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Preface

I �rst started to think seriously about symmetry groups while teaching a senior-level abstract
algebra course in Fall 1999, during which we determined symmetry groups of the Platonic
solids. Soon afterward I worked out for myself the classi�cation of the symmetry groups of
bounded plane �gures and of strip patterns, neither of which is not very hard. From that I
decided to try to understand wallpaper patterns. A big step was becoming aware of Mackiw�s
book [3], which contains two chapters on wallpaper patterns, I began to read through the
second of these chapters, which does the classi�cation. Fairly soon I realized that a wallpaper
group is a group extension of its subgroup of translations, a group isomorphic to Z2, and its
point group. At this point I started to think about group cohomology. This is an important
tool in the theory of �nite-dimensional division algebras, my primary area of research, and
it is used to classify group extensions. It seemed to me likely that the classi�cation of
wallpaper groups should be the same, or nearly so, as the classi�cation of group extensions,
even though two group extensions 1 ! T ! G ! G0 ! 1 and 1 ! T ! G0 ! G0 ! 1

can be inequivalent even if G and G0 are isomorphic. In order to carry out the classi�cation
of group extensions, I needed to calculate several cohomology groups. After a little bit of
thought, I realized that I needed to use spectral sequences to do this. At this point I decided
it was time to �nally buckle down and learn about these; I had some familiarity with spectral
sequences from listening to various research talks, but I had never studied them in detail.
After working through the spectral sequence chapter in Weibel [7], I found that calculating
the cohomology groups that arise from wallpaper groups was very easy; it only took quite
simple applications of the Lyndon-Hochschild-Serre spectral sequence. Doing so gives 18
inequivalent group extensions; this shows that there is very little di¤erence between group
extensions and wallpaper groups. A little more work then showed that only two inequivalent
group extensions corresponded to isomorphic symmetry groups.

Armed with this cohomological classi�cation of wallpaper groups, I proceeded to present
these ideas in a series of lectures in our algebra seminar (Spring 2000). Because my enjoyment
of working through this material and discussions with colleagues, I decided to write this up
in a monograph. I knew that nothing I had done was original. However, I was a bit
surprised that any details of the classi�cation is not so well known, even though many
people know about it. Many books on symmetry and Escher�s tessellations point out the
classi�cation without proving it. Furthermore, I liked very much how tightly related the
classi�cation of the wallpaper groups is to the classi�cation of the corresponding group

ix
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extensions. I thought that doing the classi�cation via group cohomology was a very nice
application of this abstract and technical area of algebra. In fact, at the end of a graduate
level course in group cohomology I taught in Fall 2000, I gave several examples of computing
cohomology groups via spectral sequences by considering wallpaper groups. However, to
make this monograph more accessible, I have included a section classifying the wallpaper
groups without resorting to any cohomology. By ignoring the chapter on group cohomology,
a well-prepared undergraduate can follow the classi�cation given here.

Las Cruces, New Mexico
April 2003



Chapter 1

Introduction

It is often said that group theory is the study of symmetry. In this book we will use group
theory, along with some other �elds of mathematics, to classify the symmetry of certain two-
dimensional �gures called wallpaper patterns. The way one classi�es symmetry of geometric
objects is to associate to the object a group, called its symmetry group, and then to classify
the possible symmetry groups. The study of symmetry groups of wallpaper patterns began
in the nineteenth century by people studying crystals, which exhibit a repeating structure
in three dimensions. By the end of the nineteenth century, the classi�cation of the so-called
crystallography groups in dimensions 2 and 3 was completed by Fedorov, Schoen�ies, and
Barlow, building on work by several others.

While many mathematicians know that there are exactly 17, up to isomorphism, sym-
metry groups of wallpaper patterns, most do not know why this is true. One of the purposes
of this book is to show how to obtain the classi�cation. While much of the classi�cation can
be understood by a good undergraduate student, our approach to the classi�cation should
be of interest to professional mathematicians, including algebraists, due to our use of group
cohomology and spectral sequences. In fact, another of the book�s purposes is to illustrate
the use of homological techniques. Finally, a third purpose of the book is to make a con-
nection between artistic aspects of drawing tessellations and group-theoretic concepts. By
giving a brief description of group cohomology, the book is nearly self-contained, relying on
other sources only for results about the cohomology of cyclic groups and spectral sequences.

The classi�cation and organization of this book begins with the de�nition of wallpaper
patterns, their translation lattices, and their symmetry groups, which are groups of isome-
tries. In Chapter 2 we describe the di¤erent types of isometries of the plane and the structure
of the group of isometries of the plane. Chapter 3 begins the classi�cation in earnest; we
de�ne the point group of a wallpaper pattern and use it to describe the �ve lattice types
of wallpaper patterns. We de�ne group cohomology in Chapter 4, and use it to calculate
the cohomology groups that classify wallpaper groups. Finally, in Chapter 5, we use our
results of Chapter 4 to determine and describe the 17 wallpaper groups. We also illustrate
similarities and di¤erences between these groups, illustrating these points with examples of
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2 Chapter 1. Introduction

wallpaper patterns. In addition, we show how to obtain the classi�cation without the use of
cohomology.

As we will see, the study of symmetry groups of wallpaper patterns involves a wonderful
mix of mathematical ideas, from the very simple to the quite complex. Our basic idea is to
reduce the classi�cation of these symmetry groups, by using linear algebra, geometry, and
elementary group theory, to a problem of homological algebra, notably the determination
of certain cohomology groups. By making use of fundamental results from group cohomol-
ogy, including the Lyndon-Hochschild-Serre spectral sequence, we are then able to calculate
these cohomology groups, which then allows us to determine these symmetry groups, up to
isomorphism. While the use of homological algebra is complicated for the non-specialist in
algebra, much of what we do involves mathematics accessible to anyone with a good under-
graduate background. If one then accepts the calculation of these cohomology groups, one
can then get a good understanding of the classi�cation of wallpaper patterns without too
much di¢ culty. Alternatively, we show how to classify the symmetry groups of wallpaper
patterns without using homological algebra.

To illustrate the symmetry groups, we will look closely at many of Escher�s tessellations.
These beautiful works of art illustrate very nicely group-theoretic aspects of the symmetry
groups. Moreover, studying the symmetry groups helps to understand the geometric restric-
tions Escher had to discover in order to create his tessellations. Escher gave us a large body
of art with which we can use to illustrate the mathematical ideas involved in describing
symmetry groups of wallpaper patterns.

We will give a formal de�nition shortly, but intuitively a wallpaper pattern is a design used
for making wallpaper. They consist of taking a basic pattern and repeating it horizontally
and vertically. The example below was made by taking a �gure consisting of a single �, and
translating it horizontally and vertically.

There are several other ways to repeat a basic �gure to get di¤erent wallpaper patterns.
For instance, one could repeat the �gure in two other ways to obtain the following two
patterns.
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In the �rst �gure, we used 180� rotations to repeat the pattern vertically. In the second,
one column is a mirror image of an adjacent column.
We now become more precise. An isometry of Rn is a distance-preserving bijection. Let

Isom(Rn) be the set of isometries of Rn. A simple argument will show that the composition of
two isometries is an isometry and that the inverse of an isometry is an isometry. Therefore,
Isom(Rn) is a group under composition of functions. If W is a subset of Rn, then the
symmetry group of W is de�ned to be

Sym(W ) = f' 2 Isom(Rn) : '(W ) =Wg :

It is clear that Sym(W ) is a subgroup of Isom(Rn). To work with symmetry groups of plane
�gures, we will need to know what are the isometries of R2; we will describe all isometries
of R2 in Section 2.1. For our immediate need, we consider translations. If v 2 Rn, then we
will refer to the map � v, given by � v(x) = x + v for all x 2 Rn, as translation by v. It is
elementary to see that � v is an isometry. Furthermore, if v; w 2 Rn, then � v � �w = � v+w
and ��1v = ��v. Moreover, if 0 is the zero vector, then �0 is the identity map. These facts
show that the set of translations T forms a subgroup of Isom(Rn). Therefore,

Sym(W ) \ T = f� 2 Sym(W ) : � is a translationg :

is a subgroup of Sym(W ), and we call it the translation subgroup of Sym(W ).
In each of the pictures above, the symmetry group contains horizontal and vertical trans-

lations. Moreover, there is a horizontal and a vertical translation of smallest possible length.
If � 1 is the smallest horizontal translation and � 2 the smallest vertical translation of one
of the patterns, then any translation of the pattern is of the form �n1�

m
2 for some pair of

integers n;m. The primary characteristic of wallpaper patterns is that there are always two
translations � 1; � 2 of the pattern such that any other translation is of the form �n1�

m
2 for

some integers n;m; we will soon formalize this in a de�nition.

Lemma 1.1. The group Rn is isomorphic to the subgroup of Isom(Rn) consisting of all
translations of Rn via the map v 7! � v. Therefore, the translation subgroup of the symmetry
group of a �gure in Rn is isomorphic to a subgroup of Rn.
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Proof. We show that the map ' given by '(v) = � v is an isomorphism. We have already
pointed out that � v � �w = � v+w and ��1v = ��v for any v; w 2 Rn. Thus, ' is a homomor-
phism. It is surjective by the de�nition of a translation. It is injective, since if '(v) = id,
then � v(x) = x for all x 2 Rn. However, since � v(x) = x + v, this forces v = 0. Thus, ' is
an isomorphism. The �nal statement is clear, since if T is the translation subgroup of some
symmetry group, then '�1(T ) is a subgroup of Rn isomorphic to T .

Because of this lemma, we will frequently identify a translation � v with the vector v; this
should not cause any confusion.

De�nition 1.2. A lattice is a �nitely generated subgroup of Rn for some n.

By the fundamental theorem for �nitely generated Abelian groups [1, Theorem 4.5.1],
every lattice is a free Abelian group, and so is isomorphic to Zr for some integer r. Therefore,
a lattice has a basis as a Z-module. The dimension of a lattice is the size of a basis. A two-
dimensional lattice in R2 then has the form

T = fnt1 +mt2 : n;m 2 Zg

of Z-linear combinations of t1 and t2 for some set ft1; t2g, which is then a basis of T and of
R2. We will call a basis of T an integral basis to emphasize that it is a basis of T and not
just a basis of R2. Two simple properties of lattices we will use are that (i) T contains a
nonzero vector of minimal length, and (ii) T contains only �nitely many vectors inside any
circle. While there is always a vector v of minimal length in a lattice, it is not unique since
v and �v have the same length. These facts can be understood by drawing T as a subset of
R2 as in the following picture.

We can now give the de�nition of a wallpaper pattern.

De�nition 1.3. A subset W of R2 is a wallpaper pattern if the translation subgroup of the
symmetry group Sym(W ) is a two-dimensional lattice. The symmetry group of a wallpaper
pattern is said to be a wallpaper group.

Escher�s tessellations are wonderful examples of wallpaper patterns. He drew many pic-
tures with the same symmetry as the following drawing.
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The two patterns below have isomorphic symmetry groups; both groups consist only of
translations, so each is isomorphic to Z2.

Here are two further examples of wallpaper patterns with isomorphic wallpaper groups.
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In both cases the wallpaper groups are generated by the translation lattice and a rotation
of 180�; it is not hard to see that the two groups are isomorphic. In fact, each is generated
by three elements t1; t2; r and subject to the relations

t1t2 = t2t1;

rt1r
�1 = t�11 ;

rt2r
�1 = t�12 ;

r2 = 1:

In each case ft1; t2g is a basis for the translation subgroup and r is a 180� rotation. By
choosing a center of a rotation to be the origin, we can then let r be that rotation.
In the following tessellation of Escher, our symmetry group is generated by two transla-

tions t1 and t2 and a 90� degree rotation r.
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In this picture, if we keep track of color, then the rotation is not a symmetry of the
pattern, and the symmetry group contains only translations. While Escher viewed color as
an important part of the picture, in determining the symmetry group of a wallpaper pattern
we will ignore color. One way to use our de�nition to �nd the symmetry group of a drawing
is to imagine an uncolored outline of a drawing. The symmetry group is then the symmetry
group of the set of points occurring in the outline.
Our classi�cation of wallpaper groups will proceed as follows. If G is a wallpaper group,

then an easy observation shows that the subgroup T of translations is a normal subgroup of
G; we point this out at the end of Section 2.2. We will �rst determine the possible groups
that arise as G=T . Second, we will determine all the possible ways that G=T can act on
T ; this action is described for any group G and any normal subgroup T in Section 4.1.
More concretely, for a wallpaper group G, we will identify G=T with a subgroup of O2(R)
in Section 3.1, and through this identi�cation, G=T acts on T by viewing T � R2, on which
O2(R) acts naturally. Finally, with the help of group cohomology, we will determine how
to build G from T and G=T , along with the action of G=T on T and some cohomological
information. However, we will also describe this last step without cohomology in Section 5.2.
Finally, we will use this information to describe explicitly all seventeen wallpaper groups as
subgroups of Isom(R2) and give wallpaper patterns for each group.
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Chapter 2

Isometries

In this chapter we describe the four basic types of isometries of the plane. We then give a
group-theoretic description of the group of isometries of Rn. To describe all isometries, we
will �rst determine the linear isometries of the plane; that is, those isometries that are linear
transformations of the vector space R2.

2.1 Isometries of the Plane

We now describe all possible isometries of the plane. As we point out in Section 2.3, every
isometry is one of the following four types.

Translations.

As we saw in the previous section, translations form one type of isometry. We recall the
notation � v for translation by v. Its inverse is ��v.

v

Re�ections.

Let ` be a line in R2. Then the re�ection across ` is an isometry, which one can see by a
purely geometric argument, although we give a more algebraic argument below.

9



10 Chapter 2. Isometries

xf (x)

If ` is the line through the origin parallel to a vector w, then the re�ection across ` is given
by

f(x) = 2
� x � w
w � w

�
w � x:

This comes from the formula for the projection of one vector onto another, which one sees in
multivariable calculus. From it a straightforward calculation will show that f is an isometry.
This formula also will show that f is a linear transformation. For an arbitrary re�ection
g, let � be a translation that sends some �xed point on the re�ection line ` of g to the
origin. Then � sends ` to a line `0 through the origin. If f is the re�ection about `0, then
g = ��1 � f � � , and so g is an isometry.

Rotations.

If � is an angle, then the rotation r by an angle � about the origin is given in coordinates by

r

�
x

y

�
=

�
cos � � sin �
sin � cos �

��
x

y

�
=

�
x cos � � y sin �
x sin � + y cos �

�
:

From this formula one can see that a rotation about the origin is an isometry and is a linear
transformation. We can use it to describe a rotation about any point. If r0 is the rotation by
� about a point P 2 R2, and if � is translation by P , then r0 = � � r � ��1. As a consequence,
any rotation is an isometry. If a rotation r is not the identity map, then we say that r is a
nontrivial rotation.

P

µ

Glide Re�ections.

We can produce new isometries by composition. For example, we may compose a re�ection
and a translation. The result may be another re�ection; see Lemma 2.2 below, although it
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may be another type of isometry. We will call a composition of a re�ection and a translation
a glide re�ection. If a glide re�ection is not a re�ection, then we say it is non-trivial.

We will see in Section 2.3 below that any isometry of R2 is a composition of a translation
with either a rotation or a re�ection. Therefore, we have accounted for all types of isometries
of the plane.

Some Arithmetic Facts

We point out some properties of these classes of isometries. We start with some of the most
simple properties. A translation has no �xed points, a rotation has a unique �xed point, and
a re�ection has a �xed line. A nontrivial translation has in�nite order; that is, if � 6= id is a
translation, then �n 6= id for all integers n > 0. A re�ection has order 2; thus, a re�ection
is its own inverse. If r is a rotation about a point P by an angle �, then r�1 is rotation by
�� about the origin. Moreover, if � = 2�=n for some integer n, then rn = id. Finally, if g
is a glide re�ection that is not a re�ection, then we claim that g2 is a nontrivial translation.
To help us prove this, we point out a couple of facts about re�ections. Let f be a re�ection
about a line ` through the origin. A vector x lies on the line through the origin that is
perpendicular to ` if and only if f(x) = �x, and x 2 ` if and only if f(x) = x. By working
with an appropriate basis, every vector in R2 may be written in the form u + v with u 2 `
and v perpendicular to `.
We now prove two lemmas that describe various compositions of isometries. While these

results are interesting in their own right, we will use them primarily to determine when two
wallpaper groups are not isomorphic.

Lemma 2.1. If r is a nontrivial rotation about the origin by an angle �, and if v is a vector,
then � v � r is a rotation about �(r � I)�1(v) by �.

