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1 Introduction

In a previous paper [1], we have obtained a homogenization result for immiscible compressible two-phase flow,
such as water-gas, in porous media in the case of a single rock-type model, i.e. we scale up the porosity and
absolute permeabilities assuming that the capillary pressure and relative permeabilities depend on the saturation
solely. We rigorously justified this homogenization process for the problem by using the two-scale convergence.
The aim of this paper is to extend these results to a more general model for gas migration through engineered
and geological barriers for a deep repository for radioactive waste. More precisely, we consider the case of
porous media with several rock types, i.e. capillary pressure and relative permeability curves being different
in each type of porous media. This leads to nonlinear transmission conditions representing the continuity of
some physical characteristics such as water and gas pressures, at the interfaces that separate different media.
The saturation and some other characteristics are then getting discontinuous at the interfaces. It makes the
upscaling procedure more complicated. Using the technique of asymptotic expansions, we obtain a global or
effective model of an equivalent homogeneous reservoir. It was then shown, that the homogenized model has
almost the same form as the initial model and then defining effective parameters makes sense. These methods
are based on computing the solution of partial differential equations in a Representative Elementary Volume
(REV) with some boundary conditions; for instance periodic, Dirichlet, or Neumann boundary conditions. In
this paper, we restrict ourselves to the mathematical homogenization method as described in the books [10]
and [11]. For recent developments on the subject, we refer for instance to [1, 5] and the references therein.
The problem is formulated in terms of a nonlinear parabolic equation for the non-wetting phase pressure and a
nonlinear degenerate parabolic diffusion-convection equation for the wetting saturation phase with rapidly os-
cillating porosity function, absolute permeability tensor, relative permeabilities and capillary pressure, subject
to appropriate transmission, boundary and initial conditions. Let us mention that the main difficulties related to
the mathematical analysis of such equations are the coupling, the degeneracy of the diffusion term in the satu-
ration equation and the degeneracy of the temporal term in the pressure equation. Moreover the transmission
conditions are nonlinear and the saturation is discontinuous at the interface separating the two media.

2 Microscopic model

We consider a reservoir Ω ⊂ Rd (d = 2, 3) which is assumed to be a bounded, connected Lipschitz domain with
a periodic microstructure. More precisely, we scale this periodic structure by a parameter ε which represents
the ratio of the cell size to the whole region and we assume that 0 < ε � 1 is a small parameter tending
to zero. For convenience in notations, we will only consider a field which contains two different rock types.
Let Y = (0, 1)d be a cell consisting of two subdomains (corresponding to two types of rock). Namely, of a
connected subdomain Y1 and of a subdomain Y2 which is completely surrounded by Y1. We denote by Γ1,2

the interface between the two subdomains in Y . Let 12(y) be the characteristic function of Y2 extended Y –
periodically to the whole Rd. Thus, the medium Ω contains two subdomains Ωε

1 and Ωε
2, representing two

different types of rock and satisfying:

Ωε
2 =

{
x ∈ Ω : 12

(x

ε

)
= 1
}

and Ωε
1 = Ω \ Ωε

2. (2.1)

For the sake of simplicity, we assume that Ωε
2 ∩ ∂Ω = ∅. We also introduce the notation:

Γε
1,2

def= ∂Ωε
1 ∩ ∂Ωε

2 ∩ Ω, (2.2)

ΩT
def= Ω× (0, T ), Ωε

`,T
def= Ωε

` × (0, T ), Σε
1,2,T

def= Γε
1,2 × (0, T ), (2.3)

where T > 0 is fixed, and, from now on, ` = 1, 2.
The water–gas flow in porous reservoirs can be described in terms of the following characteristics:
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- Φε(x) = Φ(x
ε ) is the porosity of the medium Ω;

- Kε(x) = K(x
ε ) is the absolute permeability tensor of Ω;

- %w, %g are the densities of water and gas, respectively.

- Sε
`,w = Sε

`,w(x, t), Sε
`,g = Sε

`,g(x, t) are the saturations of water and gas in Ωε
` , respectively;

- k
(`)
r,w = k

(`)
r,w(Sε

`,w), k
(`)
r,g = k

(`)
r,g(Sε

`,g) are the relative permeabilities of water and gas in the medium Ωε
` ,

respectively;

- pε
`,w = pε

`,w(x, t), pε
`,g = pε

`,g(x, t) are the pressures of water and gas in Ωε
` , respectively.

