ON UNITAL C(X)-ALGEBRAS AND (C(X)-VALUED
CONDITIONAL EXPECTATIONS OF FINITE INDEX

ETIENNE BLANCHARD AND ILJA GOGIC

ABSTRACT. Let X be a compact Hausdorff space and let A be a unital C(X)-
algebra, where C'(X) is embedded as a unital C*-subalgebra of the centre of A.
We consider the problem of characterizing the existence of a conditional expec-
tation E : A — C(X) of finite index in terms of the associated C*-bundle of A
over X. More precisely, we show that if A admits a C'(X)-valued conditional
expectation of finite index, then A is necessarily a continuous C(X)-algebra,
and there exists a positive integer N such that every fibre A, of A is finite-
dimensional, with dim A; < N. We also give some sufficient conditions on A
that ensure the existence of a C(X)-valued conditional expectation of finite
index.

1. INTRODUCTION

Let B C A be two unital C*-algebras with the same unit element. A conditional
expectation (abbreviated by C.E.) from A to B is a completely positive contraction
E : A — B such that E(b) = b for all b € B, and which is B-bilinear, i.e.

E(blab2) = blE(a)bg

for all @ € A and b1,b2 € B. By a result of Y. Tomiyama (see [27, Theorem 1] or
[4, Theorem I1.6.10.2]), a map F : A — B is a C.E. if and only if E is a projection
of norm one.

If E(a*a) = 0 (a € A) implies a = 0, E is said to be faithful. Every faithful
conditional expectation F : A — B introduces a pre-Hilbert B-module structure
on A, whose inner product is defined by

(1.1) (al,a2>E = E(aiag) ((lhaz S A)

The notion of finite index was introduced by V. F. R. Jones [18] in order to
classify the subfactors of a type II; factor. Soon afterwards H. Kosaki [21] extended
the Jones index theory to arbitrary factors. In order to generalize the results of
[18, 21], M. Pimsner and S. Popa introduced in [24, 25] a definition for conditional
expectations of finite index in the context of W*-algebras: There must exist a
constant K > 1 such that the map K - E —id4 is positive on A. Then, following
the idea of M. Baillet, Y. Denizeau and J.-F. Havet (see [3]), the index of E can
be defined in the following way: Since the map K - E —idy4 is positive, E defines
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a (complete) Hilbert B-module structure on A, with respect to the inner product
(1.1). If {z;} is a quasi-orthonormal basis in A, the indez of E is the sum > °° | a7z,
with respect to the ultraweak topology.

Y. Watatani also considered conditional expectations of (algebraically) finite
index, when the original C*-algebra A is a finitely generated Hilbert C*-module
over B (see [29]).

The results of M. Baillet, Y. Denizeau and J.-F. Havet in [3] also indicated that
there might occur some difficulties in order to extend the notion of ”finite index”
for conditional expectations of C*-algebras with arbitrary centres. However, this
problem was solved by M. Frank and E. Kirchberg in [11]. The main result of their
paper is [11, Theorem 1]:

Theorem 1.1 (M. Frank and E. Kirchberg). For a C.E. E: A — B, where B C A
are unital C*-algebras with the same unit element, the following conditions are
equivalent:
(i) There exists a constant K > 1 such that the map K - E —id 4 is positive.
(ii) There exists a constant L > 1 such that the map L - E —id4 is completely
positive.
(iii) A becomes a (complete) Hilbert B-module when equipped with the inner
product (1.1).

Moreover, if
K(E):=inf{K >1 : K- -E —id4 is positive},
L(E):=inf{L>1 : L-FE —id4 is completely positive},
with K(E) = oo or L(E) = oo if no such number K or L exists, then
K(E) < L(E) < |K(E)|K(E),
where |-| denotes the integer part of a real number.

The importance of this result is that it gives the right general definition for
conditional expectations on C*-algebras to be of finite index:

Definition 1.2. If B C A are two unital C*-algebras with the same unit element,
then a CE. E : A — B is said to be of finite index (abbreviated C.E.F.1) if E
satisfies one of the equivalent conditions of Theorem 1.1.