Proof. Rotations are distinguished among all isometries in that they have a unique �xed
point. Suppose that r(x) + v = x for some x 2 R2. Then v = x � r(x) = (I � r)(x).
However, since r is a nontrivial rotation about the origin, it is a linear transformation. From
this fact and the representation of a rotation by a matrix by using the standard basis for
R2, we see that I � r is invertible since det(I � r) 6= 0. Thus, x = (I � r)�1(v) is the unique
�xed point of r, which means that it is the center of the rotation.
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Lemma 2.2. Let f(x) be a re�ection about a line ` passing through the origin, and let v 2 R2.
If g is the glide re�ection g = � v � f , then g is a re�ection if and only if v is perpendicular
to `. When this occurs, the re�ection line of g is `+ 1

2
v. If v is not perpendicular to `, then

g is a non-trivial glide re�ection and g2 is translation by v + f(v), a vector on the line `.

Proof. Recall that f is a linear transformation since ` contains the origin. The glide g = � v�f
is a re�ection if and only if it �xes a vector w. If f(w)+v = w, then v = w�f(w). However,
this forces

f(v) = f(w � f(w)) = f(w)� f 2(w) = f(w)� w
= �v:

Therefore, if g is a re�ection, then v is perpendicular to `. Conversely, if v is perpendicular
to `, then f(v) = �v, so g(1

2
v) = 1

2
v. This forces g to be a re�ection; it �xes the line `+ 1

2
v.

Thus, g is a non-trivial glide re�ection if and only if v is not perpendicular to `. Next, we
consider g2. If x 2 R2, then

g2(x) = f(f(x) + v) + v = f 2(x) + f(v) + v = x+ f(v) + v

since f is linear. Therefore, g2 is translation by f(v)+v. Since f(f(v)+v)) = f 2(v)+f(v) =
v + f(v), this translation vector is �xed by f , so it is on the line `.

2.2 The Group Structure of Isom(Rn)
In this section we give a group-theoretic decomposition of the group Isom(Rn). While we
only need to consider Isom(R2) in our study of wallpaper groups, the analysis we give is just
as simple for any n, so we consider this general situation. We will use the description of
Isom(R2) obtained here to help us classify wallpaper groups. There are two special subgroups
we will consider. One is the subgroup T of all translations of Rn. The second is the orthogonal
group On(R), the set of all isometries that are also linear transformations of the vector space
Rn. An alternative description, which we will prove below, is that this is the group of all
isometries that �x the origin. By coordinatizing the plane, we may consider points in the
plane as vectors. Following usual notation, we will write kuk for the length of a vector u.
The distance between two vectors u and v is then ku� vk. With this notation, we see that
a bijection f of the plane is an isometry if kf(u)� f(v)k = ku� vk for all vectors u; v.
Let g be an isometry with g(0) = 0. From this condition we see for any u 2 Rn that

kg(u)k = kg(u)� g(0)k = ku� 0k = kuk :

In other words, g preserves the length of a vector. Recall that if u and v are vectors, then
there is a unique angle � with 0 � � � � such that

ku� vk2 = kuk2 + kvk2 � 2 kuk kvk cos �:
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This fact is a restatement of the Cauchy-Schwartz inequality. A consequence of this inequal-
ity is that the dot product is given by the formula u � v = kuk kvk cos �.

Lemma 2.3. If g is an isometry of Rn with g(0) = 0, then g preserves angles and dot
products. That is, for any u; v 2 Rn, the angle between g(u) and g(v) is the same as the
angle between u and v, and g(u) � g(v) = u � v.

Proof. Let g be an isometry with g(0) = 0. Recall from above that this implies kg(u)k = kuk
for all vectors u. If � is the angle between two vectors u and v, then

ku� vk2 = kuk2 + kvk2 � 2 kuk kvk cos �:

If �0 is the angle between g(u) and g(v), then

kg(u)� g(v)k2 = kg(u)k2 + kg(v)k2 � 2 kg(u)k kg(v)k cos �0:

However, since kg(u)k = kuk and kg(v)k = kvk, we get

ku� vk2 = kg(u)� g(v)k2 = kuk2 + kvk2 � 2 kuk kvk cos �0:

This forces cos �0 = cos �. Since 0 � �; �0 � �, we conclude that �0 = �.
To see that g preserves dot products, we have u �v = kuk kvk cos �. By the previous para-

graph, � is also the angle between g(u) and g(v). Therefore, g(u) �g(v) = kg(u)k kg(v)k cos �.
Since kg(u)k = kuk and kg(v)k = kvk, this yields g(u) � g(v) = u � v.

Proposition 2.4. If g is an isometry of Rn with g(0) = 0, then g is a linear transformation.

Proof. Let fv1; : : : ; vng be an orthonormal basis of Rn, and set wi = g(ui). First of all, kwik =
kvik = 1 since g preserves length. Next, by Lemma 2.3, if i 6= j, then the angle between
wi and wj is equal to the angle between vi and vj, which is �=2. Therefore, fw1; : : : ; wng
is an orthonormal basis of Rn. Recall that if u =

P
i �ivi, then the coe¢ cients �i are

determined by the formula �i = u � vi. So, we have �i = g(u) � g(vi) = g(u) � wi by Lemma
2.3. However, g(u) =

P
i �iwi since fw1; : : : ; wng is an orthonormal basis, so the coe¢ cient

of wi is g(u) �wi. We conclude that g(u) =
P

i (g(u) � vi)wi. From this formula we show that
g is a linear transformation. Let u; v 2 Rn. Then

g(u+ v) =
X
i

((u+ v) � wi)wi =
X
i

(u � wi)wi +
X
i

(v � wi)wi

= g(u) + g(v);

and if  is any scalar, then

g(u) =
X
i

(u � wi)wi =
X

(u � wi)wi = 
X
i

(u � wi)wi

= g(u):

This proves that g is a linear transformation.
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Corollary 2.5. Let f be an isometry of Rn. Then f(x) = g(x)+ b for some linear isometry
g and some b 2 Rn.

Proof. Let b = f(0) and set g(x) = f(x) � b. Then g is the composition of f and the
translation ��b, so g is an isometry. Since g(0) = f(0) � b = b � b = 0, Proposition 2.4
shows that g is a linear transformation.

If g is a linear transformation on Rn, by viewing the elements of Rn as column matrices
we may write g(u) = Au for some n�n matrix A. The matrix an isometry g is not arbitrary.
We get a restriction on A by knowing that g preserves dot products. If g(x) = Ax, then the
(i; j)-entry of ATA is g(ei) � g(ej) = ei � ej, which is 1 for i = j and 0 otherwise. This shows
us that ATA = In, the n � n identity matrix. Conversely, if A is a matrix with ATA = In,
we claim that the linear map g de�ned by g(x) = Ax is an isometry. For,

g(u) � g(v) = (Au) � (Av) = (Au)T (Av)
= uT (ATA)v = uTv = u � v:

Therefore, by setting v = u, we have kg(u)k = kuk. Finally, since g is linear, kg(u)� g(w)k =
kg(u� w)k = ku� wk.
The set of matrices that satisfy the condition ATA = In is called the orthogonal group,

and is denoted On(R).

Corollary 2.6. If f is an isometry of Rn, then f(x) = Ax + b for some b 2 Rn and some
n� n matrix A 2 On(R).

We point out that we obtained this description of isometries only from the assumption
that an isometry preserves distance, not using that it is a bijection. It shows that a distance-
preserving map of Rn is automatically a bijection.
Because of the connection between linear transformations and matrices, we get the fol-

lowing connection between On(R) and Isom(Rn).

Proposition 2.7. Let H be the subgroup of isometries of Rn that preserve the origin. Then
H �= On(R).

Proof. We de�ne a map � : On(R) ! H by �(A) is the isometry x 7! Ax. In other words,
�(A)(x) = Ax. We have

�(AB)(x) = (AB)x = A(Bx) = �(A)(Bx)

= �(A)(�(B)(x))

= (�(A)�(B))(x):

Therefore, �(AB) = �(A)�(B). So, � is a group homomorphism. If �(A) is the identity
function, then �(A)(x) = x for all x. Then Ax = x for all x. But then the matrix A de�nes
the identity linear transformation, so A = In. Therefore, � is injective. Finally, if g 2 H,
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then g(x) = Ax for some matrix A by Corollary 2.5. Corollary 2.6 shows that ATA = In,
so A 2 On(R). This proves that g = �(A), so � is surjective. Therefore, � is a group
isomorphism.

1We now show how Isom(Rn) can be constructed from the group T of all translations and
On(R). We view On(R) as both the group of linear isometries and the group of all orthogonal
matrices. We write G = Isom(Rn) and H = On(R) for ease of notation. We proved above
that every isometry is a composition of a linear isometry and a translation. Therefore,
G = TH. We next note that T is a normal subgroup of G. To see this, the equation
G = TH shows that it is enough to prove that if f is a linear isometry and � is a translation,
then f � � � f�1 is a translation. Suppose that �(x) = x+ v. Then �(f�1(x)) = f�1(x) + v.
So,

f�f�1(x) = f(f�1(x) + v) = x+ f(v)

since f is linear. Therefore, f � � � f�1 is translation by f(v). In particular, this yields
f � � v � f�1 = � f(v). It is clear that T \ H = fidg since any nontrivial translation �xes
no point. We therefore have written G = TH with T a normal subgroup, H a subgroup,
and T \ H = fidg. This means G is the semidirect product of T and H. By recalling the
construction of semidirect products we can be a little more precise about the structure of
G. If we denote by 'h the restriction to T of the inner automorphism � 7! h�h�1, then
multiplication on G = TH is given by

(�uh)(� vh
0) = (�uh� vh

�1)(hh0) = (�u'h(� v)) (hh
0)

= (�u�h(v))(hh
0) = (�u+h(v))(hh

0):

Using the isomorphism T �= Rn and viewing elements of H in terms of matrices, the map
' : H ! Aut(T) is more concretely given as

'(A)(v) = Av;

where A is an orthogonal matrix and v 2 Rn. There is a surjective group homomorphism
G! H that sends th to h; the kernel of this map is T. Furthermore, G is then isomorphic
to (Rn �On(R); �), where the operation � on this Cartesian product is

(u;A) � (v;B) = (u+ Av;AB):

2.3 Structure of O2(R)
As we saw in the previous section, the group Isom(R2) is built from the subgroup of trans-
lations and the subgroup O2(R) of linear isometries. We point out some facts about O2(R).
If we use the standard basis for R2, then an element of O2(R) can be represented by a 2� 2

1do this as a theorem?
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matrix. Furthermore, any such matrix A satis�es the condition ATA = I2. Taking determi-
nants, we obtain det(A) = �1. Since the determinant function is a group homomorphism
from O2(R) to the nonzero real numbers, its kernel is a normal subgroup of O2(R). This
subgroup is called the special orthogonal group, and is denoted SO2(R). Thus,

SO2(R) = fA 2 O2(R) : det(A) = 1g :

Note that [O2(R) : SO2(R)] = 2
Let A be the matrix with respect to the standard basis for an element in O2(R). If

A =

�
a b

c d

�
;

then the condition ATA = I2 gives�
a b

c d

�T �
a b

c d

�
=

�
a2 + c2 ab+ cd

ab+ cd b2 + d2

�
=

�
1 0

0 1

�
:

This yields a2 + c2 = 1 and b2 + d2 = 1. Therefore, there is an angle � with a = cos � and
c = sin �. Furthermore, the condition ab + cd = 0 says that the vector (b; d) is orthogonal
to (a; c). Since b2 + d2 = 1, this forces (b; d) = (� sin �; cos �) or (b; d) = (sin �;� cos �).
The �rst choice gives a matrix with determinant 1 and the second choice gives a matrix of
determinant �1. From this we see that if A 2 SO2(R), then we may write

A =

�
cos � � sin �
sin � cos �

�
for some angle �. In other words, A is a rotation about the origin by an angle �. On the
other hand, if A =2 SO2(R), then

A =

�
cos � sin �

sin � � cos �

�
:

From the formula given earlier for a re�ection across a line through the origin, we can see
that A is the re�ection across the line y = (tan �=2)x.
To summarize, elements of SO2(R) are rotations and elements of O2(R)n SO2(R) are

re�ections. Since every element of Isom(R2) is the composition of a translation with an
element of O2(R), this shows that every isometry of the plane is one of the four types
described in Section 2.1. Furthermore, if r 2 SO2(R) and f =2 SO2(R), then rf =2 SO2(R),
so rf is a re�ection. Thus, (rf)2 = 1, which is equivalent to frf = r�1. Recall that the
dihedral group Dn is the group of symmetries of a regular n-gon. It is given by generators
and relations as Dn = hr; fi with

rn = f 2 = 1;

frf = r�1:
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We can identify Dn as a subgroup of O2(R) by setting r to be the rotation by an angle of
2�=n and f any re�ection. As a converse to this example, we have the following property of
�nite subgroups of O2(R).

Proposition 2.8. Let G be a �nite subgroup of O2(R). Then G is isomorphic to either a
cyclic group of order n or a dihedral group of order 2n, for some integer n.

Proof. Let N = G \ SO2(R), a normal subgroup of G. Since [O2(R) : SO2(R)] = 2 and
G=N is isomorphic to a subgroup of O2(R)= SO2(R), we get [G : N ] � 2. If N = f1g, then
either G = f1g is cyclic, or G = hfi for some re�ection f , so G �= D1. Therefore, assume
that N 6= f1g. The group N consists of rotations. Since it is �nite, there is a nontrivial
rotation r 2 N of minimal possible angle �. If r0 is any other nontrivial rotation in N , and
if r0 is a rotation by �, then there is an integer m with m� � � < (m + 1)�. The rotation
r(r0)�m is a rotation by the angle 0 � � �m� < �. Minimality of � then forces m� = �. In
other words, r0 2 hri. This proves that N = hri is cyclic. If G = N , then G is cyclic. If
G 6= N , then [G : N ] = 2. If f 2 GnN , then as pointed out before, frf = r�1. If n = jN j,
then jGj = 2n, and G is generated by r and f , and satis�es the relations rn = f 2 = 1 and
frf = r�1. Therefore, G �= Dn.
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Chapter 3

The Point Group

Recall that a wallpaper group is a subgroup G of Isom(R2) that contains a two-dimensional
lattice T of translations as a normal subgroup. As we indicated in the introduction, the
study of the quotient group G=T will be the �rst step for us to determine all wallpaper
groups. By choosing a basis for T we will exhibit G=T as a subgroup of O2(R) and see how
elements of G=T act on this basis. This action will be a key in describing and distinguishing
wallpaper groups.

3.1 De�nition and Main Properties

Let G be a wallpaper group with translation lattice T . In this section we will give an
interpretation of G=T , and we will determine all possible groups, up to isomorphism, that
can occur as G=T for a wallpaper group G.
We give a notation for isometries that will prove convenient. If ' is an isometry, then

'(x) = A(x) + b for some A 2 O2(R) and b 2 R2 by Corollary 2.5. To simplify notation,
we write ' = (A; b), and note that composition in Isom(R2) translates into the following
formula

(A; b)(C; d) = (AC;A(d) + b):

Furthermore, inverses are given by

(A; b)�1 = (A�1;�A�1(b)):

With this notation, translation by a vector b is (I; b), and an element of O2(R) is of the form
(A;0). We can now de�ne the point group of G.

De�nition 3.1. Let G be a wallpaper group. The point group G0 of G is the set�
A 2 O2(R) : (A; b) 2 G for some b 2 R2

	
:

From the formulas above for composition and inversion, we see that the point group is a
subgroup of O2(R). In fact, we have the following interpretation of the point group.

19
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Proposition 3.2. If G is a wallpaper group with translation lattice T and point group G0,
then G0 �= G=T .

Proof. If ' is the group homomorphism Isom(R2) ! O2(R) given by (A; b) 7! A, then
'(G) = G0. The kernel of 'jG is T , since T is the intersection of G and the translation
subgroup of Isom(R2), and the translation subgroup is the kernel of '.