The conservation of mass in each phase can be written as (see, e.g., [2, 3, 6, 8, 9]):
Φε(x)

∂

∂t
(Sε

`,w %w(pε
`,w)) + div (%w(pε

`,w) ~q ε
`,w) = 0 in Ωε

`,T ;

Φε(x)
∂

∂t
(Sε

`,g %g(pε
`,g)) + div (%g(pε

`,g) ~q ε
`,g) = 0 in Ωε

`,T ,
(2.4)

where the velocities of the water and gas ~q ε
`,w, ~q ε

`,g are defined by the Darcy-Muskat’s law:

~q ε
`,w = −Kε(x)λ`,w(Sε

`,w)
(
∇pε

`,w − %w(pε
`,w)~g

)
, with λ`,w(Sε

`,w) =
k

(`)
r,w

µw
(Sε

`,w); (2.5)

~q ε
`,g = −Kε(x)λ`,g(Sε

`,g)
(
∇pε

`,g − %g(pε
`,g)~g

)
, with λ`,g(Sε

`,g) =
k

(`)
r,g

µg
(Sε

`,g). (2.6)

Here ~g, µw, µg are the gravity vector and the viscosities of the water and gas, respectively. From now on we
assume that the density of the water is constant, which for the sake of simplicity will be taken equal to one, i.e.
%w(pε

w) = Const = 1, and the gas density %g is a monotone smooth function such that

%g(p) = %min for p 6 pmin; %g(p) = %max for p > pmax;

%min < %g(p) < %max for pmin < p < pmax;
(2.7)

here the pairs of constants %min, %max and pmin, pmax satisfy the bounds:

0 < %min < %max < +∞ and 0 < pmin < pmax < +∞. (2.8)

In what follows we also make use of the following notation:

%ε
`,g = %g(pε

`,g). (2.9)

The model is completed as follows. By the definition of saturations, one has

Sε
`,w + Sε

`,g = 1 with Sε
`,w, Sε

`,g > 0. (2.10)

To simplify the notation, we denote
Sε

`
def= Sε

`,w. (2.11)

Then the curvature of the contact surface between the two fluids links the jump of pressure of two phases to the
saturation by the capillary pressure law:

P`,c(Sε
` ) = pε

`,g − pε
`,w with P ′

`,c(S
ε
` ) < 0 for all Sε

` ∈ [0, 1] and P`,c(1) = 0, (2.12)
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where P ′
`,c(s) denotes the derivative of the function P`,c(s) with respect to the variable s.

Now due to (2.9), (2.11), and the assumption on the density of the water phase we rewrite (2.4) as follows:

Φε(x)
∂Sε

∂t
− div

(
Kε(x)λw

(x

ε
, Sε
)

(∇pε
w − ~g)

)
= 0 in Ωε

1,T ∪ Ωε
2,T ;

Φε(x)
∂Θε

∂t
− div

(
Kε(x)λg

(x

ε
, Sε
)

%g(pε
g)
(
∇pε

g − %g(pε
g)~g
))

= 0 in Ωε
1,T ∪ Ωε

2,T ;

Pc

(
x
ε , Sε

)
= pε

g − pε
w in ΩT ,

(2.13)

where
Sε(x, t) def= Sε

1(x, t)1ε
1(x) + Sε

2(x, t)1ε
2(x); (2.14)

pε
g(x, t) def= pε

1,g(x, t)1ε
1(x) + pε

2,g(x, t)1ε
2(x) and pε

w(x, t) def= pε
1,w(x, t)1ε

1(x) + pε
2,w(x, t)1ε

2(x); (2.15)

Θε def= %g(pε
g)(1− Sε) = Θε

1 1ε
1(x) + Θε

2(x, t)1ε
2(x) with Θε

`
def= %g(pε

`,g)(1− Sε
` ); (2.16)

Pc

(x

ε
, Sε
)

def= P1,c (Sε
1) 1ε

1(x) + P2,c (Sε
2) 1ε

2(x); (2.17)

λw

(x

ε
, Sε
)

def= λ1,w(Sε
1)1

ε
1(x) + λ2,w(Sε

2)1
ε
2(x) and λg

(x

ε
, Sε
)

def= λ1,g(Sε
1)1

ε
1(x) + λ2,g(Sε

2)1
ε
2(x),

(2.18)
where

λ`,g(Sε
` ) := λ`,g(1− Sε

` ). (2.19)

Here 1ε
`(x) = 1`(x

ε ) is the characteristic function of the subdomain Ωε
` .

