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 My Favorite Elliptic Curve:

 A Tale of Two Types of Triangles

 Richard K. Guy

 One of the many beauties of elliptic curves is their blend of arithmetic and

 geometry, not only intrinsically but also in their applications. If you want to learn

 more about them there are several good introductions available: Silverman & Tate
 [9], Knapp [7] and Cassels [2], who manages to write a whole book on elliptic

 curves without using the word 'rank.'

 The curve of the title (88A in [1] or [4]) is:
 y2 = X3 - 4X + 4

 Figure 1 shows a picture of part of its part. It's fairly uncomplicated curve: it

 has only one real component and doesn't break up into an 'egg' and an infinite

 branch as many elliptic curves do. Moreover, it doesn't have any torsion points,

 points of finite order, except for the point at infinity, which we must always

 remember. And I thank the referee for reminding me that when I say 'torsion

 points' this is an ellipsis for 'rational torsion points.' For example, the points of

 inflexion are of order three, but they are not rational on this curve. One of the

 difficulties for the beginner is keeping track of what field he is working in: it is

 often convenient to vary the focus from complex to real to rational, and even to

 consider finite fields.

 -5l

 Figure 1. The elliptic curve y2 = X3 - 4X + 4.
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 The curve does have several obvious rational points.

 (0, +2), (1, +1), (2, +2), (-2, +2).

 The points of an elliptic curve form a group. Take the point at infinity as the
 (additive) identity, 0. The group law is described by noting that a straight line
 meets a cubic curve in three points whose sum we define to be 0. For example, the
 ordinate X = 2 meets the curve in (2, + 2) and the point at infinity, so if (2, + 2)
 are P and Q, then

 P + Q + 0 = 0

 and Q = -P. The tangent at (2, 2) meets the curve again at (0,-2) = R, say, so
 that

 P + P + R = 0,

 R = -2P and (0,2)= 2P. On joining this to P we see that (-2,2)= -3P,
 (-2, -2)- 3P. By joining -P to -3P or drawing the tangent at -2P we
 discover that 4P= (1, -1) and then SP= (6, -14),6P= (8,22) and so on. We
 soon convince ourselves that there is an infinity of rational points on the curve. In
 fact a theorem of Mazur (see [6], p. 223, Theorem 7.5, for example) tells us that
 there can't be more than 16 rational points of finite order. The rank of the curve is
 1; all rational points can be derived from the generator P = (2, 2).

 Warning: to prove that a point is a generator usually requires more sophistication
 than we display here.

 A mixture of cevians. Problem E3434 in the April 1991 MONTHLY asked, or should
 have asked, for integer triangle ABC in which the median from A, the bisector of
 angle B, and the altitude from C are concurrent. At the time of writing, no
 solution has been published, though I have seen an interesting one due to J. G.
 Mauldon, which makes no explicit use of an elliptic curve.

 B/ g A

 Figure 2. Triangle with concurrent median, angle-bisector and altitude.
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 Ceva's theorem ([3, p.4] for example) tells us that three concurrent lines drawn
 from the vertices of a triangle divide the sides in ratios whose product is 1:

 BX CY AZ a/2 a bcosA

 XC YA ZB a/2 c acosB

 where the middle ratio comes from the angle-bisector theorem. Multiply b cos A
 = c cos B by 2ac and the cosine formula gives

 a(b2 + c2 _ a2) = c(c2 + a2 _ b2)

 Put

 2b 2c
 Y= X=

 a +c' a +c

 and we get our favorite curve

 Y2 =X3 - 4X+ 4.

 So we seem to have found an infinity of such triangles, but a complication is
 that not all rational points on the curve give real triangles. The transformation we
 just made inverts to

 (a:b:c) = (2-X:Y:X).

 We can change the signs of all three of a, b and c, so we do this if necessary to
 make a positive. We can change the sign of Y, since the curve is symmetrical, and
 so make b positive. And we can interpret either sign for c: when c is negative, Y
 divides CA externally in the ratio a: c and BY is the cxtemal bisector of angle B
 (Figure 3).