As we saw in Section 2.2, the group O2(R) acts on the group T of translations by conju-
gation. More precisely, if t 2 R2 and A 2 O2(R), then the equation

(A;0)(I; t)(A;0)�1 = (I; A(t))

shows that under the natural isomorphism T �= R2, this conjugation action is the natural
action of O2(R) on R2. This action restricts to an action of G0 on T , for if A 2 G0 and t 2 T ,
then there is a b 2 R2 with (A; b) 2 G. Then (A; b)(I; t)(A; b)�1 2 G, and is equal to (I; At);
consequently, At 2 T . The presence of this action, together with the group structure of T ,
will allow us to determine the groups that arise as G0 for some wallpaper group G. To set
some notation, we write Cn for the cyclic group of order n. We view Cn as a subgroup of
O2(R) by considering it to be the cyclic group generated by a rotation of 2�=n. Also, let Dn

be the dihedral group of order 2n. This group is generated by two elements r; f and subject
to the relations rn = f 2 = id and rfr = r�1. As we noted in Section 2.3We may view Dn

as a subgroup of O2(R) by letting r be a rotation of 2�=n and f any re�ection. Note that
by choosing di¤erent f we get di¤erent subgroups of O2(R) that are isomorphic to Dn. The
following lemma will be used in determining the possible point groups.

Lemma 3.3. The point group G0 of a wallpaper group G is �nite.

Proof. Let ft1; t2g be a basis of T , and let C be a circle centered at the origin that contains
t1 and t2 in its interior. We remarked in the introduction that there are only �nitely many
elements of T inside C. Since G0 is a subgroup of O2(R), its elements restrict to give
permutations of the interior of C. There are then only �nitely many pairs of elements of
T that can occur as the image of ft1; t2g under an element of G0. However, since ft1; t2g
is a basis of R2, any element of G0 is determined by its action on ft1; t2g. Therefore, G0 is
�nite.

We now determine the possible groups that can arise as the point group of a wallpaper
group.

Theorem 3.4. Let G0 be the point group of a wallpaper group G. Then G0 is isomorphic to
one of the following ten groups �

C1; C2; C3; C4; C6
D1; D2; D3; D4; D6

�
:
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Proof. By Lemma 3.3, G0 is a �nite group. From Proposition 2.8, we then know that G0
is isomorphic to Cn or Dn for some n. It remains to determine the possible values of n. In
the proof of Proposition 2.8, we saw that N = G0 \ SO2(R) is a cyclic group generated by a
rotation r of minimal possible angle. Moreover, jN j = n, so r has order n. We represent r
by a matrix in two ways. First, with respect to the standard basis, if r is a rotation by an
angle �, then the matrix representing r is�

cos � � sin �
sin � cos �

�
:

On the other hand, let ft1; t2g be an integral basis for T . Since r(T ) = T and T = Zt1�Zt2,
the matrix for r with respect to this basis is of the form�

a b

c d

�
with a; b; c; d integers. Since these matrices represent the same linear transformation but
with respect to di¤erent bases, they are conjugate; therefore, they have the same trace. This
yields 2 cos � = a + d 2 Z. A simple analysis of the cosine function shows that � or �� is a
member of f0; �=3; �=2; 2�=3; �g. Therefore, N = hri has order n 2 f1; 2; 3; 4; 6g. Since G0
is isomorphic to either Cn or Dn for n = jN j, this completes the proof.

We next verify that G0 is uniquely determined by G. To be more precise, we show that if
two wallpaper groups are isomorphic, then their point groups are isomorphic. The following
lemma will do this for us by identifying the subgroup T of a wallpaper group G in a purely
group-theoretic way.

Lemma 3.5. Let G be a symmetry group with translation lattice T and set

Gn = fx 2 G : xgn = gnx for all g 2 Gg :

Then T = Gn whenever n is a multiple of [G : T ]. Furthermore, if G and G0 are wallpaper
groups with translation lattices T and T 0, respectively, and if ' : G! G0 is an isomorphism,
then '(T ) = T 0.

Proof. By Lemma 3.3, the group G=T is �nite. Let n be a multiple of [G : T ]. If g 2 G,
then gn 2 T . Since T is Abelian, we have tgn = gnt for all g, so t 2 Gn. Conversely, suppose
that x 2 Gn. We may write x = (A; b) with b 2 R2. Consider g = (I; t) with t 2 T . Then
gn = (I; nt). Since x 2 Gn, we have xgnx�1 = gn. However, by our description of the action
of O2(R) on T in Section 2.2, we have xgnx�1 = (I; A(nt)). Consequently, A(nt) = nt for
every t 2 T . If ft1; t2g is an integral basis for T , then fnt1; nt2g is a basis for R2. Since
A 2 O2(R) is determined by its action on a basis, we must have A = I, so x = (I; b) 2 T .
We have thus proved that Gn = T .
Now, suppose G and G0 are isomorphic wallpaper groups, and let ' : G ! G0 be an

isomorphism. It is elementary to see that '(Gn) = G0n for all n. Let m = [G : T ] and
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m0 = [G0 : T 0]. If we set n = mm0, Lemma 3.5 shows that T = Gn and T 0 = G0n. Since
'(Gn) = G

0
n, we get '(T ) = T

0, as desired.

Corollary 3.6. If G and G0 are isomorphic wallpaper groups, then their point groups G0
and G00 are isomorphic.

Proof. Let ' : G ! G0 be an isomorphism. If T (resp. T 0) is the translation lattice of G
(resp. G0), then '(T ) = T 0 by Lemma 3.5. Therefore, ' induces an isomorphism between
G=T and G0=T 0. Since these groups are isomorphic to G0 and G00, respectively, the point
groups G0 and G00 are isomorphic.

By looking more carefully at an isomorphism between wallpaper groups, we can prove
a stronger statement. In the next result we give a necessary criterion on the point groups
for two wallpaper groups to be isomorphic. We will use this criterion to show that certain
wallpaper groups are not isomorphic. To help understand this result, if G is a wallpaper
group with translation lattice T and point group G0, the action of G0 on T yields a group
homomorphism G0 ! Aut(T ) �= Aut(Z2). By picking a basis ft1; t2g of T , elements of
Aut(Z2) can be represented by 2�2 matrices with integer entries. This gives an isomorphism
Aut(Z2) �= Gl2(Z), the group of units of the ringM2(Z) of 2�2 matrices with integer entries.
For such a matrix to be invertible over Z, its determinant must be a unit in Z. Therefore,
Gl2(Z) consists of 2� 2 integral matrices with determinant �1. Thus, by using this action,
we can represent G0 as a subgroup of Gl2(Z).

Proposition 3.7. Let ' : G ! G0 be an isomorphism of the wallpaper groups G and G0.
Let T (resp. T 0) be the translation lattice and G0 (resp. G00) the point group of G (resp. G

0).
By choosing integral bases for T and T 0, the map 'jT is a linear isomorphism, given by a
matrix U 2 Gl2(Z), and the induced isomorphism ' : G0 ! G00 is conjugation by U .

Proof. Suppose ' : G ! G0 is an isomorphism. By Lemma 3.5, the restriction of ' to T is
an isomorphism from T to T 0. Suppose that ft1; t2g is a basis for T and fs1; s2g is a basis
for T 0. We then have

'(t1) = �s1 + �s2;

'(t2) = s1 + �s2

for some integers �; �; ; �. Since 'jT is a Z-module isomorphism, it is determined by what
it does to the basis of T and can be represented by a matrix with integer entries

U =

�
� 

� �

�
:

Also, since '�1 is an isomorphism that sends T 0 to T , we see that U�1 also has integer
entries. Therefore, U 2 Gl2(Z). Now, take (A; b) 2 G, and write (C; d) = '(A; b). For t 2 T
we have '(I; t) = (I; Ut) by the de�nition of U . Therefore,

(C; d)(I; Ut)(C; d)�1 = '
�
(A; b)(I; t)(A; b)�1

�
;
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or

(I; CUt) = ' ((I; At)) = (I; UAt):

In other words, CU = UA, so C = UAU�1. Thus, the induced map G0 ! G00 is conjugation
by U .

Corollary 3.8. Let G and G0 be isomorphic wallpaper groups with point groups G0 and
G00, respectively. Identifying G0 and G

0
0 as subgroups of Gl2(Z) by choosing bases for the

translation lattices of G and G0, there is a matrix U 2 Gl2(Z) with G00 = UG0U�1.

The converse of this corollary is also true. If the translation lattices of two wallpaper
groups are isomorphic via a map U for which conjugation by U is an isomorphism be-
tween their point groups, then we obtain an isomorphism between the groups via (g; t) 7!
(UgU�1; U(t)). This corollary tells us that in order for two wallpaper groups to be isomor-
phic, their point groups must be conjugate in Gl2(Z), once we have represented them as
subgroups of Gl2(Z). This is a stronger condition than the point groups being isomorphic.
For example, the point groups C2 and D1 are isomorphic. However, by the matrix repre-
sentations we obtain for them in Section 3.2 below, we see that they are not conjugate in
Gl2(Z). Therefore, a wallpaper group with point group C2 is not isomorphic to one with
point group D1. This corresponds to the geometric fact that a wallpaper pattern with a 180�

rotation symmetry and no re�ectional symmetry is �di¤erent�from one with a re�ectional
symmetry and no rotation symmetry.

3.2 The Five Lattice Types

In the previous section we proved that the point groupG0 of a wallpaper pattern is isomorphic
to one of the ten groups fCn; Dn : n = 1; 2; 3; 4; 6g. Note that this set has only nine non-
isomorphic groups. However, by considering the action of G0 on T , we will see that even
though C2 �= D1 as abstract groups, they will be distinguished by their actions on T . By
�xing a basis ft1; t2g of T , we have an isomorphism T �= Z2, and using the basis, the action
of G0 on T induces a group homomorphism G0 ! Aut(Z2) �= Gl2(Z). In other words, a
choice of basis together with the action of G0 on T gives us a representation of G as a speci�c
subgroup of Gl2(Z).
We will see that, viewing lattices geometrically, there are �ve types of lattices with respect

to the G0-action; parallelogram, rectangular, square, rhombus, and hexagonal. We will be
speci�c in what we mean as we look at the action of the ten groups above on T .

The groups C1; C2: parallelogram lattices.

As mentioned above, we will represent a point group as a subgroup of Gl2(Z) by choosing a
basis ft1; t2g for T . The groups C1 and C2 are very easy to describe and their description
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does not depend on the basis. If G0 = C1, then

C1 =

��
1 0

0 1

��
:

On the other hand, if G0 = C2, then the rotation of 180� is multiplication by �1 on T .
Therefore,

C2 =

��
�1 0

0 �1

��
:

The lattice in these cases is called a parallelogram lattice.

t1

t2

Figure 3.1: Parallelogram Lattice

We next consider the groups Cn and Dn for n � 3. The following lemma will help us �nd
a convenient basis for T in these cases.

Lemma 3.9. Suppose that G0 contains a rotation r about an angle 2�=n for n � 3. If t is
a nonzero element of T of minimal length, then ft; r(t)g is a basis for T .

Proof. Let ft1; t2g be a basis for T . Then

t = at1 + bt2

r(t) = ct1 + dt2

for some integers a; b; c; d. The set ft; r(t)g is linearly independent because n > 2, so we can
solve for t1 in the two equations above; therefore, t1 = �t + �rt for some rational numbers
�; �. Write � = �0 + " and � = �0 + "

0 with �0; �0 2 Z and j"j ; j"0j � 1=2. We have
s = �0t+ �0r(t) 2 T , so (t1 � s) = "t+ "0r(t) 2 T . Since t and r(t) are not parallel, we see
that

kt1 � sk = k"t+ "0r(t)k < k"tk+ k"0r(t)k �
1

2
(ktk+ kr(t)k)

=
1

2
(2 ktk) = ktk ;
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a contradiction to the minimality of ktk, unless s = t1. Therefore, t1 = s is a Z-linear
combination of t and r(t). Similarly, t2 is a Z-linear combination of t and r(t). Since ft1; t2g
is a basis of T , the set ft; r(t)g is also a basis for T .

The groups C4; D4: square lattices.

Let r be a rotation by 90�. By Lemma 3.9, if t = t1 is a vector in T of minimal length, then
ft1; r(t1)g is a basis for T . The lattice is called a square lattice.With respect to this basis,

t1

t2

Figure 3.2: Square Lattice

we see that if G0 = C4 = hri, then the representation of G0 by this basis is

C4 =

��
0 �1
1 0

��
:

On the other hand, if G0 = D4, then G0 contains a re�ection f . The four elements
f; rf; r2f; r3f are all the re�ections in G0. These re�ections must preserve the set of vectors
in T of minimal length; four such vectors are �t1;�t2. However, a short argument shows
that any other point on the circle of radius kt1k centered at the origin is a distance of less
than kt1k from one of these four points. Figure 3.3 makes this easy to see visually. The
di¤erence of these two vectors would then be a vector in T of length less than kt1k. Since
this is impossible, we see that the four vectors above are all the vectors of minimal length
in T . The four lines of re�ection are then given in the following picture.Since D4 is gener-
ated by r and any re�ection, using the re�ection about the line parallel to t1, we obtain the
representation

D4 =

��
0 �1
1 0

�
;

�
1 0

0 �1

��
:

The groups C3; D3; C6; D6: hexagonal lattices.

Let r be a rotation by 120�. If t1 is a vector in T of minimal length, then by setting t2 = r(t1),
the set ft1; t2g is a basis for T , by Lemma 3.9. The lattice in this case is called a hexagonal
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t1

t2

¡t1

¡t2

Figure 3.3: The vectors of minimal length in T when G0 = D4

lattice.

t1

t2

Figure 3.4: Hexagon Lattice

The group C3 is generated by r and C6 is generated by a 60� rotation; thus, we obtain

C3 =

��
0 �1
1 �1

��
and

C6 =

��
1 �1
1 0

��
:

Figure 3.5 indicates that we have six vectors in T of minimal length.Any point on the
circle above other than the six shown is a distance less than kt1k from one of these six points.
This shows that these six vectors are all the vectors of minimal length in T .
If G0 = D3 or D6, then G0 contains 6 or 12 re�ections, respectively. Any re�ection must

permute the six vectors in Figure 3.5. For G0 = D6, we then have the following twelve lines
of re�ection.
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t1

t2

¡t1

¡t2

t1 + t2

¡t1 ¡ t2

Figure 3.5: The vectors of minimal length when G0 = D6

t1

t2

¡t1

¡t2

t1 + t2

¡t1 ¡ t2

The group D6 is generated by C6 and any re�ection; using the re�ection that �xes t1, we
have

D6 =

��
1 �1
1 0

�
;

�
1 �1
0 �1

��
:

If G0 = D3, then the point group contains three re�ections. The lines of re�ection are
separated by 60� angles; if f is a re�ection in D3, then rf is a re�ection whose line of
re�ection makes a 60� angle with that of f . The re�ection lines for D3 must be re�ection
lines for D6 since D3 is a subgroup of D6. We then have two possibilities: The three lines are
the lines that are at angles 30�; 90�; 150� with t1 or are the lines at angles 0�; 60�; 120� with
t1. This says that D3 can act in two ways with respect to this basis. We write D3;l and D3;s

to distinguish these two actions; therefore, generating D3;l and D3;s with the 120� rotation
and with the re�ection about the 30� and the 0� re�ection lines, respectively, we have

D3;l =

��
0 �1
1 �1

�
;

�
1 0

1 �1

��
and

D3;s =

��
0 �1
1 �1

�
;

�
1 �1
0 �1

��
:

To give meaning to this subscript notation, we note that l and s stand for long and short,
respectively. The vectors t1 and t2 span a parallelogram which has a long and a short
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diagonal. The groupD3;s contains a re�ection about the 60� line, which is the short diagonal.
The group D3;l has a re�ection across the 150� line, which is parallel to the long diagonal.

t1

t2

We show that the groups D3;l and D3;s are not conjugate in Gl2(Z). This will tell us that
two wallpaper groups with point groups D3;l and D3;s, respectively, are not isomorphic, by
Proposition 3.8. To prove this, suppose there is a matrix U 2 Gl2(Z) with D3;l = UD3;sU

�1.
Because conjugation preserves determinants and the determinant of a re�ection is �1, the
three re�ections of D3;s must be sent to the three re�ections of D3;l. We can obtain any
re�ection (in Dn) from any other re�ection by conjugation by I, r, or r2. Therefore, we may
assume that �

a b

c d

��
0 1

1 0

�
=

�
0 �1
�1 0

��
a b

c d

�
for some a; b; c; d 2 Z with ad� bc = �1. Simplifying yields d = �a and c = �b. Therefore,
ad� bc = b2 � a2 = (b� a)(b+ a). Since this is �1, one term is 1 and the other is �1. We
then have four cases, a = �1 and b = 0 or a = 0 and b = �1. Conjugation by �I2 is the
identity; therefore, we may assume that�

a b

c d

�
=

�
1 0

0 �1

�
or �

a b

c d

�
=

�
0 1

�1 0

�
:

However, since �
1 0

0 �1

��
1 �1
0 �1

��
1 0

0 �1

��1
=

�
1 1

0 �1

�
and �

0 1

�1 0

��
1 �1
0 �1

��
0 1

�1 0

��1
=

�
�1 0

1 1

�
;

neither conjugation sends D3;s to D3;l since neither of these results is an element of D3;l. The
groups D3;l and D3;s are thus not conjugate in Gl2(Z).
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The groups D1; D2: rectangular or rhombic lattices.