In this case the index value of E can be calculated in the enveloping von Neumann
algebra A** (see [11, Definition 3.1]).

For a unital inclusion A C B of unital C*-algebras we introduce the following
constant
K(A,B) :=inf{K(E) : E: A— Bis CEF.L},
with K (A, B) = oo, if no such C.E.F.I. exists. This constant will play an important
role in this paper.

Conditional expectations of finite index arise naturally when considering cer-
tain continuous group actions (of certain groups) on (locally) compact Hausdorff
spaces. In these situations properties of group actions can be investigated using
the structure of associated Hilbert C*-modules (see e.g. [13, 14, 28]). Other in-
teresting relations with the group theory can be found in [17]. In [19] Kajiwara et
al. established an equivalence between Jones index theory for certain Hilbert C*-
bimodules, which can naturally arise from conditional expectations of finite index,
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and conjugation theory of certain tensor C*-categories. Their results are linked
to the quantum field theory. In [12] Frank and Larson generalized the theory of
frames for (separable) Hilbert spaces to (finitely and countably generated) Hilbert
C*-modules over unital C*-algebras. Quasi-bases for conditional expectations of
(algebraically) finite index appear as special cases of their approach.

More recently, A. Pavlov and E. Troitsky considered in [22] the problem of
existence of a CEFI E : C(Y) — C(X) for a unital inclusion ¢ : C(X) —
C(Y) of unital commutative C*-algebras. The main result of their paper is [22,
Theorem 1.1], which shows that such a C.E.F.I. exists if and only if the transpose
map @, : Y — X is a branched covering. This means that ¢, is an open map
with uniformly bounded number of pre-images (i.e. sup,cy ¢y '(x)] < oo). This
result motivated A. Pavlov and E. Troitsky to define the noncommutative branched
coverings, as unital inclusion B C A of unital C*-algebras such that there exists a
C.E.F.I from A to B (see [22, Definition 1.2]).

Using the above inclusion ¢ : C(X) < C(Y) we may consider C(Y) as a C(X)-
algebra. Then the map ¢, is open if and only if C(Y) is a continuous C(X)-
algebra, and ¢, has uniformly bounded number of pre-images if and only if C'(Y) is
subhomogeneous C(X)-algebra. This means that there exists a positive integer N
such that every fibre C(Y), of C(Y') is finite-dimensional with dim C(Y"), < N (see
Section 2). Therefore, we can restate [22, Theorem 1.1] in terms of C'(X)-algebras
as follows:

Theorem 1.3 (A. Pavlov and E. Troitsky). Let A be a unital commutative C(X)-
algebra, where C(X) is embedded as a unital C*-subalgebra of A. Then A admits
a C(X)-valued C.E.F.I if and only if A is a continuous subhomogeneous C(X)-
algebra.

The purpose of the present paper is to consider a possible extension of Theo-
rem 1.3 to the case when A is an arbitrary (not necessarily commutative) unital
C(X)-algebra. The necessary condition for the existence of a C'(X)-valued C.E.F.I.
appears to be identical to the one of Theorem 1.3:

Theorem 1.4. Let A be a unital C(X)-algebra, where C(X) is embedded as a unital
C*-subalgebra of the centre of A. If A admits a C(X)-valued C.E.F.I., then A is
a continuous subhomogeneous C(X)-algebra. Moreover, in this case the following
inequality holds:

K(A,C(X)) = r(A),
where r(A) is the rank of A, i.e.