 _

 c lZ

 Figure 3. Triangle with external angle-bisector concurring with median and altitude.

 If X > 0 the triangle inequality requires that Y > 2X - 2, Y > 2 - 2X and
 2 > Y, i.e. that we are inside the region in Figure 1 bounded by the tangents at
 P a,nd the line Y=2, i.e. on the piece of curve O<X<2,0<Y<2. Such
 points give us genuine internal bisector triangles. The point -4P corresponds to
 the equilateral triangle.

 If X < 0 the triangle inequality gives Y > - 2, Y > 2 and 2 - 2X > Y. We are
 on the piece of the curve below the tangent at -P and above the line Y= 2: i.e.
 -2 < X < 0,Y 2. These points give triangles whose external angle-bisector
 concurs with the median and altitude.

 If X is outside the interval [- 2, 2], the triangle inequality is not satisfied. Table
 1 lists a point, chosen so that (2 - X)Y is positive, from each of the first twenty
 pairs; together with the associated triple (a, b, c) and a description of the resulting
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 TABLE 1. Points on curve and corresponding triangles.

 point

 p

 2P

 -3P

 -4P

 SP

 -6P

 7P

 8P

 -9P

 - lOP

 llP

 - 12P

 13P

 - 14P

 -1SP

 16P

 -17P

 18P

 l9P

 -20P

 (xsy)
 (2,2)

 (0,2)

 (-2,2)

 (1, 1)

 (6, - 14)

 (8, -22)

 (10/9,26/27)

 ( - 7/4,19/8)

 ( - 6/25,278/125)

 (88/49,554/343)

 (310, -5458)

 (273/112, -3383/113)

 (206/312,52894/313)

 ( - 3344/392,87326/393)

 (9362/1032,1175566/1033)

 (27105/762, -4131247/763)

 (256882/1512, - 128313838/1513)

 (589456/6952,324783646/6953)

 ( - 2280402/12472,5023772066/12473)

 (- 1896655/19392,17691806567/19393)

 (a, b, c)

 (0,1,1)

 (1, 1, O)

 (2,1, -1)

 (1, 1, 1)

 (2,7, -3)
 (3,11, -4)

 (12,13,15)

 (30,19, -14)

 (140,139, -15)

 (35,277,308)

 (308,5458, -310)

 (341,3383, -3003)

 (26598,26447,3193)

 (124527,43663, -65208)

 (610584,587783,4832143)

 (1182028,4131217, -2059980)

 (31903280,128313838, -38789182)

 (130866415,162391823,204835960)

 (3360926870,2511886033, - 1421830647)

 (18257812083,17691806567, -3677614045)

 D

 D

 D

 G(^)

 N

 N

 G

 A

 A

 G

 N

 N

 G

 N

 G

 N

 N

 G

 A

 A

 triangle, if any: D means degenerate, G is good, N does not yield a real triangle,
 while A means that the angle-bisector is external.

 The point llP is a pleasant surprise, though it would be natural to join SP to
 6P if one were looking for large integer points. Note that there can only be a finite
 number of integer points, i.e., points with integer coordinates. This is Siegel's
 theorem [see 8, p. 247, Theorem 3.1, for example]. Fortunately for us, any rational
 point will do, because the determination of all integer points requires some
 ingenuit;y, Tzanakis & Weger [13, 14] have made some progress with this
 problem; Zagier's paper [15] explains the connexion with the magic number g that
 we'll meet below. Indeed, since this paper was first drafted, a method using these
 elliptic logarithms has been developed by Stroeker & Tzanakis [11] (and indepen-
 dently by Gebel, Petho & Zimmer [5]) and used by Stroeker & de Weger [12] to
 settle the problem of the Ochoa curve [6].