If G0 = D1 or D2, then G0 does not contain a rotation of order at least 3. Therefore, we
cannot apply Lemma 3.9 to obtain a basis for T . We produce a basis in another way. In
each of these cases we have a nontrivial re�ection f in G0. Let t 2 T be a nonzero vector not
parallel to the line of re�ection of f . Since f maps T to T , the vectors t+ f(t) and t� f(t)
are elements of T , so T contains nonzero vectors both parallel and perpendicular to the line
of re�ection.

t

f(t)
t+ f(t)

(t ¡ f t)

Let s1 and s2 be nonzero vectors of minimal length parallel and perpendicular, respec-
tively, to the re�ection line. The discrete nature of T implies that such vectors exist, and
that any vector parallel to (resp. perpendicular to) this line is an integer multiple of s1 (resp.
s2). Therefore, for any t 2 T , we have

t+ f(t) = mts1;

t� f(t) = nts2

for some mt; nt 2 Z. Solving for t gives

t =
mt

2
s1 +

nt
2
s2:

If, for every t 2 T , both integers mt; nt are even, the set fs1; s2g spans T , and so is a basis
for T . On the other hand, if mt or nt is odd for some t, then both have to be odd, else 1

2
s1

or 1
2
s2 is in T , a contradiction. If we set t1 = 1

2
(s1 + s2) and t2 = 1

2
(s1 � s2) = f(t1), then

t1; t2 2 T , and

t =
mt

2
s1 +

nt
2
s2 =

�
mt + nt
2

��
s1 + s2
2

�
+

�
mt � nt
2

��
s1 � s2
2

�
= m0

tt1 + n
0
tt2

with m0
t; n

0
t 2 Z. Since any t is then an integral linear combination of t1 and t2, the set

ft1; t2g is a basis for T .
To summarize these two cases, we either have a basis ft1; t2g of two orthogonal vectors,

one of which is �xed by a re�ection in G0,

t1

t2

or we have a basis of vectors of the same length with a re�ection that interchanges them.
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t1

t2

In the �rst case we say that T is a rectangular lattice and in the second case that T is a

t1

t2

Figure 3.6: Rectangular Lattice

rhombic lattice.

t1

t2

Figure 3.7: Rhombic Lattice

We can now get matrix representations for D1 and D2. For each group there are two
possibilities, corresponding to two di¤erent actions on T . We subscript the group by p for
rectangular and c for rhombic. We are using these subscripts to match common notation
used for wallpaper groups that will be described in Chapter 5.1. We have

D1;p =

��
1 0

0 �1

��
and

D1;c =

��
0 1

1 0

��
;
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while for D2, which contains a rotation of 180�, we obtain

D2;p =

��
�1 0

0 �1

�
;

�
1 0

0 �1

��
and

D2;c =

��
�1 0

0 �1

�
;

�
0 1

1 0

��
:

We prove that D1;p and D1;c are not conjugate in Gl2(Z), nor are D2;p and D2;c. This will
show that no wallpaper group whose point group is one of these is isomorphic to a wallpaper
group whose point group is another. For D1;p and D1;c, suppose that�

a b

c d

��
1 0

0 �1

�
=

�
0 1

1 0

��
a b

c d

�
for some a; b; c; d 2 Z with ad � bc = �1. Multiplying these and setting the two sides
equal yields d = �b and c = �a. Then ad � bc = �2ab, which is not �1 since a and b
are integers. Therefore, D1;p and D1;c are not conjugate in Gl2(Z). For D2;p and D2;c, the
previous calculation shows that we need only check if there are a; b; c; d 2 Z with ad�bc = �1
and �

a b

c d

��
1 0

0 �1

�
=

�
0 �1
�1 0

��
a b

c d

�
:

Similar calculations show that this forces 2ab = �1, again a contradiction.
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Chapter 4

Group Cohomology

This chapter is the technical heart of the book. We have seen that given a wallpaper group
G, we have an Abelian normal subgroup T of translations, the quotient group G=T �= G0,
and an action of G0 on T . To understand G we need to see how G is built from T and G0.
What we will see is that, given T and G0, an Abelian group describes the possible groups
that can be built from these two groups. This is the second cohomology group H2(G0; T ). In
this chapter we describe building a group from a subgroup and a quotient group, we de�ne
the group H2(G0; T ) and see how it is connected with building groups, and we calculate
H2(G0; T ) in all the di¤erent cases that arise for wallpaper groups. From these calculations
we will be able to write down all of the isomorphism classes of wallpaper groups.

4.1 Group Extensions

To help us describe wallpaper groups, and to understand better how they are built from T

and G0, we discuss the concept of a group extension. A wallpaper group contains the Abelian
normal subgroup T of translations, and G=T is a �nite group isomorphic to the point group
G0. Phrasing this in another way, there is an exact sequence

1! T ! G! G0 ! 1

with T Abelian. We discuss this situation in the abstract.
Let G0 and T be �xed groups with T Abelian. A group extension of T by G0 is an exact

sequence
1! T ! G

�! G0 ! 1:

For simplicity we view T as a subgroup of G. We will describe such a sequence by two
additional pieces of information, an action of G0 on T and a 2-cocycle. First, for the action,
for each g 2 G0 choose an xg 2 G with �(xg) = g. The inner automorphism y 7! xgyx

�1
g

restricts to an automorphism of T since T is normal in G. We de�ne the action of g on T by
g(t) = xgtx

�1
g for all t 2 T . The �rst thing to note is that this is well-de�ned: if �(yg) = g,

then y�1g xg 2 ker(�) = T , since T is Abelian we get y�1g xgt(y�1g xg)�1 = t, or ygty�1g = xgtx
�1
g

33
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for all t 2 T . It is clear that the map t 7! g(t) is a group automorphism of T . Furthermore,
g(ht) = (gh)t for all g; h 2 G0; in other words, the map that sends g to left multiplication by
g is a group homomorphism ' : G0 ! Aut(T ). When there is such a group homomorphism,
we will call T a G0-module.
To give an example of a group extension, suppose that T is a G0-module. We thus have a

group homomorphism ' : G0 ! Aut(T ). We then can de�ne the semidirect product T �'G0
to be, as a set, the direct product T �G0, but with the group operation de�ned by

(s; g)(t; h) = (sg(t); gh):

An easy calculation shows that T�'G0 is a group with this operation, that T �= f(t; 1) : t 2 Tg,
and that G0 is isomorphic to the subgroup f(1; g) : g 2 G0g of T �' G0. Furthermore, by
identifying T and G0 with these isomorphic copies, we see that (1; g)(t; 1)(1; g)�1 = (g(t); 1),
so conjugation by g induces the given action of G0 on T . Furthermore, the homomorphisms
t 7! (t; 1) and �(t; g) = g yield a group extension 1! T ! T �' G0

�! G0 ! 1.
Now assume that we have a group extension

1! T ! G
�! G0 ! 1

that yields a given G0-action on T . We will view T as a subgroup of G. As before, we
choose xg 2 G with �(xg) = g. While it is not necessary, we choose x1 = 1; this will
make the proof of Proposition 4.1 easier. The function g 7! xg is not necessarily a group
homomorphism. We can measure the failure of this function to be a homomorphism as
follows. If c(g; h) = xgxhx

�1
gh , then g 7! xg is a homomorphism if and only if c(g; h) = 1

for all g; h 2 G0. Note that �(c(g; h)) = 1, so c(g; h) 2 T . This function is not arbitrary.
Associativity in G gives (xgxh)xk = xg(xhxk). Using the formula xgxh = c(g; h)xgh, we
obtain

(xgxh)xk = c(g; h)xghxk = c(g; h)c(gh; k)xghk

and

xg(xhxk) = xgc(h; k)xhk = xgc(h; k)x
�1
g xgxhk

= g (c(h; k)) c(g; hk)xghk:

Therefore, we have the condition

c(g; h)c(gh; k) = g (c(h; k)) c(g; hk) (4.1)

for all g; h; k 2 G0. A function c : G0 � G0 ! T satisfying Equation (4.1) us called a
2-cocycle. We point out that the choice x1 = 1 also implies that c(1; g) = c(g; 1) = 1 for all
g 2 G0; a cocycle satisfying this condition is said to be normalized. By de�ning pointwise
multiplication of 2-cocycles, we obtain an Abelian group Z2(G0; T ) of all 2-cocycles from
G0 � G0 to T . If 1 ! T ! T �' G0 ! G0 ! 1 is the group extension corresponding to
the semidirect product of T by G0, then we may choose xg = (1; g), and we �nd that the
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cocycle class representing this extension is given by the cocycle c(g; h) = xgxhx�1gh = 1. In
other words, the trivial cocycle arises from the semidirect product of T by G0.
Looking at the construction above of a cocycle c from a group extension 1 ! T !

G ! G0 ! 1, we note that c is not uniquely determined. If we make new choices yg with
�(yg) = g, this yields a di¤erent cocycle c0 given by c0(g; h) = ygyhy

�1
gh . To compare these

cocycles, note that yg = tgxg for some tg 2 T since �(yg) = �(xg). Therefore,

c0(g; h) = ygyhy
�1
gh = (tgxg)(thxh)(tghxgh)

�1

= tg(xgtx
�1
g )xgxhx

�1
gh t

�1
gh = tgg(th)c(g; h)t

�1
gh

= (tgg(th)t
�1
gh )c(g; h):

The function b(g; h) = tgg(th)t�1gh is then also a cocycle, being the element c
0c�1 2 Z2(G0; T ).

Cocycles of this form are called 2-coboundaries. The set of 2-coboundaries from G0�G0 ! T

is a subgroup of Z2(G0; T ), which we denote by B2(G0; T ). The quotient group

H2(G0; T ) = Z
2(G0; T )=B

2(G0; T )

is called is the second cohomology group of G0 with coe¢ cients in T . By our procedure of
obtaining a cocycle from a group extension 1 ! T ! G ! G0 ! 1, we see that while the
cocycle is not uniquely determined, its coset in H2(G0; T ) is uniquely determined by the
computation above.
We now describe how H2(G0; T ) determines group extensions of T by G0. We say that

two group extensions are equivalent if there is a commutative diagram

1 T-

1 T-

?

id

G0-
i0

G-i

?

'

G0-
�0

G0-�

?

id

1-

1-

with ' : G ! G0 a group isomorphism. The connection between group extensions and
H2(G0; T ) is given in the following proposition.

Proposition 4.1. Let T be a G0-module. Then there is a 1�1 correspondence between the
elements of H2(G0; T ) and equivalence classes of group extensions of T by G0 that induce
the given G0-action on T .

Proof. We have shown above that, given a group extension, there is a uniquely determined
cocycle class in H2(G0; T ). To go in the opposite direction, given a normalized cocycle c, we
produce a group extension 1! T ! G! G0 ! 1 whose cocycle class in H2(G0; T ) is equal
to the class of c. De�ne G as a set by T �G0 and whose operation is given by

(s; g)(t; h) = (sg(t)c(g; h); gh):
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A short calculation shows that G is a group; associativity follows exactly from the 2-cocycle
condition, and inverses are given by the formula (s; g)�1 = ((g�1(s)c(g�1; g))�1; g�1). More-
over, the map T ! G with t 7! (t; 1) and the map G ! G0 with (t; g) 7! g are group
homomorphisms, so we have a group extension 1! T ! G! G0 ! 1. One consequence of
the cocycle condition is that for the normalized cocycle c, we have c(g; g�1) = g(c(g�1; g));
this follows by setting h = g�1 and k = g in Equation 4.1. If we set xg = (1; g), then

xg(t; 1)x
�1
g = (1; g)(t; 1)(c(g�1; g)�1; g�1) = (g(t); g)(c(g�1; g)�1; g�1)

= (g(t)g(c(g�1; g))�1c(g; g�1) = (g(t); 1):

Therefore, the G0-action on T is the same as that arising from this extension. Finally,

xgxhx
�1
gh = (1; g)(1; h)(c((gh)

�1; gh)�1; (gh)�1) = (c(g; h); gh)(c((gh)�1; gh)�1; (gh)�1)

= (c(g; h)gh(c((gh)�1; gh)�1c(gh; (gh)�1) = (c(g; h); 1):

Therefore, the cocycle class for this extension is the same as the class of c.
Finally, we will �nish the proof by showing that if two extensions have the same cocycle

class, then they are equivalent. Suppose that

1! T ! G! G0 ! 1

and
1! T ! H ! G0 ! 1

are two extensions giving rise to the same cocycle class. We may then assume that there are
xg 2 G and yg 2 H with xgxhx�1gh = ygyhy

�1
gh in T ; note that we are viewing T as a subgroup

of both G and H. Moreover, we may need to alter the yg by an element of T to suppose that
these group extensions give rise to the same cocycle, not just the same cocycle class. It is
easy to see that G = ftxg : t 2 T; g 2 G0g and H = ftyg : t 2 T; g 2 G0g. We then de�ne a
map ' : G! H by '(txg) = tyg. A short calculation shows that ' is well-de�ned, and that
' is a group isomorphism with 'jT = id and the induced map G0 ! G0 is also the identity.
Thus, these extensions are equivalent.

Example 4.2. To give some examples of group extensions, consider the case T = Z and
G0 = Z2. Since Aut(Z) �= Z2, there are two possible actions of Z2 on Z. One, the trivial
action, corresponds to the trivial homomorphism Z2 ! Aut(Z), and so the action satis�es
gt = t for all t 2 Z and g 2 Z2. The other action arises from the nontrivial homomorphism
Z2 ! Aut(Z), and so the nonidentity element of Z2 acts as �1 on Z. With respect to the
trivial action the following two sequences are group extensions of Z by Z2:

0! Z! 1

2
Z! Z2 ! 0

and
0! Z! Z� Z2 ! Z2 ! 0;
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These extensions are not equivalent since the middle groups are not even isomorphic. In
fact, one can show by the calculations of Section 4.4 below that H2(Z2;Z) �= Z2 for this
trivial action. The two group extensions above are exactly the two inequivalent extensions
of Z2 by Z with this action.

Example 4.3. If we consider group extensions of Z by Z2 with the nontrivial action of Z2
on Z, and if G is the semidirect product of Z and Z2, then

0! Z! G! Z2 ! 0

is a group extension. We can see that this group extension is not equivalent to the previous
two because G is not Abelian, so it is not isomorphic to either of the middle groups in those
sequences. However, another way to see this is to note that if two group extensions of T by
G0 are equivalent, then the action of G0 on T is the same for both group extensions. We do
not give a proof of this fact. Instead, Corollary 3.8 will be su¢ cient for our needs in terms
of comparing point groups acting in di¤erent ways on T .

The notion of equivalence of group extension is more subtle than that of isomorphism of
the middle terms of the sequence. Consider T = Zp and G0 = Zp for p an odd prime. Given
a group extension

0! Zp ! G! Zp ! 0;

the group G has order p2, so is Abelian. This forces the action of Zp on Zp to be trivial.
One can also see this from the fact that Aut(Zp) �= Zp�1, so there is no nontrivial group
homomorphism Zp ! Aut(Zp). There are two isomorphism classes of groups of order p2, the
cyclic group of order p2, and the direct product Zp � Zp. However, there are p equivalence
classes of extensions of Zp by Zp. One can see this by showing that H2(Zp;Zp) �= Zp.
However, to be more explicit, the direct product Zp � Zp corresponds to the trivial cocycle.
On the other hand, if G = hai is cyclic of order p2, then for 1 � i < p, we get a group
extension

0! hapi ! hai �i! Zp ! 0

of Zp by Zp by de�ning �i(a) = i(mod p). A short calculation shows that, for i 6= j, the
corresponding group extensions are not equivalent. Nor are any of these extensions trivial
since G is not isomorphic to Zp � Zp. These yield p � 1 inequivalent group extensions, all
with the middle group isomorphic to Zp2.