The phase fluxes and pressures are to be continuous on the interface Γ1,2. Namely,{
~q ε
1,w · ~ν = ~q ε

2,w · ~ν and ~q ε
1,g · ~ν = ~q ε

2,g · ~ν on Σε
1,2,T ;

pε
1,w = pε

2,w and pε
1,g = pε

2,g on Σε
1,2,T ,

(2.20)

where Σε
1,2,T is defined in (2.3), ~ν is the unit outer normal on Γ1,2, and the fluxes ~q ε

`,w, ~q ε
`,g, in the notation (2.9),

(2.11) are given by:

~q ε
`,w = −Kε(x)λ`,w(Sε

` )
(
∇pε

`,w − ~g
)

and ~q ε
`,g = −Kε(x)λ`,g(Sε

` )
(
∇pε

`,g − %ε
`,g~g
)
.

Remark 1 It is important to notice that in contrast to the functions pε
g, p

ε
w, the function Sε has a jump on the

interface Γ1,2. Namely, it is easy to see from interface conditions (2.20) for the phase pressures that

P1,c(Sε
1) = P2,c(Sε

2) on Σε
1,2,T . (2.21)

This means that Sε
1 6= Sε

2 on Σε
1,2,T .

Now we specify the boundary and initial conditions. We suppose that the boundary ∂Ω consists of two
parts Γinj and Γimp such that Γinj ∩ Γimp = ∅, ∂Ω = Γinj ∪ Γimp. The boundary conditions are given by:{

pε
1,g(x, t) = pε

1,w(x, t) = 0 on Γinj × (0, T );

~q ε
1,w · ~ν = ~q ε

1,g · ~ν = 0 on Γimp × (0, T ).
(2.22)

Finally, the initial conditions read:

pε
w(x, 0) = po

w(x) and pε
g(x, 0) = po

g(x) in Ω. (2.23)
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3 Upscaling of an immiscible compressible two-phase flow model

In this section, we use the method of two-length-scale asymptotic expansions, see e.g. [4, 12], to derive the
limiting equations in the case of a periodic structure.

We are looking for an asymptotic expansion of (pε
w, pε

g, S
ε) of the form

pε
w = p(0)

w (x, t) + ε p(1)
w (x, y, t) + ε2 p(2)

w (x, y, t) + ... ; (3.1)

pε
g = p(0)

g (x, t) + ε p(1)
g (x, y, t) + ε2 p(2)

g (x, y, t) + ... ; (3.2)

Sε = S(0)(x, y, t) + ε S(1)(x, y, t) + ε2 S(2)(x, y, t) + ... (3.3)

where y = x/ε. We note first that the capillary pressure law (2.13)3 implies the form of macroscopic capillary
pressure law:

Pc

(
y, S(0)

)
= p(0)

g − p(0)
w . (3.4)

From the assumption that p
(0)
w and p

(0)
g are are independent of the fast variable y it follows that the dependence

of S(0)(x, y, t) on the fast variable comes only in the from of the characteristic functions of the sets Y1, Y2,
namely

S(0)(x, y, t) = S
(0)
1 (x, t)11(y) + S

(0)
2 (x, t)12(y). (3.5)

The values S
(0)
1 and S

(0)
2 are uniquely determined by the capillary preesure p

(0)
g − p

(0)
w through the capillary

pressure functions:
P`,c(S

(0)
` ) = p(0)

g − p(0)
w . (3.6)

Remark 2 As in [7] (p. 201), we claim that the independence of p
(0)
w , p

(0)
g of the fast variable y is due to

the continuity of the phase pressures on the interface Σε
1,2,T . In fact, this assumption is confirmed for the

case of incompressible immiscible flows because the functions pε
w, pε

g are uniformly bounded in the space
Lr(0, T ;W 1,r(Ω)), where 1 < r < 2 (see [13]). In our case we can prove the similar result for the func-
tion pε

w, only. The assumption (3.5) follows from the compactness result for the extensions of the saturation
function Sε

` .

The functions λw, λg, and %g depend in a nonlinear way on the saturation Sε and the gas pressure pε
g,

respectively. Then we use the Taylor expansions for both functions λw(x
ε , Sε), λg(x

ε , Sε), namely:

λw

(x

ε
, Sε
)

= λw

(
y, S(0)

)
+ ε λ′w

(
y, S(0)

)
S(1) + ... ; (3.7)

λg

(x

ε
, Sε
)

= λg

(
y, S(0)

)
+ ε λ′g

(
y, S(0)

)
S(1) + ... (3.8)

In the same way, taking into account (3.2), we get:

%g

(
pε

g

)
= %g

(
p(0)

g

)
+ ε %′g

(
p(0)

g

)
p(1)

g + ... (3.9)
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3.1 Upscaling of the saturation equation

First we notice that the derivatives obey the law:

∂

∂xi
:=

∂

∂xi
+

1
ε

∂

∂yi
(i = 1, .., d). (3.10)

Then due to (3.10), from the first equation in (2.13), we have:

Φ(y)
∂

∂t

(
S(0)(x, y, t) + ε S(1)(x, y, t) + ....

