/15Z)∗

corresponds to the automorphism σi of Q(ζ) characterized by σi(ζ) = ζi.
1
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Let us also fix some specific primes to consider. Set

p2 =
(
2, ζ4 + ζ + 1

)
;

p3 =
(
3, ζ4 + ζ3 + ζ2 + ζ + 1

)
;

p5 =
(
5, ζ2 + ζ + 1

)
;

p31 =
(
15, ζ + 3

)
.

Each pp is a prime lying over p. We have the following values of r, e and f :

r e f
p2 2 1 4
p3 1 2 4
p5 1 4 2

p31 8 1 1

Let us compute the decomposition groups of these primes. Three of these are
quite easy: D(p3/3) = D(p5/5) = Gal(L/K) since in these cases there are no other
primes above 3 and 5. Also, we have D(p31/31) = {1}, since we know that it has
order ef = 1.

This leaves the case of D(p2/2). We know that this group has order ef = 4. To
compute the group explicitly, we use the fact that p2 is the kernel of the map

Z[ζ]→ Z[ζ]/p2
∼= F2[x]/(x4 + x+ 1)

sending ζ to x. Since

σi
(
2, ζ4 + ζ + 1

)
=
(
2, σi(ζ4 + ζ + 1)

)
=
(
2, ζ4i + ζi + 1

)
we see that σ will lie in D(p2/2) if and only if ζ4i + ζi + 1 is in the kernel of the
above map. This in turn will occur if and only if x4 + x+ 1 divides x4i + xi + 1 in
F2[x]. From here one can easily check the possibilities, and it turns out that

D(p2/2) = {σ1, σ2, σ4, σ8}.

The most interesting thing about the decomposition group is its relationship to
the Galois theory of the residue field. Specifically, fix one of the P = Pi lying over
p. Let σ be an element of D(P/p). Since σ(P) = P, it induces an automorphism
of the residue field OL/P. This automorphism certainly fixes OK/p, so we have
obtained a map

D(P/p)→ Gal(OL/P : OK/p)

which is easily checked to be a homomorphism. In fact, it is also surjective; we will
prove this fact later in our discussion of local fields.

Let us define the inertia group of P by

I(P/p) = ker
(
D(P/p)→ Gal(OL/P : OK/p)

)
thus I(P/p) is a normal subgroup of D(P/p) and there is an isomorphism (using
the surjectivity mentioned above)

D(P/p)/I(P/p) ∼= Gal(OL/P : OK/p).

Somewhat more explicitly, we see from the definition that

I(P/p) = {σ ∈ D(P/p) | σ(α) ≡ α (mod P) for all α ∈ OL}.
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Note also that as with decomposition groups, if Pi and Pj are two primes lying
over p with σ(Pi) = Pj , then

I(Pj/p) = σI(Pi/p)σ−1.

The inertia group is related to our usual notion of inertia in the following simple
way. Recall that D(P/p) has order n/r = ef . We also know that Gal(OL/P :
OK/p) has order f , by definition. It follows that I(P/p) has order e. In particular,
I(P/p) is trivial if and only if P/p is unramified in L/K.

Example 2. The proposition shows that the inertia groups of p2 and p31 are both
trivial. The group I(p3/3) has order 2; to compute it we note that σi will induce
the identity on the residue field

Z[ζ]/p3
∼= F3[x]/(x4 + x3 + x2 + x+ 1)

if and only if σi(ζ) ∼= ζ (mod p3). Under the above isomorphism, this is the same
as σi(x) = xi being congruent to x modulo x4 +x3 +x2 +x+ 1. This occurs if and
only if x4 +x3 +x2 +x+ 1 divides xi−x, which is an easy condition to check. One
finds that

I(p3/3) = {σ1, σ11}.

The computation for I(p5/5) is similar; one finds this time that

I(p5/5) = {σ1, σ4, σ7, σ13}.