4.2 Group Extensions of T by G0
Let G be a wallpaper group with translation lattice T and point group G0. In Section 3.1,
we proved that G0 �= G=T , that G0 is isomorphic to a cyclic group Cn or a Dihedral group
Dn with n 2 f1; 2; 3; 4; 6g, and that, by considering the action of G0 on T , we produced
thirteen subgroups of Gl2(Z), none of which are conjugate in Gl2(Z), as candidates for G0.
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By Corollary 3.8, if two wallpaper groups are isomorphic, by representing their point groups
as subgroups of Gl2(Z), these two groups must be the same from this list of thirteen groups.
Furthermore, from G we get a group extension 1 ! T ! G ! G0 ! 1, which then yields
an element of the cohomology group H2(G0; T ).
We can use group extensions to limit the number of possibilities of nonisomorphic wall-

paper groups. We �rst point out that any group extension of T by G0 corresponds to some
wallpaper group; we prove this in the following lemma. To prove the lemma we need two
results from group cohomology. One is simple. If S � T are G0-modules, then there is
a natural group homomorphism H2(G0; S) ! H2(G0; T ) induced by viewing a 2-cocycle
f 2 Z2(G0; S) as a 2-cocycle G0 � G0 ! T . The other is the Lyndon-Hochschild-Serre
spectral sequence, which we describe in Section 4.4.

Lemma 4.4. Let 1 ! T ! G ! G0 ! 1 be a group extension. Then, up to equivalence
of group extension, G can be taken to be a subgroup of Isom(R2), and this subgroup is a
wallpaper group.

Proof. By a calculation using the Lyndon-Hochschild-Serre spectral sequence, given in Lemma
4.7 below, we have H2(G0;R2) = 0. If c is the cocycle class of the given group extension,
then c goes to 0 under the natural map H2(G0; T ) ! H2(G0;R2). Therefore, there are
tg 2 R2 with

c(g; h) = tg + gth � tgh
for all g; h 2 G0. We de�ne G0 by

G0 = f(g; t+ tg) : g 2 G0; t 2 Tg :

An easy calculation shows that G0 is a subgroup of Isom(R2), and that the maps t 7! (id; t)

and (g; t) 7! g from T to G and from G to G0, respectively, yield a group extension

1! T ! G0 ! G0 ! 1:

Furthermore the cocycle class representing this extension is c; this latter fact can be seen
by choosing xg = (g; tg), so xgxhx�1gh = (I; tg + gth � tgh) = (I; c(g; h)). Thus, this extension
is equivalent to the original extension. Finally, we note that G0 is indeed a wallpaper group
since G0 contains the two-dimensional lattice T .

For a given point groupG0 and an action ofG0 on T , two nonisomorphic wallpaper groups
G and G0, both with translation lattice T and point group G0, correspond to inequivalent
group extensions. Therefore, the number of nonisomorphic wallpaper groups is at most
the number of inequivalent group extensions of T by G0. Since H2(G0; T ) classi�es the
group extensions of T by G0 for a given action of G0 on T , the number jH2(G0; T )j is an
upper bound for the number of nonisomorphic wallpaper groups with point group G0 with
the given action. We determine these cohomology groups in all possible cases in the next
section. Before we calculate them, we summarize the calculations in the following chart.
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G0 H2(G0; T ) jH2(G0; T )j
C1 0 1

C2 0 1

C3 0 1

C4 0 1

C6 0 1

D1;p Z=2Z 2

D1;c 0 1

D2;p Z=2Z� Z=2Z 4

D2;c 0 1

D3;l 0 1

D3;s 0 1

D4 Z=2Z 2

D6 0 1

18 total extensions

Table 4.1: The Cohomology Groups H2(G0; T )

We will see in Section 5.1 that determining all nonisomorphic wallpaper groups is almost
the same as determining all group extensions of T by G0 for the various G0. In fact, in only
one occasion will two inequivalent group extensions give rise to isomorphic wallpaper groups;
thus, from 18 group extensions we will get 17 nonisomorphic wallpaper groups.

4.3 Higher Cohomology Groups

The second cohomology group H2(G0; T ) describes the equivalence classes of extensions of
T by G0; we need to calculate this cohomology group in order to determine the possible
wallpaper groups. However, to do this we need to be able to calculate higher cohomology
groups. We give an extremely brief description of what are these groups in this section. For
a more complete description, see any book on homological algebra. A systematic description
of cohomology groups would best involve derived functors. However, because we are being
brief, we will give a more ad-hoc description. In fact, this description is essentially that given
in the paper of Hochschild and Serre [2].

Let G0 be a group and let T be a G0-module. If n is a nonnegative integer, let Cn(G0; T )
be the set of all functions from the Cartesian product Gn0 =

Qn
i=1G0 to T . If n = 0, we

interpret G00 as a single point and then identify C
0(G0; T ) with T . Let dn : Cn(G0; T ) !
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Cn+1(G0; T ) be the map de�ned by

dn(f)(g1; : : : ; gn+1) = g1f(g2; : : : ; gn+1) +
nX
i=1

(�1)if(g1; : : : ; gi�1; gigi+1; : : : ; gn+1)

+(�1)n+1f(g1; : : : ; gn):

If n = 0, and if t 2 C0(G0; T ) = T , then we de�ne d0(t)(g) = gt�t. A tedious calculation will
show that dn+1 � dn = 0. That is, the collection fCn(G0; T )gn�0 together with the sequence
fdng of maps forms a chain complex. We obtain the cohomology groups Hn(G0; T ) as the
homology of this complex. In other words,

Hn(G0; T ) = ker(d
n)= im(dn�1)

if n > 0, and H0(G0; T ) = ker(d0) = TG0. Moreover, a quick check will show that f :
G0 � G0 ! T is a 2-cocycle if and only if f 2 ker(d2), and f is a 2-coboundary if and only
if f 2 im(d1). This de�nition of H2(G0; T ) is then the same as that given in Section 4.1.
For those familiar with derived functors, we mention the connection between group coho-

mology and derived functors. Let TG0 = ft 2 T : gt = g for all g 2 G0g. Then H0(G0; T ) =

TG0 , and in fact the functor H0(G0;�) is naturally equivalent to the �xed point functor
(�)G0. Therefore, an alternative description of Hn(G0; T ) is that if F = (�)G0, and if
Rn(F ) is the n-th right derived functor of F , then Hn(G0; T ) = Rn(F )(T ). Furthermore,
Hn(G0; T ) = Ext

n
ZG0(Z; G0). The complex fCn(G0; T )g arises by taking the free resolution

fPng of Z as a trivial G0-module, where Pn is the free ZG0-module on the set Gn0 . The
di¤erential d : Pn ! Pn�1 is given by the formula d =

Pn
i=0(�1)idi, where

d0(g1; : : : ; gn) = g1(g2; : : : ; gn�1);

di(g1; : : : ; gn) = (g1; : : : ; gi�1; gigi+1; : : : ; gn); 1 < i < n

dn(g1; : : : ; gn) = (g1; : : : ; gn�1)

Applying the contravariant functor homZG0(�; T ) to the resolution fPng, using the isomor-
phism homZG0(Pn; T )

�= Cn(G0; T ), which holds since homomorphisms are determined by
their action on a basis, we see that the chain complex fhomZG0(Pn; T )g is the complex
fCn(G0; T )g.

4.4 Calculation of the Groups H2(G0; T )

In this section we calculate the cohomology groups H2(G0; T ) for the various point groups
G0. In the next chapter we will see how to determine all wallpaper groups from these
calculations. The calculations of these groups for G0 = Cn are very easy. If the point group
is a Dihedral group, then we have to work harder. If you do not wish to bother with spectral
sequences, you should skip those calculations. However, if you are familiar with spectral
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sequences or if you wish to see an example of their use, these calculations are a nice and
easy illustration of the power of spectral sequences.
There are various facts about cohomology we will need for our calculations. Because

seven of the thirteen G0 are cyclic groups, we start with facts about the cohomology of
cyclic groups. If C = hci is a cyclic group of order n and M is a C-module, the norm
map NC on M is de�ned as NC(x) =

Pn�1
i=0 c

ix. The set MC = fm 2M : cm = mg is the
subgroup of M �xed by all elements of C. The cohomology groups of C with coe¢ cients in
M are then

H0(C;M) �= MC ;

H2n(C;M) �= MC=NC(M);

H2n+1(C;M) �= ker(NC)= im(1� c);

for all positive integers n. This result can be found in [7, Chapter 6]. We give the description
of Hq(C;M) for all q because we will need to knowHq(Cn; T ) for all q to calculate H2(Dn; T )

via the Lyndon-Hochschild-Serre spectral sequence.

G0 = Cn.

Suppose that our point group G0 is generated by a rotation. Then G0 acts on T without
any nonzero �xed points; that is, TG0 = 0. However, since

H2(G0; T ) �= TG0=NG0(T );

we obtain H2(G0; T ) = 0.

G0 = D1;c.

In this case G0 is generated by a re�ection f that interchanges the two basis vectors t1; t2 of
T . Since G0 is cyclic, we have

H2(G0; T ) �= TG0= im(NG0):

Furthermore, TG0 = Z(t1 + t2), and t1 + t2 = NG0(t1) since t1 is sent to t2 by f . Therefore,
TG0 = im(NG0), so H

2(G0; T ) = 0.

G0 = D1;p.

Here we have G0 = hfi, where f(t1) = t1 and f(t2) = �t2. As before, H2(G0; T ) �=
TG0= im(NG0). In this case T

G0 = Zt1 and im(NG0) = Z(2t1), since

NG0(at1 + bt2) = (at1 + bt2) + f(at1 + bt2)

= 2at1:
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Therefore, H2(D1;p; T ) �= Z=2Z. We thus have two inequivalent group extensions of T by
D1;p.
We now consider the non-cyclic point groups. For D2;c and D6 we need more machinery.

If G is a group with normal subgroup N , if M is a G-module, and if H1(N;M) = 0, then
there is a �ve term exact sequence [4, p. 307] of low degree terms

0! H2(G=N;MN)! H2(G;M)! H2(N;M)G=N

! H3(G=N;MN)! H3(G;M):

This exact sequence arises from the Lyndon-Hochschild-Serre spectral sequence associated
to the normal subgroup N of G; an introduction to spectral sequences and the description
of the Lyndon-Hochschild-Serre spectral sequence is given below. We will use this exact
sequence for G = D6 and D2;c.

G0 = D6.

The group D6 contains the normal subgroup C6. Moreover,

C6 =

��
1 �1
1 0

��
;

the matrix representing the 60� rotation r. From the description above of the cohomology
of a cyclic group,

H1(C6; T ) �= ker(NC6)= im(1� r);

where NC6 is the norm map as de�ned above. It is easy to see that NC6 = 0 since the image
of this map is contained in TC6, which is zero. Therefore, ker(NC6) = T . However, 1� r is
represented by the matrix�

1 0

0 1

�
�
�
1 �1
1 0

�
=

�
0 1

�1 1

�
;

which is invertible in Gl2(Z). Therefore, im(1� r) = T , so H1(C6; T ) = 0. The �rst part of
the �ve term exact sequence mentioned above is

0! H2(D6=C6; T
C6)! H2(D6; T )! H2(C6; T )

D6=C6 :

The �rst term is zero since TC6 = 0. The third term is 0 since H2(C6; T ) = 0, as we saw
above. Therefore, H2(D6; T ) = 0.

G0 = D2;c.

In this case we have G0 = hr; fi with r the 180� rotation and f the re�ection given by
f(t1) = t2 and f(t2) = t1. Note that r(t) = �t for all t 2 T . Our argument will be
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slightly di¤erent from the previous case because H1(C2; T ) 6= 0. Therefore, to apply the
�ve term sequence, we need a di¤erent normal subgroup of G0. Let M = hfi. Then
H1(M;T ) = ker(NM)= im(1 � f). We have NM(t) = t + f(t), so it is easy to see that
ker(NM) = Z(t1�t2). Also, (1�f)(at1+bt2) = a(t1�t2)+b(t2�t1), so im(1�f) = ker(NM).
Therefore, H1(M;T ) = 0. The �rst part of the �ve term exact sequence arising from the
normal subgroup N of G0 is

0! H2(G0=M; T
M)! H2(G0; T )! H2(M;T )G0=M :

The �rst term is a quotient of (TM)G0=M = TG0 = 0; we see that TG0 = 0 since r(t) = �t
for all t. For the third term, we have TM = Z(t1 + t2) and im(NM) = Z(t1 + t2) as
NM(at1 + bt2) = (a+ b)(t1 + t2). Therefore, the third term is zero, so H2(G0; T ) = 0.
To �nish the remaining cases we need to use the theory of spectral sequences. We give

the de�nition of a spectral sequence and leave details to the books of Weibel [7] and Tamme
[6]. A cohomological spectral sequence is the following collection of data: Abelian groups

fEp;qr : p; q; r 2 Z; r � 2g ;

homomorphisms
dp;qr : Ep;qr ! Ep+r;q�r+1r

with dp;qr � dp�r;q+r�1r = 0 for all p, q, r; isomorphisms

Ep;qr+1
�= ker(dp;qr )= im(dp�r;q+r�1r );

�ltered Abelian groups
fEn : n 2 Zg

where the �ltration � � �F p(En) � F p+1(En) � � � � satis�es F p(En) = En for p � 0 and
F p(En) = 0 for p� 0; limit terms

fEp;q1 : p; q 2 Zg ;

and isomorphisms
Ep;q1

�= F p(Ep+q)=F p+1(Ep+q):

We will only consider the case where Ep;qr = 0 if p < 0 or q < 0. In this case we can de�ne
Ep;q1 . If r > max fp; q + 1g, consider the sequence

Ep�r;q+r�1r
dp�r;q+r�1r �! Ep;qr

dp;qr�! Ep+r;q�r+1r :

The assumption on r gives Ep�r;q+r�1r = 0 = Ep+r;q�r+1r . Therefore, ker(dp;qr ) = Ep;qr and
im(dp�r;q+r�1r ) = 0. Therefore, Ep;qr+1 = Ep;qr . This implies that the sequence E

p;q
r becomes

constant, up to isomorphism, once r is large enough. We denote Ep;q1 to be this constant
value. This large amount of data is typically denoted Ep;q2 =) Ep+q for short.
We note the following immediate consequences of the de�nition.
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1. If Ep;qr = 0, then Ep;qs = 0 for all s � r, and Ep;q1 = 0.

2. For any n � 0, we have F 0(En) = En. This follows from the �rst fact because our
assumption that Ep;qr = 0 if p < 0 or q < 0 yields E�1;n+11 = 0.

3. For any n � 0, we have F n+1(En) = 0. This follows for similar reasons as in the
previous fact.

In many situations, including ours, the En are n-th cohomology groups. Having a spectral
sequence allows one to get information about En since determining the limit terms Ep;q1
determines the factors F p(Ep+q)=F p+1(Ep+q) of the �ltration of Ep+q. In several situations,
including ours, the spectral sequence is simple enough to completely determine E2 from the
limit terms.
We give two general but simple examples that we will use below.

Example 4.5. Suppose that Ep;qr = 0 for all p; q � 0. Then Ep;q1 = 0 for all p; q. Therefore,
F p(E2)=F p+1(E2) = 0 for all p � 0. This means F p(E2) = F p+1(E2) for all p � 0. Since
F 0(E2) = E2 and F 3(E2) = 0, as noted in the second and third facts above, this yields
E2 = 0.

Example 4.6. Suppose that E0;21 = E2;01 = 0 and E1;11 = A for some group A. Then the
relation to the �ltration for E2 gives

0 = F 0(E2)=F 1(E2) = E2=F 1(E2);

A = F 1(E2)=F 2(E2);

0 = F 2(E2)=F 3(E3) = F 2(E2):

Again we are using the second and third facts above. These three equations tell us that
E2 = F 1(E2) and F 1(E2) = A. Therefore, E2 = A.

To determine H2(Dn; T ) for n � 2, we will use the Lyndon-Hochschild-Serre spectral
sequence. If N is a normal subgroup of a group G, and if A is a G-module, this is the
spectral sequence

Ep;q2 = Hp(G=N;Hq(N;A)) =) Hp+q(G;A):

A proof of the existence of this sequence can be found in [7, Section 6.8]. We will apply this
sequence with G = Dn and N = Cn for A = T . As a �rst use of this spectral sequence, we
prove the result quoted above in Lemma 4.4.

Lemma 4.7. If G0 is a �nite subgroup of O2(R), then H2(G0;R2) = 0.