r(A) = max Z dimm, : z€ X

We shall prove Theorem 1.4 in Section 3. At the moment we do not know if the
converse of Theorem 1.4 also holds. However, if all the fibres of a continuous unital
C(X)-algebra A are x-isomorphic to the same finite-dimensional C*-algebra (i.e. A
is a homogeneous C(X)-algebra), then there exists a unique C.E. E: A — C(X)
such that the map r(A) - E — idy4 is positive (Proposition 3.4). In particular, we
have the equality K(A,C(X)) = r(A) in this case. Also, a direct consequence of
this fact is that any unital C'(X)-algebra A which can be embedded as a C(X)-
subalgebra of some continuous homogeneous unital C(X)-algebra also admits a
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C(X)-valued C.E.F.I.. However, this embedding condition is not necessary for the
existence of such C.E.F.I.. Indeed, there exists a continuous unital C'(X)-algebra
A over a second-countable compact Hausdorff space X with fibres Ms(C) or C
which admits a C(X)-valued C.E.F.1., but which cannot be embedded as a C(X)-
subalgebra into any continuous homogeneous unital C(X)-algebra (Example 3.6).
At the end of this paper we also show that any continuous unital C'(X)-algebra A
of rank 2 admits a C.E. E : A — C(X) such that the map 2 - E — id4 is positive
(Proposition 3.7). In particular, the equality K (A, C(X)) = r(A) also holds in this
class of C'(X)-algebras.

2. NOTATION AND PRELIMINARIES

Throughout this paper A will be a C*-algebra. We denote by A, and Ay the
self-adjoint and the positive parts of A. The centre of A is denoted by Z(A). By
A and Prim(A) we respectively denote the spectrum of A (i.e. the set of all classes
of irreducible representations of A) and the primitive spectrum of A (i.e. the set of
all primitive ideals of A), equipped with the Jacobson topology. By a dimension
of [n] € A, which is denoted by dim 7, we mean the dimension of the underlying
Hilbert space of some representative of [r].

Let X be a compact Hausdorff space. For each point z € X let
Co(X) :={f € C(X) : f(z) =0}
be the corresponding maximal ideal of C(X).

Definition 2.1. A C(X)-algebra is a C*-algebra A endowed with a unital -
homomorphism ¥4 from C(X) to the centre of the multiplier algebra of A.

Remark 2.2. Given f € C(X) and a € A, we write fa for the product ¥4 (f) - a if
no confusion is possible.

There is a natural connection between C(X)-algebras and upper semicontinuous
C*-bundles over X. We first give a formal definition of such bundles:

Definition 2.3. Following [30] by an upper semicontinuous C*-bundle we mean
a triple 2 = (p, A, X) where A is a topological space with a continuous open
surjection p : A — X, together with operations and norms making each fibre
A, = p~!(z) into a C*-algebra, such that the following conditions are satisfied:
(Al) The mapsCx A - A Axx A— A Axx A— Aand A — A given in
each fibre by scalar multiplication, addition, multiplication and involution,
respectively, are continuous (A x x A denotes the Whitney sum over X).
(A2) The map A — R, defined by norm on each fibre, is upper semicontinuous.
(A3) If x € X and if (as) is a net in A such that ||an|| — 0 and p(a,) — « in
X, then a, — 0, in A (0, denotes the zero-element of A,).

If "upper semicontinuous” in (A2) is replaced by ”continuous”, then we say that 2
is a continuous C*-bundle.

By a section of an upper semicontinuous C*-bundle 2l we mean amap s : X — A
such that p(s(z)) = z for all z € X. We denote by I'() the set of all continuous
sections of 2. Then I'(A) becomes a C(X)-algebra with respect to the natural
pointwise operations and sup-norm.
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On the other hand, given a C'(X)-algebra A, one can always associate an upper
semicontinuous C*-bundle A over X such that A = I'(A), as follows. Set J, :=
C,(X)- A and note that J, is a closed two-sided ideal in A (by Cohen factorization
theorem [7], [6, Theorem A.6.2])). The quotient A, := A/J, is called the fibre at
the point x, and we denote by a, the image in A, of an element a € A. Let

A= |_| Ay,
zeX

and let p : A — X be the canonical associated projection. For a € A we define the
map G: X — A by a(z) := a,, and let Q:={a : a € A}. Since for each a € A we
have
laz|| = inf{||[1 = f + f(@)] - al| : f € CX)},

the norm function x — |la,|| is upper semicontinuous on X. Hence, by Fell’s theo-
rem [30, Theorem C.25] there exists a unique topology on A for which 2 := (p, 4, X)
becomes an upper semicontinuous C*-bundle such that Q@ C T'(2). Moreover, by
Lee’s theorem [30, Theorem C.26], = I'(A), and the generalized Gelfand trans-
form G :a € A~ a € I'(A), is an isomorphism of C(X)-algebras, from A onto
().

