Logika, skupovi i diskretna matematika

Exercise 4

The assignments are due to 05.12.2005.

Tutorial 4.1

- 1. Compute gcd(a, b) and find integers m, n such that gcd(a, b) = ma + nb for a = 190, b = 34.
- 2. Find a solution in integers to the equation 325x + 26y = 91.

Tutorial 4.2

- 1. Show that if p and p' are primes, and $p \mid p'$, then p = p'.
- 2. Provide an example which shows that Lemma 3.14 of the lecture notes is not true if p is just known to be a positive integer (and not necessarily a prime).
- 3. Find the prime factorizations of 201, 1001 and 2010000.
- 4. Using the Sieve of Eratosthenes, find all the primes from 1 to 50.

Tutorial 4.3

- 1. Compute the remainder of 5^{10} under division by 21 using Theorem 3.19 from the lecture notes.
- 2. Compute the remainder of 572^{29} under division by 713.
- 3. Encrypt 333 using the public key 713, 29 from Example 3.18.
- 4. Decrypt 411 using s = 569 as in Example 3.18.
- 5. Assume that we choose primes p = 17, q = 23, and n = 31.
 - (a) Compute the values of z, ϕ, s as described in Section 3.6.
 - (b) Encrypt 101 using the key z, n.
 - (c) Decrypt 250.

Tutorial 4.4

- 1. Draw the digraph of the relation $R = \{(1, 2), (2, 1), (3, 3), (1, 1), (2, 2)\}$ on $X = \{1, 2, 3\}$.
- 2. For each of the following relations defined on the set of natural numbers, determine whether it is reflexive, symmetric, antisymmetric, transitive, and/or a partial order:
 - (a) $(x, y) \in R$ if $x = y^2$,
 - (b) $(x, y) \in R$ if x = y,
 - (c) $(x, y) \in R$ if 3 divides x y.
- 3. For each of the following relations defined on the collection of all nonempty subsets of real numbers, determine whether it is reflexive, symmetric, antisymmetric, transitive, and/or a partial order:
 - (a) $(A, B) \in R$ if for every $\epsilon > 0$, there exists $a \in A$ and $b \in B$ with $|a b| < \epsilon$,
 - (b) $(A, B) \in R$ if for every $a \in A$ and $\epsilon > 0$, there exists $b \in B$ with $|a b| < \epsilon$.

Homework assignment 4.1

- 1. Compute gcd(a, b) and find integers m, n such that gcd(a, b) = ma + nb for a = 2406, b = 654.
- 2. You are given an unlimited supply of water, a large container, and two jugs whose capacities are 7 litres and 9 litres. How would you put one litre of water in the container? Can you do the same with two jugs whose capacities are 6 litres and 9 litres?
- 3. Find integers x and y satisfying 966x + 686y = 70.

Homework assignment 4.2

- 1. Show that 123456789 is not a prime.
- 2. Find the prime factorizations of 111, 1111, 1234, and 123456786.

BONUS Homework assignment

Write a C program which prints all primes from 1 to 1000 using the Sieve of Eratosthenes. Print the C program along with the produced output (please use a compact output format).

Homework assignment 4.3

- 1. Compute the remainder of 143^{10} under division by 230 using Theorem 3.19 from the lecture notes.
- 2. Encrypt 444 using the public key 713, 29 from Example 3.18.
- 3. Decrypt 511 using s = 569 as in Example 3.18.
- 4. Assume that we choose primes p = 59, q = 101, and n = 41.
 - (a) Compute the values of z, ϕ, s as described in Section 3.6.
 - (b) Encrypt 584 using the key z, n.
 - (c) Decrypt 250.

5 points

5 points

_

up to 5 additional points

o additional points

8 points

Homework assignment 4.4

- 1. Give an example of relation, which is both symmetric and antisymmetric.
- 2. Draw the digraph of the relation $\{(1,2), (2,3), (3,4), (4,1)\}$ on $X = \{1,2,3,4\}$.
- 3. Write the relation as a set of ordered pairs for the following digraph:

- 4. For each of the following relations defined on the set of natural numbers, determine whether it is reflexive, symmetric, antisymmetric, transitive, and/or a partial order:
 - (a) $(x, y) \in R$ if x > y,
 - (b) $(x,y) \in R$ if $x \ge y$,
 - (c) $(x, y) \in R$ if 3 divides x + 2y.
- 5. What is wrong with the following argument, which supposedly shows that any relation R on X that is symmetric and transitive is reflexive?

Let $x \in X$. Using symmetry, we have (x, y) and (y, x) both in R. Since $(x, y), (y, x) \in R$, by transitivity we have $(x, x) \in R$. Therefore, R is reflexive.