Proof. By Proposition 2.8, G0 is isomorphic to Cn or Dn for some integer n. If G0 = Cn,
then G0 is generated by a rotation r. Since a rotation has no nonzero �xed point, we see
that (R2)G0 = f0g. Therefore, H2(G0;R2) �= (R2)G0= im(NG0) = 0. On the other hand, if
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G0 = Dn, let N = G0 \ SO2(R), the normal subgroup of rotations in G0. We consider the
spectral sequence

Hp(G0=N;H
q(N;R2)) =) Hp+q(G0;R2):

For q = 2n even, we have Hq(N;R2) = H2(N;R2) = 0 by the argument just given. For
q = 2n+ 1 odd, Hq(N;R2) �= ker(NG0)= im(1� r), where the subgroup N is generated by r.
Since r has no nonzero �xed points, 1 is not an eigenvalue of r. Therefore, 1� r is invertible
on R2. This forces im(1 � r) = ker(NG0) = R2, and so Hq(N;R2) = 0. Therefore, the Ep;q2
terms of the spectral sequence areHp(G0=N; 0) = 0. By Example 4.5, we getHn(G0;R2) = 0
for all n. In particular, H2(G0;R2) = 0.

G0 = D3;l; D3;s.

In these two cases we do not need to keep track of the action of G0 on T except for how the
120� rotation acts, so we consider G0 = D3 without worrying about the di¤erence between
the two di¤erent actions we have. To determine H2(D3; T ), we use the Lyndon-Hochschild-
Serre spectral sequence arising from the normal subgroup C3 of D3, which is

Ep;q2 = Hp(D3=C3; H
q(C3; T )) =) Hp+q(D3; T ) = E

p+q:

If C3 = hri, then the calculation of the cohomology of a cyclic group gives

Hq(C3; T ) =

�
TC3=NC(T ) = 0 if q � 0(mod 2)
ker(N)= im(1� r) if q � 1(mod 2) :

However, the norm map N : T ! T with respect to C3 is N(t) = t + r(t) + r2(t). Since
1 + r + r2 = 0 as a linear transformation, ker(N) = T . The linear transformation 1 � r is
represented by the matrix�

1 0

0 1

�
�
�
0 �1
1 �1

�
=

�
1 1

�1 2

�
:

Therefore, im(1� r) = f(a+ b;�a+ 2b) : a; b 2 Zg, and it is easy to see that this is equal to
f(x; y) : x+ y � 0(mod 3)g. Therefore, Hq(C3; T ) �= Z3 if q is odd. The nontrivial element
of D3=C3 �= Z2 either acts trivially on Z3 or it acts as �1. In either of these cases, one of
which occurs with D3;l and the other with D3;s, we see that Hn(D3=C3;Z3) = 0 for all n
by the calculation of the cohomology of a cyclic group. Therefore, putting all these pieces
together, we see that Ep;q2 = 0 for all p; q � 0. By Example 4.5, this yields H2(D3; T ) = 0.

G0 = D4.

Again, we use the Lyndon-Hochschild-Serre spectral sequence arising from the normal sub-
group Cn of Dn, which in this case is

Hp(D4=C4; H
q(C4; T )) =) Hp+q(D4; T ):
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From the case of C4 = hri, we saw that H2n(C4; T ) = 0 for all n. For odd integers, if
N : T ! T is the norm map N(t) = t+ r(t) + r2(t) + r3(t), we have

H2n+1(C4; T ) �= ker(N)= im(1� r):

Since r2 acts as �1 on T , we see that N = 0. Therefore, ker(N) = T . Also,

(1� r)(a; b) = (a; b)� (b;�a) = (a� b; a+ b):

Therefore, it follows that im(1 � r) = f(x; y) : x � y(mod 2)g. The two elements (0; 0)
and (1; 0) then represent all cosets in T= im(N), so H2n+1(C4; T ) �= Z2. The group D4=C4
then acts trivially on the groups Hq(C4; T ) since these groups are either trivial or have two
elements. The norm map for D4=C4 on Hq(C4; T ) is trivial in either case. Therefore, we
obtain the formulas

Ep;q2 =

�
0 if q � 0(mod 2)
Z2 if q � 1(mod 2) :

Since E2;02 = 0 = E0;22 , we have E
2;0
1 = 0 = E0;21 . Also, from the relationship between Ep;q1

and the Ep;qr , we have E
1;1
1 = E1;13 , and this is the homology of the complex 0 = E2;02 !

E1;12 ! E0;22 = 0. Thus, E1;13 = E1;12 . Example 4.6 then yields

H2(D4; T ) = E
1;1
1 = Z2:

G0 = D2;p.

In this �nal case we continue to use the Lyndon-Hochschild-Serre spectral sequence, and we
apply it to the normal subgroup C2 of D2, where we write D2 for D2;p. We have D2 = hr; fi,
and the action on T satis�es rt = �t for all t, and there is a basis ft1; t2g of T with ft1 = t1
and ft2 = �t2. From our description of the cohomology of a cyclic group, it is easy to see
that

Hq(C2; T ) =

�
0 if q � 0(mod 2)

T=2T if q � 1(mod 2) :

as Abelian groups. Without giving any details, to see what is theD2=C2-action onHq(C2; T ),
we point out that Example 6.7.10 of [7] can be modi�ed to show that the isomorphism
H2n+1(C2; T ) �= T=2T sends the action of f to (�1)nf . However, �f acts as the identity on
T=2T by the description of f and because �1 acts as the identity on a group of exponent 2.
Therefore, D2=C2 acts trivially on H2n+1(C2; T ). Because D2=C2 is cyclic,

Ep;q2 = Hp(D2=C2; H
q(C2; T )) =

�
0 if q � 0(mod 2)

T=2T if q � 1(mod 2) :

Again, by Example 4.6, we conclude that

H2(D2; T ) = T=2T �= Z2 � Z2:



Chapter 5

The Wallpaper Groups

In the previous chapter we calculated the cohomology groups H2(G0; T ) for all possible point
groups G0 and all possible actions of G0 on a two-dimensional lattice of translations T . We
will now see how these calculations lead us to a determination of all wallpaper groups, up to
isomorphism. We also give an explicit description of a wallpaper group in each isomorphism
class as a subgroup of Isom(R2) given by generators along with pictures of corresponding
wallpaper patterns.

5.1 Classi�cation of Wallpaper Groups

In ten of the thirteen possibilities for the point group G0 there is only one group extension
of T by G0, so there is only one wallpaper group for this G0. For D1;p and D4, we will see
that the two inequivalent group extensions for each of these point groups give nonisomorphic
groups. However, for D2;p, while there are four inequivalent group extensions, there are only
three nonisomorphic wallpaper groups. Therefore, the eighteen di¤erent group extensions
noted from the chart below give us seventeen isomorphism classes of wallpaper groups. We
note them now. To have a notation to refer to them, we will use the standard notation used
by crystallographers.

We give a brief description of the naming scheme. First of all, we choose a basis ft1; t2g
for the translation lattice as in Section 3.2. We consider the direction of t1 to be the x-
axis. The full name consists of four symbols. The �rst symbol represents the lattice type; p
for primitive and c for centered (or rhombic). The second symbol is the largest order of a
rotation. The third symbol is either an m, g, or 1. An m (resp. g) means there is a re�ection
line (resp. glide re�ection line but not a re�ection line) perpendicular to the x-axis while a
1 means there is no line of either type. Finally, the fourth symbol is also either an m, a g,
or a 1. In this case an m (resp. g) represents a re�ection line (resp. glide re�ection line) at
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Wallpaper Group Full Name Point Group
p1 p111 C1
cm c1m1 D1;c

pm
pg

p1m1
p1g1

D1;p

p2 p211 C2
cmm c2mm D2;c

pmm
pmg
pgg

p2mm
p2mg
p2gg

D2;p

p3 p311 C3
p3m1 p3m1 D3;l

p31m p31m D3;s

p4 p411 C4
p4m
p4g

p4m1
p4g1

D4

p6 p611 C6
p6m p6m1 D6

Table 5.1: The 17 Wallpaper Groups

an angle � with the x-axis, the angle depending on the largest order of rotation as follows:
� = 180� for n = 1; 2; � = 60� for n = 3; 6; � = 45� for n = 4.
For example, the group name p3m1 represents a group with a 120� rotation, a re�ection

line perpendicular to the x-axis, and no re�ection or glide line at an angle of 60� with the
x-axis. However, in the group p31m, we have the same rotation, but no re�ection or glide
line perpendicular to the x-axis, while there is a re�ection line at an angle of 60� with the
x-axis.
In Section 4.4 we showed that there are eighteen inequivalent group extensions of a point

group of a symmetry group by T �= Z2. As we saw from Corollary 3.8, if two groups
have di¤erent point groups, when taking into account the action on T , then they are not
isomorphic. Therefore, to determine whether two inequivalent group extensions represent
nonisomorphic wallpaper groups, we have to consider only three point groups, D1;p, D2;p,
and D4, as indicated in the table at the end of Section 4.2.
In the remainder of this section, we describe explicitly the seventeen wallpaper groups.

We continue to make use of some cohomological information. The next section gives this
description without the use of cohomology.
To begin, we prove a simple lemma to enable us to write down elements of a wallpaper

group in terms of the point group and certain vectors in R2. We will see that it is the
determination of these vectors that will determine our wallpaper groups.
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Lemma 5.1. Let G be a wallpaper group with point group G0. For each g 2 G0 there is
a tg 2 R2 with (g; tg) 2 G. Furthermore, tg is uniquely determined up to addition by an
element of T . Furthermore, G = f(g; tg + t) : g 2 G0; t 2 Tg.

Proof. Recall from Proposition 3.2 that the map ' : G ! G0 de�ned by '(g; t) = g is a
surjective homomorphism with kernel T . Therefore, for each g 2 G0, there is a vector tg
with (g; tg) 2 G. If (g; sg) 2 G, then '(g; sg) = '(g; tg), so (g; sg) � (g; tg)mod ker(').
Since ker(') = T , there is a t 2 T with (g; sg) = (I; t)(g; tg). Thus, sg = tg + t. In other
words, tg is uniquely determined up to addition by an element of T . Finally, since ' is a
surjection onto G0 with kernel T , and since (g; tg) 2 '�1(g) and G =

S
g2G0 '

�1(g), we see
that G = f(g; tg + t) : g 2 G0; t 2 Tg.

To describe explicitly a wallpaper group G, it is su¢ cient to determine the vectors ftgg.
To �nd generators of a wallpaper group, one case for each point group is easy: if G is the
semidirect product of T and G0; that is, G corresponds to the trivial group extension of
T by G0, then G is generated by t1; t2 and the generators of G0. These give us thirteen
nonisomorphic wallpaper groups. For the groups that represent nontrivial group extensions,
we can look to Lemma 4.4 for help in determining the groups. Suppose G0 = Dn for some
n > 1, and let r; f be generators of G0, where r is a rotation and f a re�ection. Recalling
the construction of the cocycle associated to a group extension, for each g 2 G0 we need to
�nd an element xg of G projecting to g. We may choose xri = (ri;0) 2 G since G contains
the semidirect product of T by hri; this is a consequence of the equality H2(hri ; T ) = 0

that we saw in Section 4.4. For f , let us write xf = (f; u) for some u 2 R2 yet to be
determined. As (ri;0)(f; u) = (rif; ri(u)), we may then choose xrif = (rif; ri(u)). Therefore,
we may set tri = 0 and trif = ri(u) for each i. The cocycle c representing this group is
given by c(g; h) = tg + gth � tgh. We must have c(g; h) 2 T for all g; h 2 G0. In particular,
c(f; f); c(rf; r) 2 T . However, c(f; f) = u and c(rf; r) = r(u)� u since tr = 0 and rfr = f .
Therefore, u is restricted by the condition r(u)�u 2 T . Note that u is uniquely determined
only up to addition by an element of T since for any t 2 T we have (I; t)(f; u) = (f; u + t)
is another choice of xf .
We use the restriction r(u)�u 2 T to determine wallpaper groups explicitly for the point

groups D4 and D2;p. We will need a di¤erent condition to determine the wallpaper groups
with point group D1;p. In each case we will also determine when two inequivalent group
extensions represent nonisomorphic wallpaper groups.
First, consider G0 = D4 = hr; fi. From Section 3.2 we have a basis ft1; t2g such that r

sends t1 and t2 to t2 and �t1, respectively, and f sends t1 and t2 to t1 and �t2, respectively.
If u = �t1+�t2 with �; � 2 R, then r(u)�u = (����)t1+(���)t2. Therefore, �+� and
�� � are integers. Since u is determined only modulo T , we may assume that 0 � �; � < 1.
Therefore, we have two possibilities, u = 0 if � = � = 0 and u = 1

2
(t1 + t2) if � = � = 1

2
.

The two inequivalent group extensions of T by D4 correspond to these two choices of u.
To see that the resulting groups are not isomorphic, the group corresponding to the trivial
cocycle, which is the semidirect product of Z2 and D4, contains a subgroup isomorphic to
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D4. We show that the other group does not contain such a subgroup. We can see this from
the explicit description of G. The elements (r; t) and (r3; t) for t 2 T are 90� rotations by
Lemma 2.1. We recall that u = 1

2
(t1 + t2) for this group. The elements (fr; u + t) and

(fr3; u+ t) are re�ections if t is an integral multiple of t1 + t2. If G contains a subgroup H
isomorphic to D4, then it contains a 90� rotation and a re�ection. Moreover, the product
of two such maps is again a re�ection. However, the elements of the form (f; u + t) and
(fr2; u + t) for t 2 T are never re�ections by Lemma 2.2. Also, the product of a rotation
and a re�ection in G is an element of one of these forms. This shows that G cannot contain
a subgroup isomorphic to D4. The two groups with point group D4 are illustrated with the
following wallpaper patterns.

p4m p4g

Figure 5.1: Wallpaper patterns with groups p4m and p4g

In the case G0 = D2;p, the 180� rotation r acts on T as �1, the condition r(u) � u 2 T
means 2b 2 T . Therefore, modulo T , we have exactly four cases: u = 0; 1

2
t1;

1
2
t2;

1
2
(t1 + t2).

This is the one case where the number of isomorphism classes of wallpaper groups is less than
the number of group extensions of T by G0. By our determination of the possible values of
u, the four inequivalent group extensions correspond to groups given in terms of generators
by

pmm = ht1; t2; r; g1i ; pmg = ht1; t2; r; g2i ;
pmg0 = ht1; t2; r; g3i ; pgg = ht1; t2; r; g4i ;

where T is generated by t1; t2, and the gi are given by

g1 =

��
1 0

0 �1

�
;0

�
; g2 =

��
1 0

0 �1

�
; 1
2
t1

�
;

g3 =

��
1 0

0 �1

�
; 1
2
t2

�
; g4 =

��
1 0

0 �1

�
; 1
2
(t1 + t2)

�
:

The groups pmg and pmg 0 are isomorphic because if

U =

�
0 1

1 0

�
;
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the matrix that represents the re�ection about the line y = x, then conjugation by U is an
isomorphism between pmg and pmg 0. This map is not the identity on T , which is why this
isomorphism does not give an equivalence between pmg and pmg 0 as group extensions.
We thus have at most three nonisomorphic wallpaper groups in this case, pmm, pmg, and

pgg. To see they are pairwise nonisomorphic, we argue �rst that pmm is not isomorphic to
either pmg or pgg, and second that pmg and pgg are not isomorphic. First, note that pmm
contains a subgroup of order 4, the subgroup generated by r and the horizontal re�ection f .
We claim that pmg does not contain such a subgroup. Lemmas 2.1 and 2.2 imply that the
elements of pmg of order 2 are (r; t) for any t 2 T and (rf; nt2) for any n 2 Z. However, no
product of two of these elements also has order 2. This proves that pmg is not isomorphic
to pmm. Similarly, the only elements of pgg of order 2 are of the form (r; t) and the product
of any two has in�nite order. So, pmm is not isomorphic to pgg. Second, if there is an
isomorphism ' from pmg to pgg, Corollary 3.8 shows that there is a matrix U 2 Gl2(Z) with
'(g; t) = (UgU�1; Ut) for all (g; t) 2 pmg. From the description above of elements of order
2 in pmg and pgg, (rf;0) is sent to an element of the form (r; t) for some t 2 T . This forces
UrfU�1 = r, a contradiction since det(rf) = �1 and det(r) = 1. Therefore, pmg and pgg
are not isomorphic.
The following three pictures have groups pmm, pmg, and pgg, respectively.

pmm pmg pgg

Figure 5.2: Wallpaper patterns with groups pmm, pmg, and pgg

The �nal case to consider is G0 = D1;p, which is generated by a re�ection f . There is a
basis ft1; t2g for T with f(t1) = t1 and f(t2) = �t2.The condition r(u)� u 2 T does not say
anything since r = id. However, by considering the cocycle value c(f; f) = tf + f(tf ) � tid,
if we set u = tf , we see that u + f(u) 2 T . Therefore, modulo T , two possibilities are
u = 0 and u = 1

2
t1. Note that we obtain the same cocycle for u = 1

2
t1 as with the choice

u = 1
2
t1 + �t2 for any � 2 R. The independence of the group on the choice of � will be

addressed in Section 5.5 below. There are two inequivalent group extensions with this point



52 Chapter 5. The Wallpaper Groups

group. The two resulting groups are not isomorphic. This follows from the fact that the
semidirect product of G0 with T contains a subgroup of order 2, namely G0. However, the
other group is generated by t1; t2, and g = (f; 12t1). In this group there are no elements of
�nite order, since (f; 1

2
t1 + t)

2 = (I; t+ t1 + f(t)) for any t 2 T , and t1 + t+ f(t) 6=0 for any
t 2 T . The following pictures illustrate the two groups, pm and pg, respectively.

pm pg

Figure 5.3: Wallpaper patterns with groups pm and pg

We now list explicit descriptions of the seventeen groups, given by generators, and we
give two pictures of wallpaper patterns, one simple picture constructed from triangles, and
one Escher tessellation, except for the case G = pm, since Escher did not draw a picture
with symmetry group pm.
One thing to notice about these wallpaper groups is that those groups that contain a

nontrivial glide re�ection are exactly those that correspond to nontrivial group extensions.
That is, the groups that contain a nontrivial glide re�ection correspond to nonzero elements
in a cohomology group H2(G0; T ). We remark further about this point in Section 5.5.