Definition 2.4. Let A be a C(X)-algebra. If all the norm functions z — |lay||
(a € A) are continuous on X, we say that A is a continuous C(X)-algebra.

Note that the C'(X)-algebra A is continuous if and only if 2 is continuous as a
C*-bundle.

The C*-algebra A is said to be
- (n-)homogeneous (n € N), if dim 7 = n for all [] € A,
- (n-)subhomogeneous (n € N), if SUp( e 4 dim T = n.
We shall now define the similar notions for C'(X)-algebras. To do this, first recall
that if D is a finite-dimensional C*-algebra, then there is a finite number of central
pairwise orthogonal projections py,...,p, € Z(D) with Y7" | p; = 1p, such that
(2.1) D=pD® - ®pmD,

and each p; D is *-isomorphic to the matrix algebra M, (C) (see e.g. [26, Theorem
1.11.9]). We define the rank of D as

r(D) = Zni = Z dim 7.

i=1 [r]eD

Definition 2.5. Let A be a C'(X)-algebra. We say that A is

- homogeneous if all the fibres of A are x-isomorphic to the same finite-
dimensional C*-algebra.

- subhomogeneous if there exists a positive integer N such that every fibre
A, of A is finite-dimensional with dim A4, < N.

Remark 2.6. Let A be a C'(X)-algebra.
(i) A is subhomogeneous if and only if
r(A) :=sup{r(4;) rz € X} < oco.

As in the finite-dimensional case, we call the number r(A) the rank of A.
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(ii) If A is continuous and homogeneous, then by [10, Lemma 3.1] the associated
C*-bundle 2 is locally trivial.

3. RESULTS
Remark 3.1. If A is a unital C'(X)-algebra, we always assume in this section that

the map ¥4 : C(X) — Z(A) is injective, so that we can identify C'(X) with the
unital C*-subalgebra ¢ 4(C(X)) of Z(A).

In order to prove Theorem 1.4 we shall need the following two auxiliary results.
Lemma 3.2. Let D be a unital C*-algebra. Then K(D,C) := K(D,Clp) < oo if
and only if D is finite-dimensional. In this case we have:

(i) The constant K(w) is finite for every faithful state w on D, which we iden-
tify with the corresponding faithful C.E.
d—w(d)-1peC-1p (de D).
(i) K(D,C) = r(D). Moreover, there exists a unique state T on D such that
(3.1) r(D)-7(d)lp >d forallde Dy.

Proof. The equivalence K(D,C) < oo < dim D < oo follows from [16, Lemma 4.5].
Hence, suppose that D is finite-dimensional and let w be a faithful state on D. The
proof will now proceed in two steps.

Step 1. Assume that D is simple, i.e. D = M,(C) for some n. If tr(-) is the
standard trace of M, (C), then there exists a strictly positive matrix a € M, (C)
with tr(a) = 1 such that

w(d) =tr(ad) (d € M,(C)).

Let a = u* - diag(A1,...,An) - u be a diagonalisation of a, where u € M, (C) is a
unitary and Aq,..., A, > 0 are the eigenvalues of a. Then for all d € M,,(C) one
has

(3.2) w(u*du) = tr(au*du) = tr(uau™d) = tr(diag(A1, . .., An)d).
The constant K (w) is by definition the smallest number K > 1 satisfying
(3.3) K- -w(d)lp>d forallde D,.