 As llP is quite near infinity, 11 serves as an almost period, with 12P near P,
 13P near 2Ps etc. so that one can predict that (for some distance), 4P,7P,
 10P,13P,1SP, 18P, 21P,24P,26P, 29P,32P, . . . will give good triangles, and that
 8P,9P, l9P,20P,30P,31P, . . . will give external bisector ones, although eventu-
 ally there will be a hiccup, when a better approximation to the period takes over.
 About 4/11 of the points give genuine triangles, and about 2/11 give triangles in
 which it is the external bisector which concurs with the median and altitude. If you
 want better approximations to these fractions, or want to know just when the
 hiccup occurs, read on.

 The 'near periods' are associated with 'large' points, such as

 72P = (4543.72. . . ,306279.98. . . )

 227P = (6619.74. . ., -538594.19. . . )

 299P= (154460.66...,60705331.35...)

 1722P = (5373628.48. . .,12456655569.68. . . )
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 These are found from the convergents to the continued fraction of the number g,
 defined as

 1 XdX
 {-= 0.8193959921938194669745653771...

 2QJ2 Y

 = [0,1,4,1,1,6,3,1,4,1,4,1,8,1,4,1,8,7,5,14,14,1,1,1,1,1,2,...]

 where 2Q is the real period of the curve (see later for more detail) and the lower
 terminal of the integral is the X-coordinate of the generator. The convergents are

 O 1 4 5 9 59 186 245 1166 1411 6810 8221 39694 47915
 _ _ D

 1 ' 1 ' 5 ' 6 ' 11 ' 72 227 ' 299 ' 1423 ' 1722 ' 8311 ' 10033 ' 48443 ' 58476 '

 whose denominators 5,6,11,72,227,299. . . are good candidates for a 'near pe-

 riod.' The lines joining -P to llP, -72P, 227P, -299P, . . . are closer and closer

 to the vertical, so that the points -lOP,73P,-226P,300P,... are nearer and

 nearer to P = (2,2); the signs have been chosen alternately so that the X-coordi-
 nates, 1.7959. . ., 1.9423. . .,1.9520. . .,1.9898. . . are less than 2: remember that

 the convergents are alternately less or greater than g. Figure 4 shows part of the

 curve magnified to illustrate the near periodicity: note that points closest together
 differ by 72P.

 /

 >e m/
 / oR /

 I \S s

 /-1;? _w4 /

 _W;P\467 _XtX

 2;?

 , . . ,

 -2 - o / Z

 Figure 4. Curve magniEled to show 11 and 72 as near periods.

 An elliptic curve over the complex field should be thought of as a torus, with the
 real part as a circle, compactified by the point at infinity. There's a second circle if
 the curve has an 'egg." Figure 5 is a diagrammatic representation of the first 25

 pairs of points +kP whose labels are outside the circle and the fractional part of
 kg, kg - LkgS, is written inside the circle. The X-coordinate increases across the
 horizontal diameter on some curious scale, presumably related to the WeierstarS

 p-function. The regions of Figure 5 are labelled with the letters from the last
 column of Table 1. The ordinates x = -2, 0 and 2 give degenerate triangles, D,
 and the ordinate x = 1 corresponds to the equilateral triangle, t.
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 \ 4 -vt -

 >4Pit i228A D G t 3 9i? -I{P

 /a-2 0 1 2 6 90l_fIp

 P

 Figure 5. Diagrammatic representation showing near periodicity.

 Of course, we've now given away our secret. You will have noticed that as your
 calculate successive points, the numbers of digits in their coordinates increase in
 size rather alarmingly. But the magic number g will tell us just where any point kP
 is: calculate the fractional part of kg and look at Figure 5. For example, 73P gives
 a good triangle (whose sides have about 140 decimal digits!)but 84P does not; 70P
 is good, but 81P requires the external bisector interpretation, as do 74P and 75P.
 Let E denote the set of real solutions (a, b) to the equation y2 = X3 - 4X + 4
 together with the point at infinity. The real period is defined by the integral.