)
−

−
{

divx +
1
ε

divy

}[
K(y)

(
λw

(
y, S(0)

)
+ ε λ′w

(
y, S(0)

)
S(1) + ...

)
×

×
({

∇x +
1
ε
∇y

}(
p(0)

w (x, t) + ε p(1)
w (x, y, t) + ...

)
− ~g

)]
= 0. (3.11)

The divergence operator in (3.11) we rewrite as follows:{
divx +

1
ε

divy

}[
K(y)

(
λw

(
y, S(0)

)
+ ...

)({
∇x +

1
ε
∇y

}(
p(0)

w (x, t) + ...
)
− ~g

)]
=

=
{

divx +
1
ε

divy

}[
K(y)

(
λw

(
y, S(0)

)
+ ...

)(
∇x

(
p(0)

w (x, t) + ...
)
− ~g +

1
ε
∇y

(
p(0)

w (x, t) + ...
))]

=

= divx

[
K(y)

(
λw

(
y, S(0)

)
+ ...

)(
∇x

(
p(0)

w (x, t) + ...
)
− ~g
)]

+

+
1
ε

divx

[
K(y)

(
λw

(
y, S(0)

)
+ ...

)
∇y

(
p(0)

w (x, t) + ...
)]

+

+
1
ε

divy

[
K(y)

(
λw

(
y, S(0)

)
+ ...

)(
∇x

(
p(0)

w (x, t) + ...
)
− ~g
)]

+

+
1
ε2

divy

[
K(y)

(
λw

(
y, S(0)

)
+ ...

)
∇y

(
p(0)

w (x, t) + ...
)]

. (3.12)

Now in a standard way we have:

Terms of order ε−2. From the fourth term on the right hand side of (3.12) we get the following equation:

−divy

(
K(y)λw

(
y, S(0)

)
∇yp

(0)
w

)
= 0. (3.13)

It is evidently satisfied because p
(0)
w does not depend on y.

Terms of order ε−1. From the second, third, and fourth terms on the right hand side of (3.12) we get:

−divx

(
K(y)λw

(
y, S(0)

)
∇yp

(0)
w

)
− divy

(
K(y)λw

(
y, S(0)

)(
∇xp(0)

w − ~g
))

−

−divy

(
K(y)λ′w

(
y, S(0)

)
S(1)∇yp

(0)
w + K(y)λw

(
y, S(0)

)
∇yp

(1)
w

)
= 0.
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Taking into account that p
(0)
w = p

(0)
w (x, t), from this equation we get:

−divy

(
K(y)λw

(
y, S(0)

)(
∇xp(0)

w − ~g
))

− divy

(
K(y)λw

(
y, S(0)

)
∇yp

(1)
w

)
= 0. (3.14)

In a standard way we set:

p(1)
w (x, y, t) =

∑
j

ξj,w(x, t, y)

(
∂ p

(0)
w

∂xj
(x, t)− gj

)
, (3.15)

where gj is the j–th component of ~g. Then taking into account definitions (3.5) and (3.15), from equation (3.14)
we get the cell problem:

−divy

(
K(y)λw

(
y;S(0)

)
(∇yξj,w + ~ej)

)
= 0 in Y ;

y 7→ ξj,w(y) Y − periodic
(3.16)

with ~ej being the j–th coordinate vector. Here

λw

(
y;S(0)

)
def= λ1,w

(
S

(0)
1

)
11(y) + λ2,w

(
S

(0)
2

)
12(y). (3.17)

As we noted before, the macro-scale saturation variables S
(0)
1 (x, t) and S

(0)
2 (x, t) are completely determined

by the value of macro-scale capillary pressure p
(0)
g (x, t) − p

(0)
w (x, t). Therefore, the solution ξj,w of the cell

problem (3.16) depends on the macro-scale capillary pressure as a parameter, and theoretically, the cell problem
(3.16) has to be solved for all values of the macro-scale capillary pressures. In practice, it will be solved only
for a finite number of capillary pressure values.