Thus, (3.2) and (3.3) for rank 1 projections in D imply that
K(w) =max{\;' : 1<i<n}.
As 1 =w(l) = > 1", A, one has K(w) > n for any faithful state w on D. Also,
K(w) = n if and only if w = 7 := Ltr(-). In particular, if D = M, (C), we have
K(D,C) =r(D) =n, and 7 is the unique state on D satisfying (3.1).
Step 2. Suppose that D is an arbitrary finite-dimensional C*-algebra. We de-
compose D as in (2.1). For each 1 <i <'m

wi(pid) == % -w(p;d) (d € D)

i)
defines a faithful state on p;D. By Step 1 we have n; < K(w;) < oo for all
1 <7< m. Put

K, = maX{K(w‘i) : lgigm}.
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We claim that K(w) = K. Indeed, for all d € D, we have

K, w(dlp = ZKw cw(pi)wi(pid)lp > Y K(wi) - wi(pid)pi

i=1
> Y pid=d,
i=1
which shows K(w) < K,,. On the other hand, for each d € D} we have
[w(pi) K (w)] - wi(pid)pi > pid,
so that
(3.4) w(p)K (@) > K(w) (1<i<m).
This shows K (w) = K,,, as wanted. Also,

@) =Y wp)K(w) > Y K(w) > Y m=r(D),
=1 =1 =1

so that K(D,C) > r(D).
It remains to show that there exists a unique state 7 on D satisfying (3.1). To

prove the existence, suppose that r(D) = n, and for each 1 < i < m let 7; be the
only faithful tracial state on p;D = M,,,(C). Define the state 7 on D by

1 m
(3.5) 7(d) == - ;m -1i(pid) (d € D).
As 7(p;) = % and K(1;) = n; for all 1 < i < m, we have K(7) = K, = n. In
particular, K(D,C) =n = r(D).

To show the uniqueness of this state 7, suppose that w is another state on D
with K (w) = n. Then using (3.4) we have

Zle SZ = K(w) =n.

But since K (w;) > n; and Y.~ | n; = n, we must have K (w;) = n; forall 1 <i < m.
By the uniqueness part of Step 1 we conclude that

(3.6) wi=1; forall 1<i<m.

Also, K, = K(w) = n and K(w;) = n; imply w(p;) > 2 for all 1 <4 < m. Since
w is a state on D and Z —_1Pi = 1p, we must have

(3.7) wpi) = = forall 1<i<m.
n
Finally, (3.6) and (3.7) imply that
w(d) = Z (pz Wi pz = an T pz = T(d)
i=1
for all d € D, which finishes the proof. O

Proposition 3.3. Let A be a unital C(X)-algebra. If A admits a faithful C(X)-
valued C.E., then A is a continuous C(X)-algebra.
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Proof. This can be deduced from [5, Section 2]. For completeness, we include a
short proof of this fact. It suffices to show that all norm functions & — |la,||
(a € A) are lower semicontinuous on X. To prove this, let £ : A — C(X) be a
faithful C.E. and let L?(A, E) be the completion of the pre-Hilbert C'(X)-module A4,
with respect to the inner product (1.1). For a € A let ®(a) : L*(A, E) — L?(A, E)
denote the continuous extension of the left multiplication map a; — aa; (a € A).
Since E is faithful and since

(®(a)(a1),a2)p = {(aai,a2)rp = E(aja*as) = (a1,a"a2)p
(a1, ®(a”)(az))E,

for all ay,as € A, the map ® defines an injective C'(X)-linear morphism from A to
the C(X)-algebra Bo(x)(L?(A, E)) of bounded adjointable C'(X)-linear operators
on L?(A, E). Therefore, for a € A and = € X we have

lazll = [®(a).l
sup{[(®(a)(a1),a2)e(z)| : ai,a2 € A, |a1|g = [laz||z = 1}
= sup{|E(aja"az)(z)| : ai,a2 € A4, [la1|lp = [laz[[p =1}

In particular, the function = — ||a.|| is a supremum of continuous functions z —
|E(aia*a2)(x)| (||a1||g = ||az]|g = 1), so it must be lower semicontinuous on X. O

Proof of Theorem 1.4. Let E: A — C(X) be a C.E.F.I.. As the conditional expec-
tation E is faithful, Proposition 3.3 implies that the C'(X)-algebra A is continuous
(note that in this case (A, (-,-)g) is already a complete Hilbert C'(X)-module by
Theorem 1.1). It remains to show that each fibre A, (z € X) is finite-dimensional
and satisfies r(A;) < K(F). Indeed, for a fixed point € X and € > 0,

wy @ a; — E(a)(x)
defines a state on a fibre A, satisfying
(K(E)+¢) - wela)le > aq
for all a; € (Az)+. Lemma 3.2 now yields r(A4,) < K(E), as wanted. O

We shall now give some sufficient conditions on a continuous unital subhomoge-
neous C'(X)-algebra A to ensure the existence of a C'(X)-valued C.E.F.I..