 XdX x dX

 1a Y la \/X3 - 4X + 4

 where a is the real root of X3 - 4X + 4. Then it is true (but not so easy to prove) that there is a group isomorphism

 R xA

 +:E fi (a,b) | y
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 Thus the magic number g is really g = +(P), and this ewlains exactly why kg
 being near to 2Q;E is equivalent to kP being close to the point at infinity.

 Here are the fractional parts of kg for the best candidates:

 k 72 227 299 1423 1722 8311
 0.9965 0.0029 0.999402 0.000497 0.999899 0.000091

 Problem for experts. Good approximations to a continued fraction come from
 truncating it just before a large partial quotient. Our continued fraction doesn't
 display any spectacular partial quotients, but those for several curves do. For
 example, cuIve 37A, y(y + 1) = x(x2 - 1), has, for the magic number associated
 with its generator, (0,0):

 [0;3,4,1,1,5,2,168,46793,1,7,1,51,1,7,1,6,2,1,1,1,10,1,2,10,1,2,11,

 16,3,1,1,1,1,4,1,1,3,1,1,5,5,25,1,34,10,2,18,10,585,1,2,3,1,1,440,1,

 1,7,2,1,4,6,16,5,2,3,2,5,1,1,77,1,2,1,1,1,13,51,3,1,2,1,4,4,3,1,10,5,

 1,1,1,2,1,32,8,1,2,1,4,61,...]

 What is going on? Something akin to what is described by Stark in [10]?

 Isosceles Heron triangles. Colleague Bill Sands is always looking for problems for
 Czut Mathematicorum; he asked if there were triangles with integer sides and area
 associated with rectangles having the same perimeter and area. There are indeed
 many such, but none of them right-angled, which is what he originally asked for.
 This last statement can be confirmed via curve 14A4, which has rank 0 and whose
 six torsion points yield only degenerate triangles. A discussion of the general
 problem may appear elsewhere; and see the last section for an introduction.

 But here we find an infinite family of isosceles triangles. Let the equal legs be
 m2 + n2 and the base be 2(m2 - n2) so that the altitude in 2mn:

 the semiperimeter = p + q = 2m2

 and the area = pq = 2mn( m2 _ n2 )

 where p and q are the sides of the associated rectangle. So we require that

 (P-q) = 4m4-8mn(m2 _ n2

 shall be a perfect square. If we write

 2n p - q
 X= -, Y= 2

 m m

 what do we get?

 y2 =X3 - 4X+ 4.

 This time all rational points give rational triangles which are realized geometri-
 cally, provided that when n is outside the inteIval [0, m] we are willing to consider
 negative lengths and areas. In calculating the perimeters, sometimes the base of
 the triangle or one of the sides p, q of the rectangle must be taken as negative.

 For comparison with the first family of triangles we use the same multiples of P
 as before, though now a change in sign of Y merely interchanges the roles of p
 and q. Write X = x/d2, Y = y/d3 where x, y, d are integers with d > O, x 1 d,
 y l d (that is, x and y are each prime to d). Note that x and y are not necessarily
 prime to one another: in fact xk and Yk are both even unless k is a multiple of 4,
 when they are both odd, while dk is odd unless k is a multiple of 8.
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 We have seen that (Xk+l,Yk+l) may be found by joining (Xk,Yk) to P=
 (Xl,Yl)=(2,2):

 2( Xk - 2Yk) 2r7k 4(XkYk - 3Xk + 6Xk - 4)
 k+l ( Xk - 2)2 mk k+l ( Xk - 2)3

 xk+l (xk - 2Ykdk) mk+l (Xk - 2dk)

 = =

 dk+l (xk - 2dk) nk+l Xk - 2Ykdk

 We choose m l n and m > 0; the gcd, (mk+lnk+l) of the numerator and
 denominator of the last fraction is 2dk_ l, 16d2_ l k 4d2_ l or 4dk_ 1 according as

 k--0, 1, 2, or 3 mod 4.
 Table 2 lists information about the first 20 isosceles triangles and is parallel to

 Table 1. We do not list (m, n) since these are (2d2, x) or (d2, x/2) according as 4

 divides k or not. If m and n are both odd, as they are when k is odd, we keep the
 triangle primitive by dividing all lengths by 2. The rectangle sides p and q are
 2d(2d3 + y) or have - or 8 Of those values according as 41k, 2llk is odd. As

 they are each divisible by d, primitive rectangles can only be given by integer
 points, so that k = 5 and k = 11 are the only nontrivial examples.

