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Two-phase immiscible, incompressible flow

Two-phase flow model, with no mass exchange

We consider two-phases incompressible, immiscible flow through
heterogeneous porous medium made of different rock-types:

I Two incompressible fluid phases, w , and o: wetting and non-wetting;

I No mass exchange, between phases;

I Temperature is constant;

I Heterogeneous porous medium, with different rock-types.
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Two-phase immiscible, incompressible flow

Two-phase incompressible, immiscible flow equations

Conservation of mass for each fluid + Muskat’s(generalized Darcy’s) law
+ capillary pressure law:

φ(x)
∂S

∂t
+ div qw = 0

−φ(x)
∂S

∂t
+ div qo = 0

qw = −K(x)λw (S , x)(∇pw − ρwg)

qo = −K(x)λo(S , x)(∇po − ρog)

pc(S , x) = po − pw

I S = Sw , Sw + So = 1;

I λw (S , x) = krw (S , x)/µw = mobility of water;

I λo(S , x) = kro(S , x)/µo = mobility of oil;
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Upscaling procedure

Scaling up problem

The goal of scaling up is to find an effective representation for a
heterogeneous medium, with rapidly oscillating properties, such that at
large scale the flow can be correctly represented.
Starting from rapidly oscillating data:

x → φ(x), K(x), λw (x,S), λo(x,S), pc(x,S);

find, if possible(*), effective values:

φ∗, K∗, λ∗
w (S), λ∗

o(S), p∗c (S);

Remark: (*)it is not always possible, see for instance [A.B., M.Panfilov;in
C.G. 2, 1998]
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Upscaling procedure

Effective or macroscopic model

Effective equations [A.B., A. Hidani; in A.A. 1995]have the same form as
the microscopic ones:

φ∗∂S∗

∂t
+ div q∗w = 0

−φ∗∂S∗

∂t
+ div q∗o = 0

q∗w = −K∗λ∗
w (S∗)

(
∇p0

w − ρwg
)

q∗o = −K∗λ∗
o(S∗)

(
∇p0

o − ρog
)

p∗c (S
∗) = p0

o − p0
w .

How to compute effective properties in a real case?[A.B.,M.Jurak; ELF
1998 and A.B.,A. Piatnitski; in A.I.H.P. 2004]
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Upscaling procedure

Scaling up Technique

Homogenization of the coarse grid-block

V2V1

VN

Volume V

Coarse grid block

φ(x) =
N∑

i=1

χVi
(x)φi ,

K(x) =
N∑

i=1

χVi
(x)Ki

λξ(x,S) =
N∑

i=1

χVi
(x)λi

ξ(S), (ξ ∈ {o,w}),

pc(x,S) =
N∑

i=1

χVi
(x)Pc i (S).
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Upscaling procedure

Calculation of p∗c in a coarse grid-block

Mean porosity: φ∗.
Effective capillary pressure: From
any Capillary Pressure value u ( one
value for one coarse grid block
V =

⋃
i=1,N

), find the saturation

distribution in each small Vi :
Volume V

Coarse grid block

u = p1
c (S

1) = p2
c (S

2) = · · · = pN
c (SN).

Then set S∗:

φ∗S∗ =
N∑

i=1

vol(Vi )φiS
i ,

and p∗c :
p∗c (S

∗) = u.
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Upscaling procedure

Calculation of p∗c in a coarse grid-block. Example, N=2.
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Upscaling procedure

Effective mobility tensors

For any S0 ==
∑N

i=1 χVi
S i , compute the following local problems

(ξ ∈ {w , o} and k = 1, . . . , d),

div
(
K(x)λξ(x,S

0)∇Nξ
k

)
= 0, in V ,

Nξ
k = xk on ∂V .

Then the Effective Mobilities are : (ξ ∈ {w , o} and k = 1, . . . , d),

λ∗
ξ(S

∗)ek =
1

vol(V )

∫
V

K(x)λξ(x,S
0)(∇Nξ

k + ek) dx. (1)
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Upscaling procedure

Conclusion

I Constant capillary pressure in the coarse grid block has decoupled
local and global computations (local problems are then linear).

I This comes from the dominance of the capillary forces at global level,
i.e. a small Peclet number ( Capillary number).