5.2 Classi�cation Without Cohomology

In this section we show how to classify wallpaper groups without cohomology. We do make
full use of the results from Chapter 3 but we do not need anything from Chapter 4. There
is a fair amount of overlap with Section 5.1, but we repeat many ideas here to remove any
reference to cohomology.
In this section, as in the previous section, we will use systematically the notation (g; tg)

to denote an element of a wallpaper group. The element tg need not be an element of
T . For example, if we view pg as the symmetry group of Escher�s Horseman on Page 5,
then it contains a glide re�ection of the form (f; 1

2
t1) with neither (f;0) nor the translation

component (I; 1
2
t1) an element of pg.

To determine a wallpaper group G we need to know G0 and to determine the possible
choices of the elements ftggg2G. We will do so by considering the di¤erent possibilities of
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G0. Before we do this, we note some restrictions on the tg. First, if g; h 2 G0, then

(g; tg)(h; th) = (gh; g + g(th)):

Since (gh; tgh) is another element of G mapping to gh under ', this forces

g + g(th)� tgh 2 T: (5.1)

Conversely, if we have, for each g 2 G0, an element tg 2 R2 such that Equation 5.1 is satis�ed,
then the set f(g; t+ tg) : g 2 G0; t 2 Tg is a wallpaper group with translation lattice T and
point group G0; we leave this as a trivial exercise. For example, if tg = 0 for all g, then
Equation 5.1 is clearly satis�ed, and the corresponding group is G = f(g; t) : g 2 G0; t 2 Tg.
In this case G0 is actually isomorphic to the subgroup f(g;0) : g 2 G0g of G. We refer to this
case as the split wallpaper group with point group G0 (and translation lattice T ), since G is
then the semidirect product of T and G0, which corresponds to the split group extension of
T by G0, hence the terminology.
Next, we consider how the tg may change by considering an isomorphic group. If s 2 R2

is �xed, consider the inner automorphism � : Isom(R2) ! Isom(R2) given by (g; t) 7!
(I; s)(g; t)(I; s)�1. This map is given by the formula

(I; s)(g; t)(I; s)�1 = (I; s)(g; t)(I;�s) = (g; s+ t)(I;�s)
= (g; s+ t� g(s)):

If we have a wallpaper group G corresponding to ftggg2G0 � R
2, then �(G) is a wallpaper

group isomorphic to G and corresponding to f(s+ tg � g(s))gg2G0. Therefore, given two
groups G and G0 corresponding to ftgg and

�
t0g
	
, respectively, then G and G0 are isomorphic

if there is an v 2 R2 with
t0g = tg + v � g(v) (5.2)

for all g 2 G0. While the map � appears to be a very special type of isomorphism, it will be
general enough for our purposes. For example, if tg = v � g(v) = (I � g)(v) for all g 2 G0,
then G is isomorphic to the split wallpaper group with point group G0. Since each tg is only
determined up to addition by an element of T , we see that G is a split wallpaper group if
there is a v 2 R2 with

tg � v � g(v) (modT ) (5.3)

for all g 2 G0.
We have seen that there are thirteen possible point groups; therefore, we have thirteen

split wallpaper groups. We will see that there are four more wallpaper groups once we �nish
the classi�cation.
For those who wish to see how these ideas relate to the use of cohomology, the function

(g; h) 7! g + g(th) � tgh 2 T is precisely a 2-cocycle representing the group extension G,
and Equation 5.2 says that two cocycles representing G di¤er by a 2-coboundary. Therefore,
what we are doing in this section is redeveloping the connection between group extensions
and cohomology for wallpaper groups.
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Proposition 5.2. Let G be a wallpaper group with point group Cn for some n. Then G is
isomorphic to a split wallpaper group.

Proof. The argument for the case n = 1 is di¤erent from the general argument. If n = 1,
then G=T = 0, so G = T is split. Thus, we only need to consider the case G0 = Cn with
n > 1. Let r be a generator of Cn. With notation above, for each i with 1 � i < n, there
are tri 2 R2 with (ri; tri) 2 G. For ease of notation, we set u = tr. Note that, by induction,
we have

(r; u)i = (ri; u+ r(u) + � � �+ ri�1(u)):

Since tri is uniquely determined up to addition by an element of T , we may assume that
tri = u+r(u)+ � � �+ri�1(u). Now, since r is a nontrivial rotation, it �xes a unique point. As
a consequence, I � r is invertible, so there is a vector v with u = v � r(v). Another simple
induction argument yields tri = v � ri(v). Therefore, by the argument preceding Equation
5.3, we see that G is split.

This proposition also gives information about wallpaper groups with point group Dn.

Corollary 5.3. Let G be a wallpaper group with point group Dn, and let ' : G! G0 = Dn be
the canonical homomorphism. Then '�1(Cn) is a split wallpaper group, and if f 2 Dn �Cn
with (f; tf ) 2 G, then G is generated by '�1(Cn) and (f; tf ).

Proof. The group '�1(Cn) contains ker(') = T , so the translation subgroup of '�1(Cn) is T ,
and thus it is a wallpaper group. It is split by Proposition 5.2. Finally, the group generated
by '�1(Cn) and (f; tf ) contains T and maps onto Dn; thus it must be G.

We use this corollary to determine wallpaper groups with point group Dn. We write
Dn = hr; fi with relations rn = e = f 2 and frf = r�1. Let G be a wallpaper group with
point group Dn. As a consequence of the corollary, we may choose tri = 0 for all i. Set
u = tf . Since (r;0)(f; u) = (rif; ri(u)), we may choose trif = ri(u). Therefore, the choice
of u completely determines G. One or two special cases of Equation 5.1 will allow us to
determine u. First, if g = h = f , then Equation 5.1 yields

u+ f(u) 2 T (5.4)

since tf2 = tI = 0. Next, with g = rf and h = r, we have

(rf; r(u))(r;0) = (rfr; r(u)) = (f; r(u)):

Therefore,
r(u)� u 2 T: (5.5)

We will use Equations 5.3, 5.4, and 5.5 to describe all wallpaper groups with a dihedral point
group.
Consider G0 = D1;p. Then G0 = hfi, and the only condition we need to consider is

u + f(u) 2 T . We saw in Section 3.2 that T has a basis ft1; t2g with f(t1) = t1 and
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f(t2) = �t2. Let u = �t1 + �t2 with �; � 2 R. Because u is only determined up to addition
by an element of T , we may modify � and � to assume that 0 � �; � < 1. We have
u + f(u) = 2�t1. For this to be an element of T we must have 2� 2 Z, so � = 0 or � = 1

2
.

Therefore, there are two wallpaper groups with point group D1;r; one is the split group and
the other corresponds to the choice of u = 1

2
t1 + �t2. Note that we have no restriction on �.

In fact, di¤erent choices of � yield the same group, up to isomorphism. For, if G corresponds
to the choice of u = 1

2
t1 and G0 corresponds to the choice of u = 1

2
t1 + �t2 for any �, then

G0 �= G via the isomorphism given by conjugation by (I; 1
2
�t2), as an exercise shows. We

discuss this further in Section 5.5.
Next, we consider G0 = D1;c. The di¤erence with D1;p is that for D1;c, the lattice T has

a basis ft1; t2g with f(t1) = t2 and f(t2) = t1. As above, we write u = tf . If u = �t1 + �t2,
then u+ f(u) = (� + �)(t1 + t2). For this to be an element of T , we must have � + � 2 Z.
We may choose � = �� since u is uniquely determined modulo T . Then u = �(t1� t2). The
choice of � does not a¤ect the group since if G corresponds to � = 0, so u = 0, and if G0

corresponds to another choice of �, then G0 �= G via the isomorphism given by conjugation
by (I; �t1). Thus, G is split, as we see by taking � = 0, so u = 0.
We next consider D3;l and D3;s simultaneously. For both cases T has a basis ft1; t2g such

that the rotation r of 120� satis�es r(t1) = t2 and r(t2) = �t1 � t2. If f is any re�ection,
Equation 5.5 forces r(u)� u 2 T , where u = tf . If u = �t1 + �t2, then

r(u)� u = �t2 + �(�t1 � t2)� (�t1 + �t2) = �(�+ �)t1 + (�� 2�)t2:

Thus, r(u)�u 2 T when �+� 2 Z and �� 2� 2 Z. If we restrict � to the range 0 � � < 1,
then these two conditions force � = 0; 1

3
; 2
3
. Then � is determined uniquely, modulo Z, as

��. Thus, we have three possible choices for u, either 0, 1
3
(�t1 + t2), or 2

3
(�t1 + t2). We

wish to show that all three choices produce isomorphic wallpaper groups. To do this we use
Equation 5.3. We point out that with tri = 0 and trif = ri(u), Equation 5.3 is satis�ed if
and only if there is a v 2 R2 with r(v) � v(modT ) and u � v � f(v)(modT ). We show
that v = �u satis�es these conditions. Since r(u) � u 2 T , we see that r(v) � v(modT ).
Next, v� f(v) = �u+ f(u) � 2u(modT ) since Equation 5.4 yields f(u) � u(modT ). Thus,
u� (v � f(v)) � 3u(modT ). In all three possibilities for u, we have 3u � 0(modT ). Thus,
Equation 5.3 shows that a wallpaper group with point group D3;l or D3;s is split.
For G0 = D6 our argument is similar. Here D6 = hr; fi, there is a basis ft1; t2g with

r(t1) = t1 + t2 and r(t2) = �t1. Therefore, if tf = u = �t1 + �t2, then

r(u)� u = �(t1 + t2)� �t1 � (�t1 � �t2) = ��t1 + (�+ �)t2:

For r(u) � u 2 T , we must have � 2 Z and � + � 2 Z. Thus, both �; � 2 Z, so any choice
of � and � yields the same group, up to isomorphism, as the choice � = � = 0. Therefore,
G is the split wallpaper group with point group D6.
Let G0 = D4. There is a basis ft1; t2g for T with r(t1) = t2 and r(t2) = �t1. Set

u = tf = �t1 + �t2. The condition r(u) � u 2 T says (�t2 � �t1) � (�t1 + �t2) 2 T , or
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(�� � �)t1 + (� � �)t2 2 T . In other words, � + � 2 Z and � � � 2 Z. Therefore, with
0 � �; � < 1, we have the solutions � = � = 0 and � = � = 1

2
. So, either u = 0 or

u = 1
2
(t1 + t2). We then have two wallpaper groups with point group D4.

The �nal point group to consider is D2. We have two cases. First, let G0 = D2;c. Then
T has a basis ft1; t2g such that f(t1) = t2 and f(t2) = t1. The 180� rotation r satis�es
r(t) = �t for all t 2 T . Let u = tf = �t1 + �t2 as above. The condition r(u) � u 2 T
and 0 � �; � < 1 forces � = 0; 1

2
and � = 0; 1

2
. Since f(u) + u = (� + �)(t1 + t2), this

says � + � 2 Z. Therefore, u = 0 or u = 1
2
(t1 + t2). Remembering that we can modify u

by adding an element of T , in the second case we may replace u by u � t2 to assume that
u = 1

2
(t1 � t2). Then the two groups obtained by the two choices of u are isomorphic, since

1
2
(t1 � t2) = (I � f)(12t1).
Finally, let G0 = D2;p. Then T has a basis ft1; t2g with f(t1) = t1 and f(t2) = �t2. As

with the previous case, r(t) = �t for all t 2 T . If u = �t1 + �t2, then r(t)� t 2 T says that
� = 0; 1

2
and � = 0; 1

2
. The condition f(u) + u 2 T gives no further restriction. Therefore,

we have four possibilities:

u = 0;

u =
1

2
t1;

u =
1

2
t2;

u =
1

2
(t1 + t2):

We claim that these four cases yield three nonisomorphic groups. Instead of repeating the
argument, we refer the reader to Section 5.1; this claim is veri�ed there, and no references
to cohomology are used in the argument.

5.3 Description of the Wallpaper Groups

In this section we describe each wallpaper group in terms of generators and relations along
with giving two wallpaper patterns whose symmetry group is the given group. Throughout
we write ft1; t2g for a basis of the translation lattice T , described for each lattice type as in
Section 3.2. We recall the labelling of the groups, organized according to the lattice type.
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Parallelogram Rectangular Rhombic Square Hexagonal
p1 pm cm p4 p3
p2 pg cmm p4m p3m1

pmm p4g p31m
pmg p6
pgg p6m

Table 5.2: The 17 Wallpaper Groups

p1. Generators t1; t2; point group C1.
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cm. Generators t1; t2;
��

0 1

1 0

�
; 0

�
; point group D1;c.
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pm. Generators t1; t2;
��

1 0

0 �1

�
; 0

�
; point group D1;p.
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pg. Generators t1; t2;
��

1 0

0 �1

�
; 1
2
t1

�
; point group D1;p.



5.3. Description of the Wallpaper Groups 61

p2. Generators t1; t2;
��

�1 0

0 �1

�
; 0

�
; point group C2.
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cmm. Generators t1; t2;
��

0 1

1 0

�
; 0

�
;

��
0 �1
�1 0

�
; 0

�
; point group D2;c.
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pmm. Generators t1; t2;
��

�1 0

0 �1

�
; 0

�
;

��
1 0

0 �1

�
; 0

�
; point group D2;p.
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pmg. Generators t1; t2;
��

�1 0

0 �1

�
; 0

�
;

��
1 0

0 �1

�
; 1
2
t1

�
; point group D2;p.
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pgg. Generators t1; t2;
��

�1 0

0 �1

�
; 0

�
;

��
1 0

0 �1

�
; 1
2
(t1 + t2)

�
; point group D2;p.
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p3. Generators t1; t2;
��

0 �1
1 �1

�
; 0

�
; point group C3.
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p3m1. Generators t1; t2;
��

0 �1
1 �1

�
; 0

�
;

��
1 0

1 �1

�
; 0

�
; point group D3;l.
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p31m. Generators t1; t2;
��

0 �1
1 �1

�
; 0

�
;

��
1 �1
0 �1

�
; 0

�
; point group D3;s.
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p4. Generators t1; t2;
��

0 �1
1 0

�
; 0

�
; point group C4.
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p4m. Generators t1; t2;
��

0 �1
1 0

�
; 0

�
;

��
1 0

0 �1

�
; 0

�
; point group D4.
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p4g. Generators t1; t2;
��

0 �1
1 0

�
; 0

�
;

��
1 0

0 �1

�
; 1
2
(t1 + t2)

�
; point group D4.
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p6. Generators t1; t2;
��

1 �1
1 0

�
; 0

�
; point group C6.
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p6m. Generators t1; t2;
��

1 �1
1 0

�
; 0

�
;

��
1 �1
0 �1

�
; 0

�
; point group D6.
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5.4 Fundamental Domains

Throughout this section we continue to write ft1; t2g for a basis of the translation lattice
T , described for each lattice type as in Section 3.2. In any wallpaper pattern there is a
parallelogram (with half of its boundary) such that every point in the plane is uniquely
obtained as a translation of one point in the parallelogram. This is a fundamental domain
with respect to the translation subgroup. It is not uniquely determined.
For example, for the group pmm, if one considers the bottom left corner of the following

fundamental domain to be the origin, then the point group consists of the identity, the 180�

rotation about the origin, and horizontal and vertical re�ections. If one starts with a triangle
in the bottom left and applies the three nonidentity transformations in the point group, then
one gets the three unshaded triangles of the following picture. By translating them by t1,
t2, and t1 + t2, respectively, they are placed inside the rectangle.

