Logika, skupovi i diskretna matematika

Exercise 2

The assignments are due to 07.11.2005.

Tutorial 2.1

- 1. Which of the following sentences can be regarded as logical statements?
 - (a) Zagreb is the capital of Italy.
 - (b) In the afternoon I will probably drink some coffee.
 - (c) If the dog bites the cat, an iron will hit the mouse.
 - (d) $A \wedge B$, where A and B are statements.
 - (e) $\wedge B \neg C$, where A, B, and C are statements.
- 2. Give the truth value of each of the following statements.
 - (a) $\neg (2 > 1 \land 2 > 4)$
 - (b) $\neg (2 > 1 \lor 2 > 4)$
 - (c) $2 > 1 \Rightarrow$ There is an integer x with x < 0.
- 3. Use the convention to remove as many parentheses as possible.
 - (a) $(((\neg A) \lor B) \Rightarrow (A \land C)) \Rightarrow (B \land C)$
 - (b) $\neg (A \land B)$
 - (c) $((A \land D) \Rightarrow (\neg B)) \Leftrightarrow C$
- 4. Show the following logical equivalences using truth tables.
 - (a) $(A \Leftrightarrow B) \equiv (A \Rightarrow B) \land (B \Rightarrow A)$
 - (b) $A \stackrel{\vee}{=} B \equiv \neg (A \Leftrightarrow B)$
 - (c) $\neg (A \land B) \equiv \neg A \lor \neg B$
 - (d) $(A \lor B) \lor C \equiv A \lor (B \lor C)$
- 5. Prove that $\{\downarrow\}$ is a set of generators using the fact that $\{\neg, \lor\}$ is a set of generators.
- 6. Show $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$ using the relation $A \Rightarrow B \equiv \neg A \lor B$ and the rules of propositional calculus.

Tutorial 2.2

- 1. Prove $A, A \Rightarrow B \models B$ for two statements A and B. (modus ponens)
- 2. Show $A \Rightarrow B, A \lor C, C \Rightarrow \neg D, D \models B$ using the rules of propositional calculus.
- 3. Show that $\sqrt{2}$ is not rational.

Tutorial 2.3

1. Show that the set $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}$ supplied with the operations

$$a \cdot b = \gcd(a, b),$$

 $a + b = \operatorname{lcm}(a, b),$
 $\overline{a} = 30/a,$

is a Boolean algebra.

2. Show that an isomorphism f between two Boolean algebras always satisfies f(0) = 0.

Tutorial 2.4 Construct a CNF for the following Boolean functions:

1.
$$F(p,q,r,s) = \overline{\overline{p} \cdot ((p \cdot \overline{q}) + r) \cdot (q + s)} + (p + \overline{r} + s),$$

2. $F(p,q) = (p \cdot q) + \overline{\overline{p} + q}.$

Which of these functions satisfies $F \equiv 1$?

Tutorial 2.5 Draw a logic circuit for the Boolean function

$$F(x, y, z) = \overline{x \cdot y} + ((x \cdot y) \cdot \overline{z}).$$

Homework assignment 2.1

- 1. Negate the following two statements.
 - (a) Zagreb is the largest town in Croatia.
 - (b) The wall is black.
- 2. Give the truth value of each of the following statements.
 - (a) $2+2=5 \Rightarrow 2+2=4$
 - (b) $(\neg (1 = 0 \land 0 = 0)) \Rightarrow 2 = 3$
 - (c) $(\neg (1 = 0 \lor 0 = 0)) \Rightarrow 2 = 3$
- 3. Give conditions under which $A \Rightarrow B$ is true but its converse, $B \Rightarrow A$, is false.
- 4. Use the convention to remove as many parentheses as possible.
 - (a) $((A \Rightarrow C) \land ((\neg B) \Rightarrow C)) \Rightarrow ((A \lor B) \Rightarrow C)$
 - (b) $A \Rightarrow (B \Leftrightarrow (A \Leftrightarrow B))$
 - (c) $(\neg A) \Rightarrow ((\neg A) \lor B)$
- 5. Show the following logical equivalences using truth tables.
 - (a) $A \uparrow B \equiv \neg (A \land B)$ (this justifies the name NAND "not and")
 - (b) $A \downarrow B \equiv \neg (A \lor B)$ (this justifies the name NOR "not or")

(c)
$$\neg (A \lor B) \equiv \neg A \land \neg B$$

- (d) $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$
- 6. How many rows are in a truth table for a formula consisting of $k \ge 1$ variables?
- 7. Prove that $\{\uparrow\}$ is a set of generators using the fact that $\{\neg, \land\}$ is a set of generators.

Homework assignment 2.2

3 points

3 points

- 1. Prove $A \Rightarrow B, \neg B \models \neg A$ for two statements A and B. (modus tollens)
- 2. Identify the deduction rule used in each of the following arguments (syllogism, modus ponens, modus tollens, or law of exluded middle).
 - (a) Buy these shoes or don't buy these shoes; there is no other possibility!
 - (b) Rich people buy boats. Anna is rich; she should therefore buy a boat.
 - (c) Good programmers write clean code. John's code is a mess; he can't be a good programmer.

Homework assignment 2.3

- 1. Show that the element 1 of a Boolean algebra is uniquely defined.
- 2. Show that an isomorphism f between two Boolean algebras always satisfies f(1) = 1.
- 3. Let B_1 and B_2 be Boolean algebras and let f be an isomorphism between B_1 and B_2 . Show that if A is a subalgebra of B_1 then f(A) is a subalgebra of B_2 .

- 1. Construct a CNF for the following Boolean functions:
 - (a) $F(p,q,r) = \overline{\overline{p}+q} + (\overline{\overline{q}+r} + (\overline{p}+r)),$
 - (b) $F(p,q,r) = \overline{(\overline{p}+q) \cdot (r+p)} + (r+q).$

Which of these functions satisfies $F \equiv 1$?

2. Explain why the construction presented in the lecture applied to

 $(x_1 \cdot y_1) + (x_2 \cdot y_2) + \dots + (x_n \cdot y_n)$

leads to a CNF that consists of 2^n terms. This shows that CNFs may also suffer from a "combinatorial explosion". (You can earn extra points by providing a formal proof.)

Homework assignment 2.5

- 1. Is it always possible to represent a Boolean function by a logic circuit which contains only NAND gates? Explain your answer.
- 2. A multiplexer is a circuit with three inputs (x, y, and z) and one output, which has the following behavior: If z is 1, then the output is equal to x; but if z is 0, then the output is equal to y.
 - (a) Write down a Boolean function that describes the output of this circuit in terms of its inputs x, y, and z.
 - (b) Draw a logic circuit using your expression from part (a) as a "blueprint".

4 points