 The labels are the same as before, except that the interpretation of A is now:

 altitude and area are negative and the rectangle p x q has q < 0 < p, while N
 now means that the base of the triangle is negative, the altitude is positive or
 negative according as n > m or n <-m, the area and p each have sign opposite

 to that of the altitude, and q > 0. The latter case is exemplified by 14P where the

 area is positive, but in calculating the perimeter of the triangle, its base must be
 taken as negative.

 Shapes of triangle. In each problem, as the point moves on the curve, the shape of
 the triangle changes continuously. As the rational points are dense on the curve,
 we can approximate to any shape of triangle that is consistent with the geometrical
 properties that have been imposed.

 The cevians triangle, for example, can be as near right-angled at C as we wish.
 Choose a point with X-coordinate as near to z - 1 = 1.236. . . as required. The
 point 18P gives a triangle with A = 39.68°, B = 52.40°,C = 87.92°. The other

 angles approach 90° simultaneously, though not quite at the same speed, as the
 triangle degenerates when we approach X= 0; the 70P triangle has A =

 89.95°, B = 88.32°, C = 1.73°. In this problem the triangle can be equilateral,

 corresponding to the point 4P, and points close by to the left or right give triangles
 with one or two angles less than 60°: 68P: A, B, C) = (62,40°,60.98°,56.60°)

 76P: (A, B, C)-(57.51°,59.02°, 63.47°).

 The Heron triangles are isosceles, so don't display such variety. They vary from

 degeneracy one way to the other: this incarnation of 70P gives base angles of 3.35°,
 while 73P corresponds to base angles of 88.325°. The vertical angle can also be as

 near to 90° as we wish: the points 15P, 31P, 41P and 57P give 84.7°, 93.8°, 86.3*
 and 87.9°.

 The Heron triangles cannot be equilateral, but we can approximate by taking
 points near to the maxima and minima of the curve, X = + 2/ 4 = + 1.1547 ....
 Already 4P: (5,5,6) and 7P: (53,53,56) are quite good. Next better is 30P with
 base angles 60.525°.
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 TABLE 2. Isosceles triangles (m2 + n2, m2 + n2} 2(m2 - n2)) and
 rectangles p x q with common perimeter and area.

 k

 1

 2

 -3

 -4

 s

 -6

 7

 8

 -9

 -10

 11

 -12

 13

 -14

 -15

 16

 -17

 18

 19

 -20

 d

 1

 1

 1

 1

 1

 3
 2

 s

 7

 1

 11

 31

 39

 103

 76

 151

 695

 1247

 1939

 altitude

 1

 o

 -1

 4

 3
 8
 45

 -112

 -75

 4312

 155

 132132

 98983

 - 5086224

 49660729

 626233920

 2928583241

 284721984400

 - 1773022816809

 - 28523574533020

 equal legs

 1

 1

 1

 s
 c
 J

 17

 53

 113

 317

 4337

 12013

 133093

 467065

 5109025

 67231321

 868129729

 8508488041

 320177744609

 1859055655241

 60139308180389

 base

 o

 2

 o

 6

 -8

 -30

 56

 30

 616

 930

 - 24024

 -31930

 912912

 - 964286

 90639120

 - 1202464642

 - 15977204880

 292897113232

 1117994669680

 105889415604678

 x

 2

 o

 -2

 1

 6

 8

 10

 -7

 6

 88

 310

 273

 206

 - 3344

 9362

 27105

 256882

 589456

 - 228(?402

 - 1896655

 y
 2

 2

 2

 1

 -14

 -22

 26

 19

 278

 554

 - 5458

 - 3383

 52894

 87326

 1175566

 - 4131247

 - 128313838

 324783646

 5023772066

 17691806567

 k

 1

 2

 -3

 -4

 s

 -6

 7

 8
 _g

 -10

 11

 -12

 13

 -14

 -15

 16

 -17

 18

 19

 -20

 rectangle (p,4)