Terms of order ε0. Consider the equation (3.12). Except the evident terms of order ε0 we also have the
following ones. The third term in (3.12), i.e.,

1
ε

divy

[
K(y)

(
λw

(
y, S(0)

)
+ ...

)(
∇x

(
p(0)

w (x, t) + ...
)
− ~g
)]

,

gives:

divy

(
K(y)λ′w

(
y, S(0)

)
S(1)

(
∇xp(0)

w − ~g
))

+ divy

(
K(y)λw

(
y, S(0)

)
∇xp(1)

w

)
. (3.18)

The fourth term in (3.12), i.e.,

1
ε2

divy

[
K(y)

(
λw

(
y, S(0)

)
+ ...

)
∇y

(
p(0)

w (x, t) + ...
)]

,

gives:
1
2

divy

(
K(y)λ′′w

(
y, S(0)

)(
S(2)

)2
∇yp

(0)
w

)
+ divy

(
K(y)λw

(
y, S(0)

)
∇yp

(2)
w

)
=

= divy

(
K(y)λw

(
y, S(0)

)
∇yp

(2)
w

)
. (3.19)

Now taking into account these terms, from (3.11), (3.12) we have:

Φ(y)
∂S(0)

∂t
− divx

(
K(y)λw

(
y, S(0)

)(
∇xp(0)

w − ~g
))

− divx

(
K(y)λ′w

(
y, S(0)

)
S(1)∇yp

(0)
w

)
−
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−divx

(
K(y)λw

(
y, S(0)

)
∇yp

(1)
w

)
− divyZ(x, y, t) = 0,

where

Z
def= K(y)λ′w

(
y, S(0)

)
S(1)

(
∇xp(0)

w − ~g
)

+ K(y)λw

(
y, S(0)

)
∇xp(1)

w + K(y)λw

(
y, S(0)

)
∇yp

(2)
w .

Notice that Z is an Y –periodic function. Since ∇yp
(0)
w = 0, then the last equation yields:

Φ(y)
∂S(0)

∂t
− divx

(
K(y)λw

(
y;S(0)

)(
∇xp(0)

w − ~g +∇yp
(1)
w

))
− divyZ(x, y, t) = 0. (3.20)

Now we integrate (3.20) over the cell Y . Taking into account that Z is Y –periodic we have that∫
Y

divyZ dy = 0.

Consider the first term on the left hand side of (3.20). Due to (3.5), we have:∫
Y

Φ(y)
∂S(0)

∂t
dy =

∂

∂t

∫
Y

Φ(y)
{

S
(0)
1 (x, t)11(y) + S

(0)
2 (x, t)12(y)

}
dy =

=
∂

∂t

S
(0)
1 (x, t)

∫
Y1

Φ(y) dy + S
(0)
2 (x, t)

∫
Y2

Φ(y) dy

 = 〈Φ 〉 ∂S∗

∂t
, (3.21)

where 〈 · 〉 denotes the mean value of the corresponding function over the cell Y . The variable

S∗(x, t) = S∗
(
S(0)

)
def=

1
〈Φ 〉

S
(0)
1 (x, t)

∫
Y1

Φ(y) dy + S
(0)
2 (x, t)

∫
Y2

Φ(y) dy

 , (3.22)

is the correct macro-scale saturation while the variables S
(0)
` represent only partial macro-scale saturations.

Then from (3.20), (3.21) we get:

〈Φ 〉 ∂S∗

∂t
− divx Jw = 0, (3.23)

where
Jw

def=
∫
Y

K(y)λw

(
y;S(0)

)(
∇xp(0)

w − ~g +∇yp
(1)
w

)
dy. (3.24)

Taking into account the definition of the function p
(1)
w (see (3.15)), we obtain that

Jw =
∫
Y

K(y)λw

(
y;S(0)

)
[I +∇yξw

(
y;S(0)

)
] dy

(
∇xp(0)

w − ~g
)

, (3.25)

where I is the unit tensor, ∇yξw

(
y;S(0)

)
is the tensor with the components ∂ξj,w/∂yi and ξj,w is the solution

of (3.16). Thus from (3.23) and (3.25) we obtain the first homogenized equation:

〈Φ 〉 ∂S∗

∂t
− divx

(
Λw(S(0))

(
∇xp(0)

w − ~g
))

= 0, (3.26)

where the homogenized permeability tensor Λw of the water phase is given by:

Λw(S(0)) def=
〈

K(y)λw

(
y;S(0)

)
[I +∇yξw

(
y;S(0)

)
]
〉

. (3.27)