To give a slightly more intuitive explanation of these groups, let us now suppose
for simplicity that Gal(L/K) is abelian. Define the inertia field LI of P/p to be
the fixed field of I(P/p) and the decomposition field LD of P/p to be the fixed field
of D(P/p). We have a diagram

L _

D(P/p)

_

_

Gal(L/K)

_

LI

I(P/P ) e

LD

Gal(OL/P:OK/p) f

K

r

One can show (see [1, Chapter 4]) that in the extension LD/K, p splits completely
into

pOLD = PD
1 · · ·PD

r ,

where each PD
i has inertial degree 1. Next, in LI/LD, each PD

i remains inert; that
is, PI

i = PD
i OLD is still prime, and it has inertial degree f . Lastly, each prime

PI
i is totally ramified in L/LI , so that PI

iOL = Pe
i . Thus the decomposition and

inertia groups somehow separate out the different sorts of behavior of primes in the
extension L/K.
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2. Local fields

We would like to obtain a Galois theoretic interpretation of the entire decom-
position group D(P/p), rather than just its quotient D(P/p)/I(P/p). To do this
we will introduce the notion of a local field, which is of fundamental importance in
algebraic number theory. Our construction will be extremely brief; for the details,
see [3] and the bibliography there.

Before explaining how to associate local fields to number fields, we will give the
abstract definition of local fields. Fix a rational prime p. We begin with the ring
Zp of p-adic integers. One can define Zp topologically as the completion of Z with
respect to the p-adic metric; we give an algebraic definition instead:

Zp = lim←−
n→∞

Z/pnZ.

Recall that an element a of such an inverse limit can be represented as an infinite
sequence

a = (a1, a2, . . .)

with ai ∈ Z and ai ≡ ai+1 (mod pi) for all i. We have a natural injection of Z into
Zp given by sending a ∈ Z to the sequence

(a, a, a, . . .).

However, Zp contains many other elements. Intuitively, elements of Zp are supposed
to have information “modulo arbitrarily high powers of p.”

There is another description of Zp which is somewhat more concrete. Let a =
(a1, a2, . . .) be an element of Zp and note that there is some unique b0 ∈ {0, 1, . . . , p−
1} such that a1 ≡ b0 (mod p); in fact, this implies that ai ≡ b0 (mod p) for all i.
Thus

a− b0 = (a1 − b0, a2 − b0, . . .)
(where we regard the b0 on the left as an element of the image of Z in Zp) is divisible
by p; that is, we can write

a− b0 = p(a′1, a
′
2, . . .)

for some a′i ∈ Z. Repeating this process for a′ = (a′1, a
′
2, . . .) yields a b1 ∈

{0, 1, . . . , p− 1} such that a′ − b1 is divisible by p, and thus such that

a− b0 − pb1
is divisible by p2. Continuing in this way, we can write

a =
∞∑
i=0

bip
i

with each bi ∈ {0, 1, . . . , p−1}. That is, a can be written as a sort of “power series”
in p with coefficients in {0, 1, . . . , p− 1}. Note that this fits with our description of
Zp as containing information modulo arbitrarily high powers of p: cutting off the
power series expression after the pi−1 term yields the image ai of the element in
Z/piZ.

The ring Zp, although somewhat confusing, is very convenient algebraically. It
is what is called a discrete valuation ring; that is, it is a Dedekind domain with
only one non-zero prime ideal. In this case, that non-zero prime ideal is simply
generated by p. Unique factorization of ideals now implies that every ideal of Zp
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is generated by pn for some n. Note that the residue field Zp/pZp is just the finite
field Fp.

We define Qp to be the field of fractions of Zp. In fact, we can obtain Qp from
Zp just by inverting the single element p; that is, Qp = Zp[1/p]. It follows that any
element of Qp can be written as

∞∑
i>>0

bip
i

where bi ∈ {0, 1, . . . , p − 1} and the sum has only finitely many negative terms.
Note that Qp has characteristic 0.

A local field (for this fixed p) is simply a finite extension of Qp; as always, such
extensions can be obtained simply by adjoining roots of polynomials inQp[x]. Given
such a field K, we define its ring of integers OK to be the integral closure of Zp in
K. It can be shown to also be a discrete valuation ring. (The proof that OK is a
Dedekind domain is basically the same as the proof for rings of integers of number
fields; that it has only one non-zero prime ideals follows from results on topological
vector spaces.) If p is its unique non-zero prime ideal, we must have p ∩ Zp = pZp;
in particular, p contains p. It follows that the residue field OK/p of OK is a finite
field of characteristic p.

