Slaven Kožić
Izvanredni profesor
Matematički odsjek
Prirodoslovno-matematički fakultet
Sveučilište u Zagrebu
Bijenička cesta 30
10000 Zagreb, Hrvatska
E-mail: kslavenmath.hr
Područja znanstvenog interesa
Kvantne grupe, verteks-algebre, beskonačnodimenzionalne Liejeve algebre.
Projekti
Uredništvo znanstvenih časopisa
Radovi
- L. Bagnoli, S. Kožić, Associating deformed phi-coordinated modules for the quantum affine vertex algebra with orthogonal twisted h-Yangians, arXiv:2407.00515 [math.QA].
- L. Bagnoli, S. Kožić, Deformed quantum vertex algebra modules associated with braidings, arXiv:2405.04137 [math.QA].
- M. Butorac, S. Kožić, A. Meurman, M. Primc, Lepowsky's and Wakimoto's product formulas for the affine Lie algebras Cl(1),
J. Algebra 660 (2024), 147-189;
arXiv:2403.05456 [math.RT].
- L. Bagnoli, S. Kožić, A note on the quantum Berezinian for the double Yangian of the Lie superalgebra glm|n, Algebr. Represent. Theory (2024), https://doi.org/10.1007/s10468-024-10310-9;
arXiv:2402.00487 [math.RT].
- L. Bagnoli, S. Kožić, Double Yangian and reflection algebras of the Lie superalgebra glm|n, Commun. Contemp. Math. 27, No. 02 (2025), 2450007, (25 pages); arXiv:2311.02410 [math.QA].
- L. Bagnoli, S. Kožić, Yangian deformations of S-commutative quantum vertex algebras and Bethe subalgebras, Transform. Groups (2024), https://doi.org/10.1007/s00031-023-09837-w; arXiv:2307.03112 [math.QA].
- M. Butorac, N. Jing, S. Kožić, F. Yang, Semi-infinite construction for the double Yangian of type A1(1), J. Algebra 638 (2024), 465-487; arXiv:2301.04732 [math.QA].
- M. Butorac, S. Kožić, Combinatorial bases of standard modules of twisted affine Lie algebras in types A2l-1(2) and Dl+1(2): rectangular highest weights, Comm. Algebra 51 (2023), 4012-4032; arXiv:2211.05171 [math.RT].
- S. Kožić, M. Sertić, A note on constructing quasi modules for quantum vertex algebras from twisted Yangians, Algebr. Represent. Theory 27 (2024), 363-380; arXiv:2210.12510 [math.QA].
- S. Kožić, On the h-adic quantum vertex algebras associated with Hecke symmetries, Comm. Math. Phys. 397 (2023), 607-634; arXiv:2202.08190 [math.QA].
- S. Kožić, h-adic quantum vertex algebras in types B, C, D and their phi-coordinated modules, J. Phys. A: Math. Theor. 54 (2021) 485202 (27pp); arXiv:2107.10184 [math.QA].
- M. Butorac, S. Kožić, On the Heisenberg algebra associated with the rational R-matrix, J. Math. Phys. 63 (2022) 011701 (23pp); arXiv:2106.03154 [math.QA].
- M. Butorac, S. Kožić, Principal subspaces for the quantum affine vertex algebra in type A1(1), J. Pure Appl. Algebra 226 (2022) 106973 (14pp); arXiv:2011.13072 [math.QA].
- M. Butorac, S. Kožić, M. Primc, Parafermionic bases of standard modules for affine Lie algebras, Math. Z. 298 (2021), 1003-1032; arXiv:2002.00435 [math.QA].
- S. Kožić, On the quantum affine vertex algebra associated with trigonometric R-matrix, Selecta Math. (N.S.) 27 (2021) 45 (49 pages); arXiv:1908.06517 [math.QA].
- M. Butorac, N. Jing, S. Kožić, h-Adic quantum vertex algebras associated with rational R-matrix in types B, C and D, Lett. Math. Phys. 109 (2019), 2439-2471; arXiv:1904.03771 [math.QA].
- M. Butorac, S. Kožić, Principal subspaces for the affine Lie algebras in types D, E and F,
J. Algebraic Combin. 56 (2022), 1063-1096;
arXiv:1902.10794 [math.QA].
- S. Kožić, Quantum current algebras associated with rational R-matrix, Adv. Math. 351 (2019), 1072-1104; arXiv:1801.03543 [math.QA].
- S. Kožić, Quasi modules for the quantum affine vertex algebra in type A, Comm. Math. Phys. 365 (2019), 1049-1078; arXiv:1707.09542 [math.QA].
- S. Kožić, Commutative operators for double Yangian DY(sln), Glas. Mat. Ser. III Vol. 53, No. 1 (2018), 97-113.
- S. Kožić, Principal subspaces for double Yangian DY(sl2), J. Lie Theory 28 (2018), No. 3, 673-694.
- S. Kožić, A. Molev, Center of the quantum affine vertex algebra associated with trigonometric R-matrix, J. Phys. A: Math. Theor. 50 (2017) 325201 (21pp); arXiv:1611.06700 [math.QA].
- S. Kožić, Higher level vertex operators for Uq(ŝl2), Selecta Math. (N.S.) 23 (2017), 2397-2436; arXiv:1603.09068 [math.QA].
- N. Jing, S. Kožić, A. Molev, F. Yang, Center of the quantum affine vertex algebra in type A, J. Algebra 496 (2018), 138-186; arXiv:1603.00237 [math.QA].
- S. Kožić, Vertex operators and principal subspaces of level one for Uq(ŝl2),
J. Algebra 455 (2016), 251-290;
arXiv:1508.07658 [math.QA].
- S. Kožić, A note on the zeroth products of Frenkel-Jing operators, J. Algebra Appl. Vol. 16, No. 3 (2017) 1750053 (25 pages); arXiv:1506.00050 [math.QA].
- S. Kožić, M. Primc, Quasi-particles in the principal picture of ŝl2 and Rogers-Ramanujan-type identities, Commun. Contemp. Math. 20, No. 05 (2018) 1750073 (37 pages); arXiv:1406.1924 [math.QA].
- S. Kožić, Principal subspaces for quantum affine algebra Uq(An(1)), J. Pure Appl. Algebra 218 (2014), 2119-2148; arXiv:1306.3712 [math.QA].
Konferencije