We note finally that the function S(0)(x, t, y) is uniquely defined by the macro-scale capillary pressure p
(0)
g (x, t)−

p
(0)
w (x, t) which makes Λw(S(0)) a nonlinear function of p

(0)
g (x, t)− p

(0)
w (x, t).
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3.2 Upscaling of the pressure equation

We recall that this equation reads:

Φε(x)
∂Θε

∂t
− div

(
Kε(x)λg

(x

ε
, Sε
)

%g(pε
g)
(
∇pε

g − %g(pε
g)~g
))

= 0 in ΩT . (3.28)

First, from (3.3), (3.9) we get:

Φ
(x

ε

) ∂Θε

∂t
= Φ

(x

ε

) ∂

∂t

(
%g(pε

g) (1− Sε)
)

=

= Φ(y)
∂

∂t

[(
%g

(
p(0)

g

)
+ ε %′g

(
p(0)

g

)
p(1)

g + ...
)(

1− S(0) − ε S(1) + ...
)]

=

= Φ(y)
∂

∂t

[
Θ(0) + ε

{
−%g

(
p(0)

g

)
S(1) + %′g

(
p(0)

g

)
p(1)

g

(
1− S(0)

)}
+ ...

]
, (3.29)

where the function Θ(0) is given by:

Θ(0) def= %g

(
p(0)

g

)(
1− S(0)

)
. (3.30)

Then due to (3.10), from (3.28), we have:

Φ(y)
∂

∂t

[
Θ(0) + ε

{
−%g

(
p(0)

g

)
S(1) + %′g

(
p(0)

g

)
p(1)

g

(
1− S(0)

)}
+ ...

]
−

−
{

divx +
1
ε

divy

}[
K(y)

(
λg

(
y, S(0)

)
+ ε λ′g

(
y, S(0)

)
S(1) + ...

)(
%g

(
p(0)

g

)
+ ε %′g

(
p(0)

g

)
p(1)

g + ...
)
×

×
({

∇x +
1
ε
∇y

}(
p(0)

g (x, t) + ε p(1)
g (x, y, t) + ...

)
−
(
%g

(
p(0)

g

)
+ ...

)
~g

)]
= 0. (3.31)

The differential operator can be rewritten as follows:{
divx +

1
ε

divy

}[
K(y)

(
λg

(
y, S(0)

)
+ ε λ′g

(
y, S(0)

)
S(1) + ...

)(
%g

(
p(0)

g

)
+ ε %′g

(
p(0)

g

)
p(1)

g + ...
)
×

×
({

∇x +
1
ε
∇y

}(
p(0)

g (x, t) + ε p(1)
g (x, y, t) + ...

)
−
(
%g

(
p(0)

g

)
+ ...

)
~g

)]
=

=
{

divx +
1
ε

divy

}[
K(y)

(
λg

(
y, S(0)

)
+ ε λ′g

(
y, S(0)

)
S(1) + ...

)(
%g

(
p(0)

g

)
+ ε %′g

(
p(0)

g

)
p(1)

g + ...
)
×

×
(
∇x

(
p(0)

g (x, t) + ε p(1)
g (x, y, t) + ...

)
−
(
%g

(
p(0)

g

)
+ ...

)
~g +

1
ε
∇y

(
p(0)

g (x, t) + ε p(1)
g (x, y, t) + ...

))]
=

= divx

[
K(y)

(
λg

(
y, S(0)

)
+ ...

)(
%g

(
p(0)

g

)
+ ...

)(
∇x

(
p(0)

g (x, t) + ...
)
−
(
%g

(
p(0)

g

)
+ ...

)
~g
)]

+

+
1
ε

divx

[
K(y)

(
λg

(
y, S(0)

)
+ ...

)(
%g

(
p(0)

g

)
+ ...

)
∇y

(
p(0)

g + ...
)]

+

+
1
ε

divy

[
K(y)

(
λg

(
y, S(0)

)
+ ...

)(
%g

(
p(0)

g

)
+ ...

)(
∇x

(
p(0)

g (x, t) + ...
)
−
(
%g

(
p(0)

g

)
+ ...

)
~g
)]

+

+
1
ε2

divy

[
K(y)

(
λg

(
y, S(0)

)
+ ...

)(
%g

(
p(0)

g

)
+ ...

)
∇y

(
p(0)

g + ...
)]

. (3.32)
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Now in a standard way we have:

Terms of order ε−2. From the fourth term on the right hand side of (3.32) we have the following equation:

−divy

(
K(y)λg

(
y, S(0)

)
%g

(
p(0)

g

)
∇yp

(0)
g

)
= 0. (3.33)

It is evidently satisfied because p
(0)
g does not depend on y.