3. Galois theory of finite fields

Before we begin to investigate the Galois theory of local fields, it will be useful
to recall the basic Galois theory of finite fields. Let `/k be an extension of finite
fields of characteristic p and let q be the cardinality of k; it is a power of p. This
extension if automatically Galois; let n be the degree. Then Gal(`/k) is cyclic of
order n, with a canonical generator ϕ given by

ϕ(α) = αq

for all α ∈ `. (The easiest way to see this is to note that ` can be characterized as
the solutions of xq

n − x, which shows that ϕn will be the first power of ϕ which
is trivial; since the Galois group has order n, this implies that ϕ is a generator.)
ϕ is called the Frobenius automorphism. Note in particular that if α ∈ `, then its
conjugates are all just powers of α.

4. Galois theory of local fields

Let L/K be a finite Galois extension of local fields; we mean by this (among
other things) that L and K are both extensions of the same Qp. As is always the
case, these extensions are just the splitting fields of polynomials in K[x]. We should
note, however, that our intuition from Q is often incorrect in this setting and local
fields often contain elements which we would not have expected; for example, we
will see later that Q31(ζ15) = Q31.

Let OL and OK be the rings of integers of L and K respectively, and let P and
p be the unique non-zero primes of these rings. For any σ ∈ Gal(L/K), we must
have σ(P) = P, since σ must send P to some other prime ideal, and there aren’t
any others. Thus σ induces an automorphism of the residue field ` = OL/P which
clearly fixes k = OK/p; we now get a homomorphism

Gal(L/K)→ Gal(`/k).
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We claim that this homomorphism is surjective. To see this, choose a primitive
element a for `/k. Since a is a primitive element, its characteristic polynomial
equals its minimal polynomial. It follows that it is just given by

f(x) =
∏

s∈Gal(`/k)

(
x− s(a)

)
∈ k[x].

Now, choose any α ∈ OL which maps to a under the map OL � `. Let S ⊆
Gal(L/K) be some subset of the Galois group such that each conjugate of α appears
exactly once among the σ(α) for σ ∈ S. Then the minimal polynomial for α in
K[x] (in fact, in OK [x]) is just

g(x) =
∏
σ∈S

(
x− σ(α)

)
.

Now, consider the image ḡ(x) of g(x) in k[x]. Since α is a root of g(x), a is a root
of ḡ(x); thus f(x), being the minimal polynomial of a, divides ḡ(x) in k[x]. In
particular, for each s ∈ Gal(`/k), s(a) is a root of ḡ(x). In other words, for each
such s there exists σ ∈ Gal(L/K) such that

σ(α) ≡ s(a) (mod P).

But since a is a primitive element for `/k, s : `→ ` is determined entirely by s(a).
In particular, we see that σ induces s on `, so s is the image of σ under our map
Gal(L/K)→ Gal(`/k). Since this is true for every such s, this shows that this map
is surjective.

We now define the inertia subgroup I(L/K) of Gal(L/K) to be the kernel of this
map. Thus I(L/K) is a normal subgroup of Gal(L/K) which we can also write as

I(L/K) = {σ ∈ Gal(L/K) | σ(α) ≡ α for all α ∈ OL}.
We also have a canonical isomorphism

Gal(`/k) ∼= Gal(L/K)/I(L/K).

We will say that L/K is unramified if I(L/K) = {1}; this occurs if and only if

Gal(L/K) ∼= Gal(`/k).

Note that in this situation Gal(L/K) is cyclic of degree n = [L : K] (since Gal(`/k)
is) and we obtain a canonical generator ϕ which corresponds to the Frobenius
automorphism of `/k. By abuse of language we will also call this the Frobenius
automorphism of L/K; it is characterized by

ϕ(α) ≡ αq (mod P)

for all α ∈ OL.
It is a fundamental fact that for every extension ` of k, there is a unique unram-

ified extension L of K with residue field `. Since for each positive integer n, k has
a unique extension of degree n, this also implies that for each positive integer n, K
has a unique unramified extension of degree n.