 (1,0)

 (2,0)

 (1,0)

 (6,2)

 (-3,4)

 (- 10,12)

 (60,21)

 (140, -12)

 (660,- 35)

 (462,4340)

 (- 1364,1365)

 (- 15862,13299)

 (871689,51832)

 (4016298,610584)

 (86546265,26004616)

 ( - 494500840,761398248)

 ( - 4583904584,5103790185)

 (346175467610,120450833640)

 (2775187436616, -357134446535)

 (125150833858190, - 12066817875462)

 area

 o

 o

 o

 12

 -12

 -120

 1260

 - 1680

 -23100

 2005080
 - 1861860

 - 2109487380

 45181384348

 2452287298032

 2250602387559240

 - 376512073310528320

 - 23395287224795708040

 41697123659341318400400

 - 991115029206740553325560

 - 1510172319128981992388733780

 D

 D

 D

 G

 N

 N

 G

 A

 A

 G

 N

 N

 G

 N

 G

 N

 N

 G

 A

 A

 A third manifestation. With help from Andrew Bremner we are investigating the
 general problem of finding triangle-rectangle pairs with common perimeter and
 common area.

 Brahmagupta taught us that all Heron triangles are of shape

 b(a2 + c2),

 (b + c)(a2 - bc),

 which, if we take the third side as base, has altitude 2abc, are lv = abc(a + b)
 (a2 - bc) and semiperimeter s = a2(b + c).
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 If the associated rectangle is p X q, then we have A = pq, S = p + q, and

 ( _ q)2 = a4(b + C)2 - 4abc(b + c)(a - bc)

 must be a perfect square. Set > = (p - q)/a2(b + c), 22= bc/a2, S = a/(b + c)
 and the equation becomes

 ,>2=1_427+4292Z

 However, in order that this transformation be birational, we also require that

 1 - 4 2 = ( C ) = t2

 be a perfect square. On eliminating ,

 (9' - 1) = 16SW (Z- 1) = 4z(Z- 1) (1 _ t2)

 we have a quintic surface [which deserves study in its own right]. It contains a
 dozen straight lines, two of which, 22= 1, = _1, are double, so that a plane
 through either of them, say

 n(>- l) = m(Z- 1)

 cuts the surface in a cubic curve.

 So we can find "all" triangle-rectangle pairs in the following sense. Such a pair
 corresponds to a rational point on the quintic surface. This determines (m, n), the
 'slope' of the plane through the point and the line Z= 1, t = 1. Elimination of y
 between the surface and the plane, yields, on writing x = -m4t, y = 2m4n2:

 y2 = X[X2 + 2(m4 - 2m3n + 2n4)x + m6(m - 2n) ]

 an elliptic curve whose rational points give all triangle-rectangle pairs of 'slope'
 (m,n). We are studying the range 0 < tml < n < 50.

 The discriminant of the curve is 4m12n4(m - 2n)4(m4 - 2m3n + n4) and the
 cuive is singular just if m = O, n = O, m = n or m = 2n. The torsion group is
 @/4Z, the points (-m3(m-2n),+ 2m3n2(m-2n)) being of order 4. However,
 if m4-2m3n + n4 = r2 is a perfect square, then the torsion group is Z/4iD x
 7/2Z, there being additional points (m3(m - 2n),+ 2m4(m - nXm - 2n)) of
 order 4 and ((r - n2)2, 0) and ((r + n2)2, 0) of order 2.

 When is m4 - 2m3n + n4 a perfect square? Put

 r X n2 n Y+ 2

 m2 = 2 - m2 and m = 2X

 and what do you get?

 y2 = X3 - 4X + 4
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