Terms of order ε−1. From the second, third, and fourth terms on the right hand side of (3.32) we get:

−divx

(
K(y)λg

(
y, S(0)

)
%g

(
p(0)

g

)
∇yp

(0)
g

)
−

−divy

(
K(y)λg

(
y, S(0)

)
%g

(
p(0)

g

)(
∇xp(0)

g − %g

(
p(0)

g

)
~g
))

−

−divy

(
K(y)λ′g

(
y, S(0)

)
S(1)%g

(
p(0)

g

)
∇yp

(0)
g

)
− divy

(
K(y)λg

(
y, S(0)

)
%′g

(
p(0)

g

)
p(1)

g ∇yp
(0)
g

)
−

−divy

(
K(y)λg

(
y, S(0)

)
%g

(
p(0)

g

)
∇yp

(1)
g

)
= 0.

Taking into account that p
(0)
g = p

(0)
g (x, t), from this equation we get:

−divy

(
K(y)λg

(
y, S(0)

)
%g

(
p(0)

g

)(
∇xp(0)

g − %g

(
p(0)

g

)
~g
))

− (3.34)

−divy

(
K(y)λg

(
y, S(0)

)
%g

(
p(0)

g

)
∇yp

(1)
g

)
= 0.

As in the previous case, in a standard way we set:

p(1)
g (x, y, t) =

∑
j

ξj,g(x, y)

(
∂ p

(0)
w

∂xj
(x, t)− %g

(
p(0)

g

)
gj

)
. (3.35)

Then the equation (3.34) reduces to the following equation:
−divy

(
K(y)λg

(
y;S(0)

)
(∇yξj,g + ~ej)

)
= 0 in Y ;

y 7→ ξj,g(y) Y − periodic,
(3.36)

where
λg

(
y;S(0)

)
def= λ1,g

(
S

(0)
1

)
11(y) + λ2,g

(
S

(0)
2

)
12(y), (3.37)

and the values S
(0)
` are defined by (3.6).

Proceeding now as in the previous section we obtain the following equation:∫
Y

Φ(y)
∂Θ(0)

∂t
dy − divx Jg = 0, (3.38)
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where the function Θ(0) is defined in (3.30) and

Jg
def=
∫
Y

K(y)λg

(
y;S(0)

)
%g

(
p(0)

g

)(
∇xp(0)

g − %g

(
p(0)

g

)
~g +∇yp

(1)
g

)
dy. (3.39)

Consider the first term on the left hand side of (3.38). We have:∫
Y

Φ(y)
∂Θ(0)

∂t
dy =

∂

∂t

∫
Y

Φ(y) %g

(
p(0)

g

){(
1− S

(0)
1

)
11(y) +

(
1− S

(0)
2

)
12(y)

}
dy =

=
∂

∂t

%g

(
p(0)

g

)(1− S
(0)
1

)∫
Y1

Φ(y) dy +
(
1− S

(0)
2

)∫
Y2

Φ(y) dy

 = 〈Φ 〉∂Θ∗

∂t
,

where
Θ∗(x, t) = Θ∗

(
S(0)

)
def= %g

(
p(0)

g

)
(1− S∗) . (3.40)

Here the function S∗ is defined in (3.22).
Now from (3.38)–(3.40) we get the second homogenized equation:

〈Φ 〉∂Θ∗

∂t
− divx

(
(Λg(S(0))%g

(
p(0)

g

)(
∇xp(0)

g − %g

(
p(0)

g

)
~g
))

= 0, (3.41)

where the homogenized mobility tensor Λg of the gas phase is given by:

Λg(S(0)) def=
〈

K(y)λg

(
S(0); y

)
[I +∇ξg(y;S(0))]

〉
. (3.42)

Here ∇ξg(y;S(0)) is the tensor with the components ∂ξj,g/∂yi.

3.3 Homogenized system

Thus the homogenized system has the following form:

〈Φ 〉 ∂S∗

∂t
− divx

(
Λw(S(0))

(
∇xp(0)

w − ~g
))

= 0 in ΩT ;

〈Φ 〉∂Θ∗

∂t
− divx

(
(Λg(S(0))%g

(
p(0)

g

)(
∇xp(0)

g − %g

(
p(0)

g

)
~g
))

= 0 in ΩT ;

Pc

(
y, S(0)

)
= p

(0)
g − p

(0)
w in ΩT × Y.