For di¤erent subgroups one can get a di¤erent fundamental domain. For instance, for the
entire group, one would only need one of the four triangles above; every other triangle can be
obtained by some isometry in the group. On the other hand, for the subgroup generated by
t1, t2, and the 180� rotation, one would need two triangles. The following pictures indicate
fundamental domains for these two groups.

5.5 Arithmetic Aspects of the Wallpaper Groups

In this section we address some particular aspects of some of the symmetry groups, such
as illustrating the di¤erences between wallpaper groups with the same point group. The
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group-theoretic di¤erences are nicely illustrated with examples of wallpaper patterns. For
example, we show how, using our description of the wallpaper groups, how to determine
centers of rotations and lines of re�ections of various wallpaper patterns.
The �rst point we make is how to determine, by the wallpaper patterns, when a wallpaper

group is not split. Recall that if G has translation lattice T and point group G0, and if G
is split, then G = f(g; t) : g 2 G0; t 2 Tg. In particular, if (g; t) 2 G, then both (g;0) 2 G
and t 2 T . Thus, if a wallpaper pattern with symmetry group G has a glide re�ection
(f; t) for which t =2 T , then G is not split. For example, Escher�s Horseman on Page 5, the
corresponding symmetry group has a nontrivial glide re�ection, so it is not a split wallpaper
group.
Before we discuss speci�c groups, we point out two general facts. First, if r 2 Dn is a

rotation by an angle � and f 2 Dn is a re�ection about the line `, then the re�ection line of
rf is the line `0 obtained by rotating ` by �=2. Second, by Lemma 2.2, if a wallpaper group
contains a re�ection across a line ` through the origin, and if v is a vector perpendicular to
`, then the group contains re�ections with re�ection lines

�
`+ n

2
v : n 2 Z

	
, and that these

lines are precisely the re�ection lines parallel to `.1

p2.

The group p2 consists of translations and 180� rotations. What are the centers of rotations?
Let r be the 180� rotation about the origin. We see that as a consequence of Lemma 2.1
that (r; t) is a 180� rotation about the point t=2. Therefore, the set of centers of rotations
for 180� rotations in p2 is the lattice

�
1
2
t : t 2 T

	
. Restricting to a fundamental domain,

we then have the following picture for the rotation centers.Escher�s drawings of tessellations

Figure 5.4: p2 rotation centers

with symmetry group p2 often show the rotation centers. For example both Camels and
Squirrels, shown on Page 6 show all rotation centers.
The same pattern of rotation centers holds for any symmetry group for whom the rotation

subgroup of the point group is of order 2, for exactly the same reason as for p2. These groups

1do we need this fact here?
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are pmm, pmg, pgg, and cmm.

pg.

We next consider the group pg. This group is generated by translations and a glide re�ection.
We may assume that the glide is of the form (f; 1

2
t1 + �t2) = (f; u), where f is a re�ection

and � is an arbitrary number. We recall from Section 5.1 that the cocycle c representing the
group extension for pg satis�es

c(f; f) = tf + f(tf )� tid
= u+ f(u)� 0 = t1;

the vector �t2 does not show up in this value of the cocycle c. Therefore, it does not a¤ect
the equivalence class of the group extension corresponding to c. The picture below shows
two wallpaper patterns of type pg corresponding to di¤erent choices of �.

Escher has several pictures illustrating the symmetry type pg. In the following two we
also see how the translation component of the basic glide re�ection is di¤erent in the two
pictures. The translation component is marked on the pictures. In both cases the glide is a
vertical re�ection followed by the indicated translation.
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pm, cm, pmm, and cmm.

Wallpaper patterns with symmetry groups pm and cm (resp. pmm and cmm) can be distin-
guished by considering the relationship between re�ection lines and a fundamental domain.
In Section 3.2, we distinguished a rectangular lattice from a rhombic lattice by �nding a
basis ft1; t2g such that, for rectangular lattices, there is a re�ection �xing t1, and in the case
of a rhombic lattice, there is a re�ection interchanging t1 and t2. If we draw a fundamental
domain appropriately, for pm and pmm there will be a re�ection line parallel to a side of the
domain, while for cm and cmm there will be a re�ection line parallel to one of the diagonals
of the domain. For example, in the left picture below, with a fundamental domain super-
imposed, we see that the diagonals of the domain are re�ection lines; thus, the symmetry
group of this wallpaper pattern is cmm. The picture below on the right has re�ection lines
parallel to the sides of the domain, so the group of this pattern is pmm.
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p6 and p6m.

The groups p6 and p6m contain 60� rotations, and p6m also has 6 basic re�ections. In the
picture below, we view the center of the hexagon as the origin. For either group the dark
circles are rotation centers of 60� rotations, the hollow circles are centers of 120� rotations,
and the remaining circles are rotation centers of 180� rotations.To see why this is so, let r

Figure 5.5: p6/p6m rotation centers and re�ection lines
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be a 60� rotation through the origin. As we noted for p2, since r3 is a 180� rotation, (r3; t)
is a 180� rotation centered at 1

2
t. Now, fri(t1) : 1 � 1 � 6g are the six translation vectors

of minimal length in T . Thus, (r3; ri(t1)) yield the six 180� rotations centered at the six
grey points inside the hexagon. For the six grey points on the hexagon�s border, we point
out that the vectors ri(t1) + ri+1(t1) lie at angles 30�, 90�, 150�, 210�, 270�, and 330� to the
x-axis, and each have length

p
3 kt1k. Thus, the six vectors 1

2
(ri(t1) + r

i+1(t1)) yield the
grey points on the hexagon�s border, and are rotation centers for (r3; ri(t1) + ri+1(t1)).
To �nd the 60� rotation centers, we point out that P is such a center if t = P � r(P )

for some t 2 T ; the point P is the rotation center of (r; t). We wish to �nd those P with
kPk � kt1k. Now, P is determined from t by P = �(r � I)�1(t). However, r satis�es
its characteristic equation, which seen to be x2 � x + 1 = 0, and so r2 = r � I. Thus,
P = �r�2(t) = r(t) since r3 = �1. If we take the six vectors ri(t1) of minimal length in T
and apply r, we obtain the six vertices of the hexagon; these then are all of the 60� rotation
centers, other than the origin, inside the hexagon.
Finally, for the 120� rotations, if P is a rotation center, then P = (I � r2)�1(t) for some

t 2 T . By using the matrix for r, we see that

(I � r2)�1 = 1

3

�
3=2 �

p
3=2p

3=2 3=2

�
=

1p
3

� p
3=2 �1=2
1=2

p
3=2

�
:

In other words, the linear transformation (I � r2)�1 is rotation by an angle �60� followed
by multiplication by 1=

p
3. If we take the six corners of the hexagon and apply this trans-

formation, we get the six white circles in the picture above.
The re�ection lines for p6m consist of the six lines through the center together with the

six other lines that appear inside the hexagon. To explain this, let f be the re�ection that
�xes t1, the horizontal translation of minimal length. The �rst six are the re�ection lines of
frif : 1 � i � 6g. To explain the other six re�ection lines, we note that fri(t1) : 1 � 1 � 6g
are the six translation vectors of minimal length in T . The vector ri(t1) is perpendicular to
the re�ection line of exactly one of the rif . For example, t1 is perpendicular to the re�ection
line of r3f . Thus, (r3f; t1) is a re�ection whose re�ection line is the translate of the re�ection
line of f by the vector 1

2
t1. This is the rightmost vertical line in the picture above. The

other �ve lines are translates by 1
2
ri(t1) of the appropriate re�ection line passing through the

center.

p3m1 and p31m.

We next consider the groups whose rotation subgroup of the point group is C3. In addition to
considering rotation centers, we investigate the di¤erence between p3m1 and p31m. Perhaps
the easiest way to visually distinguish wallpaper patterns with these groups is to consider
the relation between lines of re�ection and centers of rotation.
We �rst consider rotation centers. The following wallpaper pattern has symmetry type

p3. The centers of rotations are indicated in the picture; from the analysis for p6, we can
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conclude that centers of 60� or 120� rotations in p6 are rotation centers for p3. Note that in
any parallelogram that represents a fundamental domain for the translation subgroup, the
four corners along with the centers of the two triangular halves are centers of rotation. The
parallelogram marked in the picture below is a fundamental domain for p3.

Figure 5.6: p3 rotation centers

As we saw in Section 3.2, the di¤erence between the symmetry groups p3m1 and p31m is
in the choice of re�ection lines. The group p3m1 corresponds to taking the three re�ection
lines that make angles of 30�, 90�, and 150� with one of the translation vectors, while p31m
has the three re�ection lines at 0�, 60�, and 120� with respect to a translation vector. By
taking the picture above and re�ecting the picture accordingly, we obtain the �gure on the
left below, whose symmetry group is p3m1 and the �gure on the right, whose symmetry
group is p31m.

p3m1 p31m

Figure 5.7: Wallpaper patterns with groups p3m1 and p31m

As we can see in the pictures below, the centers of rotation are all on lines of re�ec-
tion for p3m1, while not all centers are on lines of re�ection for p31m. This fact yields a
straightforward way to distinguish between �gures whose symmetry groups are either p3m1
or p31m. Another way to distinguish them is to notice that if one draws a basic hexagon,
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as below, then the re�ection lines of p3m1 never pass through corners of the hexagon while
the re�ection lines for p31m always pass through the corners.

p3m1 p31m

Figure 5.8: p3m1 and p31m re�ection lines

p4, p4m, and p4g.

The groups p4, p4m and p4g are those containing a 90� rotation. We �rst look at the rotation
centers in a fundamental domain, which is a square. We place the origin at the center of
one 90� rotation r. All other 90� rotations are of the form (r; t) for some t 2 T . The center
P of (r; t) satis�es t = P � r(P ) = (I � r)(P ), so P = (I � r)�1(t). By using the matrix
representation for r, we have

I � r =
�
1 0

0 1

�
�
�
0 �1
1 0

�
=

�
1 1

�1 1

�
;

whose inverse is

(I � r)�1 = 1

2

�
1 �1
1 1

�
=

1p
2

� p
2=2 �

p
2=2p

2=2
p
2=2

�
:

The point of the �nal form of (I � r)�1 is to see that (I � r)�1 is the composition of a
45� rotation followed by multiplication by 1=

p
2. If we consider the four rotations (r;�t1),

(r;�t2), then the rotation centers are the four corners of the fundamental domain, which
are the images under (I � r)�1 of �t1; t2. Thus, inside a fundamental domain, we have the
center and the four corners as centers of 90� rotations.
To �nd the rotation centers of 180� rotations, we recall from the investigation of p2 that

the set of such centers is ft=2 : t 2 Tg. If we ignore those centers that are also centers of 90�
rotations, we are left with the hollow points in the picture above.
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Figure 5.9: p4 rotation centers

The groups p4m and p4g, have re�ections in addition to 90� rotations. These groups can
be distinguished visually by relating lines of re�ection to centers of rotation. For p4m the
group is generated by the translation subgroup and the point group. Therefore, this group
contains re�ections parallel to the sides of a fundamental domain, which is a square. All
centers of rotations consequently lie on re�ection lines. The group p4g does not contain the
point group D4. However, it does contain re�ections in two perpendicular directions. There
are centers of rotations that do not lie on re�ection lines. The following pictures indicate
centers of rotation and lines of re�ection.

Figure 5.10: p4m and p4g re�ection lines

We see that for p4m, all centers of rotation are on re�ection lines, while the same is not
true for p4g. To be more precise, in patterns with group p4g, centers of 90� rotations do not
lie on rotation lines. To explain these re�ection lines, recall that p4g is generated by the
translations, r, and g = (h; 1

2
(t1 + t2), where h is the re�ection about the x-axis. The four

re�ections in the point group of p4g are h; rh; r2h; r3h. Therefore, any re�ection in p4g must
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be of the form (rih; 1
2
(t1 + t2) + t) for some t 2 T . Recall that (rih; v) is a re�ection if and

only if rih(v) = �v. To determine the re�ections in p4g, we must �nd those t 2 T for which

rih

�
1

2
(t1 + t2) + t

�
= �

�
1

2
(t1 + t2) + t

�
: (5.6)

By writing t = nt1+mt2 and recalling that r(t1) = t2 and r(t2) = �t1, a short calculation will
show that Equation 5.6 holds only when i = 1 and 1 + n = �m, or when i = 3 and n = m.
The re�ection line of rh makes a 45� with the x-axis. In the case i = 1, if we set n = 1,
then we see that the re�ection line of (rh; 1

2
(t1 + t2) � t2) = (rh; 12t1 �

1
2
t2) is obtained by

translating the line y = x by the vector 1
2

�
1
2
t1 � 1

2
t2
�
; similarly, with n = �1, the re�ection

line of (rh; 1
2
(t1 + t2) � t1) is obtained by translating the line y = x by 1

2

�
�1
2
t1 +

1
2
t2
�
.

These two lines are the two 45� lines in the picture above. Similarly, the re�ection lines of
(r3h; 1

2
(t1+ t2)) and (r3h; 12(t1+ t2)� (t1+ t2)) are the two 135

� lines above; these re�ections
correspond to the choices n = m = 0 and n = m = �1, respectively.
For example, consider Escher�s picture below, with a fundamental domain indicated as a

diamond in the center of the picture.

The horizontal and vertical lines are re�ection lines but do not represent translations. So,
the lattice of lines drawn by Escher does not show the translation lattice.

pmm, pmg, and pgg.

The point group D2;r yields three nonisomorphic symmetry groups, pmm, pmg, and pgg.
One way to distinguish patterns for these groups is to consider re�ections. The group pmm
contains re�ections in two non-parallel directions, while pmg contains re�ections in only one
direction. The group pgg does not contain any re�ections. For example, the leftmost picture
below has symmetry group pmm, and there are horizontal and vertical re�ections of the
pattern.
In the center picture, which has symmetry group pmg, there are vertical re�ections only,

so the �gure has re�ections in only one direction. There is, however, a glide re�ection of the
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pmm pmg pgg

Figure 5.11: Wallpaper patterns with groups pmm, pmg, and pgg

form (h; 1
2
t1), where h is a horizontal re�ection, and t1 is the smallest horizontal translation of

the �gure. If v is a vertical re�ection inD2;p, then v = hr, and so (v; 12t1) = (h;
1
2
t1)(r;0) 2 G.

Now, since 1
2
t1 is perpendicular to the re�ection line of v, the isometry (v; 12t1) is a vertical

re�ection.
Finally, in the rightmost �gure, which has symmetry group pgg, there are no re�ections

of the pattern. There are glide re�ections (h; 1
2
(t1+ t2)) and (v; 12(t1+ t2)), where h and v are

horizontal and vertical re�ections, respectively, and ft1; t2g is a basis consisting of a horizontal
and a vertical translation. To see that pgg does not contain a re�ection, we �rst point out
that any re�ection in pgg would have to be of the form (h; 1

2
(t1+ t2)+ t) or (v; 12(t1+ t2)+ t)

for some t 2 T since these are the only elements whose image in the point group G0 = D2 is
a re�ection. If (h; 1

2
(t1 + t2) + t) is a re�ection, then h

�
1
2
(t1 + t2) + t

�
= �

�
1
2
(t1 + t2) + t

�
.

A short calculation shows that there is no value of t for which this is true. Similar reasoning
shows that (v; 1

2
(t1 + t2) + t) is not a re�ection for any t.
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and a page reference for each symbol.
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AT transpose of A 14
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Dn dihedral group of order 2n 16
T translation lattice of a wallpaper group 19
(A; b) notation for the isometry x 7! Ax+ b 19
I identity transformation 19
G0 point group of a wallpaper group G 19
Cn cyclic group of order n 20
Gl2(Z) general linear group 22
D3;l one representation of D3 27
D3;s another representation of D3 27
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D1;c D1 for rhombic lattice 30
D2;p D2 for rectangular lattice 31
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im(f) image of f 41
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