The structure of ramified extensions is considerably more complicated. We can,
however, at least use some of our knowledge of the unramified case. Define Kur to
be the fixed field of I(L/K) in L. By Galois theory we have

Gal(Kur/K) ∼= Gal(L/K)/I(L/K) ∼= Gal(`/k).

In fact, one sees easily that Kur/K is unramified and that Kur has residue field `;
thus Kur is the unique unramified extension of K with residue field `. The extension
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L/Kur has Galois group I(L/K) and is totally ramified; it is much more complicated
in general (although with more effort one can still obtain a lot of information in
the case that p does not divide #I(L/K).)

5. Construction of local fields

We have yet to give any real examples of local fields. Their fundamental impor-
tance comes from the fact that they arise naturally from number fields.

Let K be a number field and let p a prime of OK . We will define the completion
of OK at p analogously to the way we defined Zp and Qp. We define

OK,p = lim←−
n→∞

OK/pn;

thus elements of OK,p can be represented as infinite sequences

(a1, a2, . . .)

with each ai in OK and ai ≡ ai+1 (mod pi). We obtain a natural injection OK ↪→
OK,p by sending a ∈ OK to (a, a, a, . . .) ∈ OK,p.
OK,p turns out to be a discrete valuation ring, and its unique non-zero prime ideal

is simply the extended ideal pOK,p. One also shows that the injection OK ↪→ OK,p
induces an isomorphism

OK/p ∼= OK,p/pOK,p
of residue fields. It is a basic fact that any discrete valuation ring is a principal ideal
domain; in fact, any element π ∈ p − p2 will be a generator of pOK,p, and unique
factorization of ideals now shows that every ideal has the form (πn) for some n. A
generator of pOK,p is called a uniformizer.

We can describe OK,p in an analogous way to our power series description of Zp.
Specifically, let c1, . . . , ck be any elements of OK such that each element of OK/p
is the image of exactly one ci. Proceeding as with Zp, we find that we can write
any a = (a1, a2, . . .) ∈ OK,p as

a =
∞∑
i=0

biπ
i

where each bi is equal to one of the cj and π is any (fixed) uniformizer.
We define the field Kp to be the field of fractions of OK,p; it can be obtained

simply by inverting a uniformizer π. Note that it contains K since OK,p contains
OK .

6. Connections with Galois theory of number fields

Now let L/K be a Galois extension of number fields and let P and p be primes
as in the first section. We claim that there is a natural injection

OK,p ↪→ OL,P.

The proof of this is a tiny bit messy. Basically, one lets Pe be the exact power of P
dividing pOL, and one shows that for any i we have Pie ∩ OK = pi. We therefore
obtain natural maps

OK/pi ↪→ OL/Pie;

from here one uses general properties of inverse limits to conclude that there is
indeed an injection OK,p ↪→ OL,P.
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From this injection we see also that Kp ↪→ LP; thus LP is an extension of Kp.
In fact, one can show that LP/Kp is a Galois extension; we will return a bit later
to this issue, but for now let us just assume it. It is also not difficult to show that
if L = K(α) with α a root of f(x) ∈ K[x], then LP = Kp(α′), where α′ is some
root of f(x) in LP; however, f(x) need not still be irreducible in Kp[x].

Note that we can apply these results in particular in the case K = Q and p = (p);
we conclude that each LP and Kp is an extension of Qp, where pZ = p∩Z = P∩Z.
In particular, we are now in the situation studied previously. (Although to be
completely honest we should acknowledge that we have not yet showed that LP/Kp

is a finite extension; we will do this in a moment.)
Let us determine the Galois group Gal(LP/Kp). Given any σ ∈ Gal(LP/Kp), we

can restrict σ to L to obtain an automorphism of L which fixes K, since K ⊆ Kp.
That is, we obtain a map

Gal(LP/Kp)→ Gal(L/K)

which is easily seen to be a homomorphism. Furthermore, since we must have
σ(POL,P) = POL,P, as it is the only prime of LP, we see that the image of this
map must lie in the decomposition group D(P/p).