(3.43)

In equations (3.43) the local variable y appears, at least formally, in the capillary pressure law. In order to write
the system (3.43) exclusively in macroscopic variables, we will eliminate S(0) and replace it by the macro-scale
saturation S∗. To do this it is sufficient to construct an effective capillary pressure function P ∗

c such that

P ∗
c (S∗) = p(0)

g − p(0)
w in ΩT . (3.44)

Then, for any given S∗ the capillary pressure is known, and therefore S(0) is also known. We can then express
all homogenized tensors as functions of the macro-scale saturation S∗.
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4 Effective macroscale model and local problems

In order to construct the effective capillary pressure curve, for simplicity, we will use the following simplifying
assumption that

min
S∈[0,1]

P1,c(S) = min
S∈[0,1]

P2,c(S) and max
S∈[0,1]

P1,c(S) = max
S∈[0,1]

P2,c(S). (4.45)

Let us note that (4.45) is not necessary and serves only to simplify the presentation. We will set minS∈[0,1] P`,c(S) =
P`,c(1) = 0 and maxS∈[0,1] P`,c(S) = P`,c(0) = α. Then, for any u ∈ [0, α] we can find S(0)(y) =

S
(0)
1 11(y) + S

(0)
2 12(y) by solving the equations u = P1,c(S

(0)
1 ) = P1,c(S

(0)
2 ).

SS S1 2*S

Pc (S)

Pc (S)

Pc (S)

1

*

2

C
ap

ill
ar

y 
pr

es
su

re

u

After the values S
(0)
1 and S

(0)
2 are obtained, we can compute S∗ by the formula (3.22), that is

S∗ =
1
〈Φ 〉

S
(0)
1

∫
Y1

Φ(y) dy + S
(0)
2

∫
Y2

Φ(y) dy

 . (4.46)

So we have defined a function f : [0, α] → [0, 1], such that S∗ = f(u). It is easy to see that, due to strict
monotonicity of both capillary pressure functions, the function u 7→ S∗ is strictly decreasing, and thus have
strictly decreasing inverse function: u = f−1(S∗), f−1 : [0, 1] → [0, α]. This function defines the effective
capillary pressure function and it will be denoted P ∗

c .
When the effective capillary pressure function is computed, we can calculate for any value of macro-scale

saturation S∗ ∈ [0, 1] corresponding micro-scale repartition of the saturation S
(0)
∗ = S

(0)
1 11(y) + S

(0)
2 12(y),

where the values S
(0)
1 and S

(0)
2 are solutions to the equations P1,c(S

(0)
1 ) = P1,c(S

(0)
2 ) = P ∗

c (S∗). For the
repartition S

(0)
∗ we solve the cell problems:

−divy

(
K(y)λw

(
y;S(0)

∗

)
(∇yξj,w + ~ej)

)
= 0 in Y ;

y 7→ ξj,w(y) Y − periodic
(4.47)


−divy

(
K(y)λg

(
y;S(0)

∗

)
(∇yξj,g + ~ej)

)
= 0 in Y ;

y 7→ ξj,g(y) Y − periodic,
(4.48)
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and calculate effective phase mobility tensors

Λw(S∗) def=
〈

K(y)λw

(
y;S(0)

∗

)
[I +∇yξw

(
y;S(0)

∗

)
]
〉

, (4.49)

Λg(S∗) def=
〈

K(y)λg

(
S

(0)
∗ ; y

)
[I +∇ξg(y;S(0)

∗ )]
〉

. (4.50)

These tensors depend only on the macroscopic saturation S∗. Finally we have the macroscopic conservation
laws in the form:

〈Φ 〉 ∂S∗

∂t
− divx

(
Λw(S∗) (∇xpw − ~g)

)
= 0 in ΩT ;

〈Φ 〉 ∂

∂t
(%g (pg) (1− S∗)) − divx

(
(Λg(S∗)%g (pg) (∇xpg − %g (pg)~g)

)
= 0 in ΩT ,

(4.51)

where we have dropped the index (0) from the macroscopic phase pressures pw and pg. To the equations (4.51)
we have to add the macroscopic capillary pressure law:

pg − pw = P ∗
c (S∗). (4.52)

The structure of the macroscopic two-phase flow equations is the same as the structure of micro-scale
equations. The only difference is in the effective phase mobilities Λw(S∗) and Λg(S∗), which are now generally
full symmetric tensors, calculated by the resolution of the local cell problems, and are not naturally factorized
into absolute (intrinsic) permeability and relative (phase) mobilities.
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