Proposition 3.4. Every continuous homogeneous unital C(X)-algebra A admits
a unique C.E. E : A — C(X) such that the map r(A) - E —id, is positive. In
particular, K(A,C(X)) = r(A) in this case.

Proof. The construction of such a C.E. F : A — C(X) can be deduced from the
proof of [16, Lemma 4.6]. But we include here the main steps of the proof for
completeness. By assumption all fibres of A are x-isomorphic to a fixed finite-
dimensional C*-algebra D. Suppose that (D) = n, and let 7 be a state on D
defined by (3.5). It is easy check that 7 is invariant under the group Aut(D) of
x-automorphisms of D. Since the C'(X)-algebra A is continuous and homogeneous,
its associated bundle 2 is locally trivial by Remark 2.6. Hence, there exists an open
covering {U, } of X such that @, : 2|y, = U, x D, where

- &, is an isomorphism of C*-bundles, and
- Ay is the restriction bundle over a subset U C X.
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Fix an element a € A. For x € X choose an index « such that x € U,, and define
E(a)(z) = 7(Pu(az)).

Since 7 is invariant under the group Aut(D), the value E(a)(x) is well defined, and

the local triviality of 2( implies that the function E(a) : 2 — E(a)(z) is continuous

on X. It is now easy to see that the map E : a — E(a) defines a C(X)-valued
C.E.F.I. on A. Moreover, by (3.1) we have

n-FE(a)(x)ly > a,, forallae Ay and z € X.

Thus, the map n - F — id4 is positive and F is the only C.E. with this prop-
erty (Lemma 3.2). In particular, K (A, C(X)) < r(A), so Theorem 1.4 yields that
K(A,C(X)) =n. O

Corollary 3.5. If the unital C(X)-algebra A admits a C(X)-linear embedding into
some continuous homogeneous unital C(X)-algebra A’, then A admits a C(X)-
valued C.E.F.I..

Proof. By Proposition 3.4 there exists a C.E. E' : A’ — C(X) of finite index. Then
the restriction E’|4 : A — C(X) defines a convenient C.E.F.IL.. O

Note that the embedding condition of Corollary 3.5 is not necessary for the
existence of a C(X)-valued C.E.F.I.. Indeed, in Example 3.6 we show that there
exists a continuous unital C'(X)-algebra A of rank 2 which does not admit a C(X)-
linear embedding into any continuous homogeneous unital C'(X)-algebra. On the
other hand, a direct consequence of Proposition 3.7 is that A admits a C'(X)-valued
C.EF.I.

To do this, first recall that a C*-algebra A is said to be central if it satisfies the
following two conditions:
(i) A is quasi-central (i.e. no primitive ideal of A contains Z(A));
(ii) If P,@ € Prim(A4) and PN Z(A) = QN Z(A), then P =Q
(see [1, 8, 15, 20]). By [8, Proposition 3] a quasi-central C*-algebra A is central if
and only if Prim(A) is Hausdorff.