Literature: A. Bourgeat, A. Hidani: Effective model of two-phase
flow in a porous medium made of different rock types, Applicable Analysis,
(1995), no. 56, pp. 381-399. A. Bourgeat, A. Piatnitski:
Approximations of effective coefficients in stochastic homogenization, Ann.
I. H. Poincaré, PR 40 (2004) 153-165. A. Bourgeat, M. Panfilov:
Effective two-phase flow through highly heterogeneous porous media:
Capillary non-equilibrium effects, Computational Geosciences, (1998), 2,
pp. 191-215. A. Bourgeat, M. Jurak: Scalingup two-phase flow in
porous media:comparison of methods, Rapport Interne -ELF, (1998).

A. Bourgeat, M. Jurak () Water-gas flow CE-MoMaS, Calais Oct 2006 11 / 31



Application to a natural oil reservoir

How to apply to natural oil reservoirs?

Problems:

I Dominance of capillary force is usually not satisfied;

I Separation of scales may be weak.

Answer: Yes, if it is done in a clever way:

I The upscaling of absolute permeabilities and relative permeabilities
(mobilities) should be done separately, on different coarse grid blocks.

I The upscaling of absolute permeability has to be done on a coarse
grid that is well adapted to the heterogeneity of the reservoir.

I The upscaling of mobilities (relative permeabilities) should be done in
larger volumes, preferably in several layers.
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Application to a natural oil reservoir

An example

Fine grid of 20× 25× 20 blocks of dimensions 50× 50× 2 meters.
Horizontal permeability.
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Application to a natural oil reservoir

Fine grid relative permeabilities

Fine grid relative permeabilities and capillary pressures for 4 different rock
types:
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Application to a natural oil reservoir

Upscaled absolute permeability
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Application to a natural oil reservoir

Coarse grid for upscaling mobilities

Upscaling of relative permeabilities should be done in large volumes,
preferably horizontal layers.

y

x

z
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Application to a natural oil reservoir

Effective mobilities and effective capillary pressures

Three directional Effective Relative Permeability curves and one Effective
Capillary Pressure curve in 4 horizontal layers :
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Application to a natural oil reservoir

Comparison: heterogeneous and upscaled simulation

Well P1 water-cut. Coarse grid: 6× 5× 6, non-uniform aggregation for
absolute permeability, and 1× 1× 4 uniform grid for upscaling relative
permeabilities. Well P1 water-cut:
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Two-phase compressible flow with mass exchange

Goal

I To extend this upscaling method to the case of two phase partially
miscible flow with diffusive fluxes (water and gas).
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Two-phase compressible flow with mass exchange

Two-phase compressible flow with mass exchange

We consider a multiphase, multicomponent flow through an heterogeneous
porous medium:

I Two fluid phases: liquid and gas;

I Two components: water (incompressible) and hydrogen
(compressible);

I Mass exchange between the phases given by thermodynamic
equilibrium:

I Dissolution of hydrogen in water; Water does not evaporate;

I Diffusivity of dissolved hydrogen;

I Temperature is constant;

I Porous medium is rigid.
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Two-phase compressible flow with mass exchange

Fluid components (w=water, h=hydrogen)

Partial densities:

I ρl
w = mass density of water in the liquid phase;

I ρl
h = mass density of hydrogen in the liquid phase;

I ρg = mass density of the gas phase (hydrogen);

Ideal gas law:

ρg (pg ) = Cgpg , Cg =
Mh

RT
,

Henry’s law (saturated case):

ρl = ρl
w + ρl

h, ρl
h = Chpg , Ch = MhH(T )

Unsaturated case (the gas phase may disappear) : ρl
h is an independent

variable.
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Two-phase compressible flow with mass exchange

Mass conservation for components

Mass conservation for water and hydrogen components:

ρl
wΦ

∂Sl

∂t
+ div

(
ρl
wql + ρgqg + jlw

)
= Qw

Φ
∂

∂t

(
Slρ

l
h + Sgρg

)
+ div

(
ρl
hql + ρgqg + jlh

)
= Qh.

Diffusive fluxes ( D l
h = D l

w =const):

jlh = −ρlSlΦD l
h∇

(
ρl
h

ρl

)
, jlw = −ρlSlΦD l

w∇
(

ρl
w

ρl

)
Total mass conservation:

Φ
∂

∂t
(Slρl + Sgρg ) + div (ρlql + ρgqg ) = Qw + Qh.
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Two-phase compressible flow with mass exchange

Saturated case (Sg > 0). Variables p = pg and S = Sl

Φ
∂S

∂t
+ div (ql − J) = Qw/ρl

w

Φ
∂

∂t
(Sρl(p) + (1− S)ρg (p)) + div (ρl(p)ql + ρg (p)qg ) = Qh + Qw .

ql = −K(x)
krl(x,S)

µl
(∇(p − pc(x,S))− ρl(p)g) ,

qg = −K(x)
krg (x,S)

µg
∇p

J = jlh/ρl
w = −S

Φ(x)

ρl(p)
D l

h∇ρl
h(p).