On the other hand, given σ ∈ Gal(L/K) lying in D(P/p), note that σ(Pi) = Pi

for all i. Thus σ yields automorphisms of each residue ring OL/Pi, and therefore
an automorphism of OL,P, given by

σ
(
(a1, a2, . . .)

)
=
(
σ(a1), σ(a2), . . .

)
for (a1, a2, . . .) ∈ OL,P. Thus we have another homomorphism

D(P/p)→ Gal(LP/Kp).

It is clear from the definitions that the composition

D(P/p)→ Gal(LP/Kp)→ Gal(L/K)

is just the natural injection of D(P/p) into Gal(L/K). It follows from all of this
that the map

Gal(LP/Kp)→ Gal(L/K)

is an injection, with image D(P/p). In particular,

Gal(LP/Kp) ∼= D(P/p),

so we have obtained our desired Galois theoretic interpretation of D(P/p).
Note that this also shows that LP/Kp is a finite extension. In fact, the easiest

way to show that it is Galois is to show independently that it has degree ef and
then to use the above isomorphism.

The usefulness of these results is that they allow us to examine the Galois group
“one prime at a time”, and the Galois theory of local fields is much easier than that
of number fields. As an important example, let us suppose that p is unramified.
Then I(P/p) is trivial, so we have an injection

Gal(`/k) ∼= Gal(LP/Kp) ∼= D(P/p) ↪→ Gal(L/K),

where ` and k are the appropriate residue fields. In particular, we can interpret the
canonical Frobenius generator ϕP of Gal(LP/Kp) as an element of Gal(L/K); it is
characterized by

ϕP(α) ≡ αq (mod P)
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for all α in OL. Such elements turn out to be extremely important in the study of
number fields, especially in the case that Gal(L/K) is abelian.

7. Examples

Let us return to our Q(ζ15)/Q situation in order to give some “concrete” exam-
ples of local fields. Let us begin with the prime p2. We have e = 1 and f = 4,
so the local field extension Q(ζ)p2/Q2 is an unramified Galois extension of degree
4. Since Q(ζ)p2 is just Q2(ζ), we see that the unique unramified extension of Q2

of degree 4 is just Q2(ζ15). However, there are many quite different looking ways
to write this field. For example, a similar argument shows that Q2(ζ5) is also an
unramified extension of Q2 of degree 4, and thus equals Q2(ζ15). In particular, we
seem to have picked up a third root of unity “for free”.

Next consider p3, which has e = 2 and f = 4. Here we find that the local field
Q(ζ)p3 = Q3(ζ) is a Galois extension of Q3 of degree 8, with an inertia group of
order 2. There is a not whole lot else we can say about it at the moment. Similarly,
Q5(ζ) is a Galois extension of Q5 of degree 8, with inertia group of order 4.

Lastly, we consider p31. Here we find that Q31(ζ) has degree 1 over Q31; that is,
ζ15 ∈ Q31. More generally, one can use the fact that a prime p splits completely in
Q(ζm) if and only if p ≡ 1 (mod m) to show that Qp contains the (p − 1)st roots
of unity. In general, the cyclotomic polynomial Φm(x) need not be irreducible over
Qp; in fact, one can determine how it factors based on how p factors in Q(ζm).

As a final example, let us consider extensions Qp(
√

2). We know from our general
theory that this extension will be trivial if and only if p splits completely in Q(

√
2);

this in turn happens if and only if x2 − 2 has distinct roots modulo p. In other
words,

√
2 ∈ Qp if and only if

√
2 ∈ Fp, at least for p 6= 2. This is a first instance

of Hensel’s lemma, which says (roughly) that a polynomial has roots in Qp if and
only if it has roots in Fp.

References

[1] Daniel Marcus, Number Fields. Springer-Verlag, New York, 1977.
[2] Jean-Pierre Serre, Local Fields. Springer-Verlag, New York, 1979.

[3] Tom Weston, The idelic approach to number theory.