ρg (p) = Cgp, ρl
h(p) = Chp, ρl

w = const., ρl(p) = ρl
h(p) + ρl

w .
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Two-phase compressible flow with mass exchange

Unsaturated case (Sg = 0). Variables p = pl and ρl
h

div (ql − J) = Qw/ρl
w

Φ
∂ρl

h

∂t
+ div

(
(ρl

w + ρl
h)ql

)
= Qh + Qw .

ql = −K(x)
krl(1)

µl

(
∇p − (ρl

h + ρl
w )g

)
,

J = − Φ(x)

ρl
h + ρl

w

D l
h∇ρl

h,

0 ≤ ρl
h ≤ Chp.
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Upscaling

Application of periodic homogenization technique

I Periodic blocks of porous
medium composed of two (or
more) rock types;

I Porous media is obtained by
repeating a scaled unit cell εY .

Y = Y1 ∪Y2

Y1

Y2

∂Y2

We seek asymptotic expansions of the following form:

S = S0(x, y, t) + εS1(x, y, t) + ε2S2(x, y, t) + · · · y =
x

ε

p = p0(x, t) + εp1(x, y, t) + ε2p2(x, y, t) + · · ·

all functions periodic in y.
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Upscaling

Local cell problems

I Capillary pressure is constant and the local distribution of the
saturation y 7→ S0(x, y, t) is given by this constant capillary pressure;

I Effective capillary pressure relating capillary pressure and mean
saturation S∗ = 〈S0〉 is constructed as before.

For given p0 and S∗ solve the following local problems:

divy

(
Kλl(S

0)(∇yφi + ei )
)

= 0

divy

(
[Cgp0Kλg (S0) + ΦS0D l

wCh](∇yχi + ei )
)

= 0

divy

(
Kλl(S

0) (∇yui + ei )
)

=
ChD

l
w

Chp0 + ρl
w

divy

(
ΦS0(∇yχi + ei )

)
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Upscaling

Effective tensors

For each i = 1, . . . , d , there are four different effective tensors:
Liquid mobilities:

Λ1
l (S

∗, p0)ei = 〈Kλl(S
0) (∇yui + ei )〉

Λ2
l (S

∗)ei = 〈Kλl(S
0)(∇yφi + ei )〉

Gas mobility:

Λg (S∗, p0)ei = 〈Kλg (S0)(∇yχi + ei )〉

Diffusivity:

D(S∗, p0)ei = D l
w 〈ΦS0(∇yχi + ei )〉.
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Upscaling

Effective fluxes

Diffusive:

〈J0〉 = − 1

ρl ,0
h + ρl

w

D(S∗, p0)∇xρ
l ,0
h ,

Liquid:

〈q0
l 〉 = −Λ1

l (S
∗, p0)∇xp

0 − Λ2
l (S

∗)(∇xp
∗
c (S

∗) + ρ0
l g)

Gas:

〈q0
g 〉 = −Λg (S∗, p0)∇xp

0

where ρl ,0
h = Chp

0 in the saturated case (S∗ < 1). ρ0
l = ρl

w + ρl ,0
h .
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Upscaling

Effective equations

Saturated case:

Φ∗∂S∗

∂t
+ divx

(
〈q0

l 〉 − 〈J0〉
)

= Qw/ρl
w

Φ∗ ∂

∂t
(ρ0

l S
∗ + Cg (1− S∗)p0) + divx

(
ρ0
l 〈q0

l 〉+ Cgp0〈q0
g 〉

)
= Qh + Qw

where ρl ,0
h = Chp

0, ρ0
l = ρl

w + ρl ,0
h . Unsaturated case:

divx

(
〈q0

l 〉 − 〈J0〉
)

= Qw/ρl
w

Φ∗∂ρ0
l

∂t
+ divx

(
ρ0
l 〈q0

l 〉
)

= Qh + Qw

where ρ0
l = ρl

w + ρl ,0
h .
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Upscaling

Conclusion

I The local problems are linear due to dominance of capillary forces;

I Coupling between local and global problems is stronger due to
diffusive fluxes;

I Application to non periodic media is straightforward.

I Some theoretical work left?

I Efficient implementation has to be tested ( CouplexGaz 1)

I Scaling up the Source terms? ( CouplexGaz 2); F. Smai.
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Upscaling

NEXT STEP :

A SUIVRE ....
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