Example 3.6. By [23, Example 3.5] there exists a continuous My(C)-bundle 2
over the second countable locally compact space Xy := |_|;L°°=1 CP™, where CP™
is the complex projective space of dimension n, which is not of finite type (that
is, Xo does not admit a finite open cover {U;} such that each restriction bundle
Ao|y, is trivial, as a C*-bundle). Let Ay be the C*-algebra I'g(2ly) consisting of
all continuous sections of 2y which vanish at infinity. Then Ay is a 2-homogeneous
C*-algebra with Prim(Ag) = Xo. In particular Ay is a central C*-algebra with
centre Co(Xo). Let X := Xy U {oo} be the one-point compactification of Xy, and
let A be the minimal unitisation of Ay. By [8, Proposition 3] (or [15, Proposition
3.12]) A is also a central C*-algebra with Prim(A) = X and centre C(X). In
particular, by [4, 11.6.5.8] all norm functions = +— |la;|| (a € A) are continuous
on X, so that A is a continuous unital C(X)-algebra with fibres A, = M>(C)
(x € Xo) and Ay, = C. Suppose that A is C(X)-subalgebra of some continuous
homogeneous C(X)-algebra A’. Then the associated C*-bundle 2l of A over X is a
C*-subbundle of the associated C*-bundle 2" of A’ over X. Since A’ is continuous
and homogeneous, 2 is locally trivial by Remark 2.6. Hence, since X is compact,
A’ is of finite type. Using [23, Lemma 2.6] we conclude that 2 is of finite type
as a vector bundle. In particular, 2y is of finite type as a vector bundle, since
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Ao = A|x,. As g is a M3(C)-bundle, this implies by [23, Proposition 2.9] that
is also of finite type as a C'*-bundle; a contradiction.

On the other hand, the C(X)-algebra A of Example 3.6 also admits a C(X)-
valued C.E.F.I.. This follows from the following more general fact:

Proposition 3.7. Let A be a continuous unital C(X)-algebra. If r(A) = 2, then
there exists a conditional expectation E : A — C(X) such that the map 2- E —ida
is positive. In particular, K(A,C(X)) = r(A) in this case.

In order to prove Proposition 3.7, let us first make the following observation:

Lemma 3.8. Let A be a unital C'(X)-algebra and let a € Ag,. For each pointx € X
let Aax(az) and Amin(az) respectively denote the largest and the smallest numbers
in the spectrum of a,. Then the functions ¥ — Amax(az) and x — Apin(az) are
upper semicontinuous on X. Furthermore, these functions are continuous on X,
whenever A is a continuous C(X)-algebra.

Proof. This follows directly from the equations
Amax(az) = |llal[1e + azll = [la]  and = Amin(az) = [lal] = [|[la]1: — az]].
O
Proof of Proposition 3.7. As r(A) = 2, any fibre A, is isomorphic to C, C ® C

or Ms(C). Therefore, for each point x € X we can choose a unital embedding
0z + Ay = M3(C). For a € A and z € X we define

B(a)(x) = gtr(pu(a))

Obviously E(a) is a C(X)-linear map. If a € Ag,, note that
1
(3.8) E(a)(z) = i(Amin(az) + Amax(az))

for all x € X. By Lemma 3.8, F(a) is a continuous function on X for all a € Ag,.
As A is the linear span of A,,, we conclude that F(a) € C(X) for all a € A.
Therefore, E defines a C. E. from A onto C(X). Further, by (3.8) for all a € A4
and z € X we have

2- E(G)(.’L‘)lw = ()\min(aw) + Amax(“w)) . 1w > Qg .
This shows that the map 2- E—id 4 is positive, so that K (A, C(X)) = 2 by Theorem
1.4. O

Let A be a unital C*-algebra and let Z be the maximal ideal space of Z(A). We
may consider A as a C'(Z)-algebra, with respect to the action

fra=G""(fla (feC(X), acA),

where G : Z(A) — C(Z) is the Gelfand transform. We say that A is quasi-standard
if A is a continuous C(Z)-algebra and each (Glimm) ideal J, = C,(Z)A is primal
(see [2]).

Corollary 3.9. For a unital C*-algebra A the following conditions are equivalent:

(i) There exist a C.E. E : A — Z(A) such that the map 2- E —id 4 is positive.
(ii) A is either commutative or quasi-standard and 2-subhomogeneous.
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Proof. (i) = (ii). Suppose that there exists a C.E. F : A — Z(A) such that the
map 2 - E —idy is positive. Then by Theorem 1.4 A is a continuous C(Z)-algebra
and 7(A,) < 2 for all z € Z. In particular, A as a C*-algebra is n-subhomogeneous,
where n € {1,2}. Hence, by [16, Proposition 4.1] every Glimm ideal of A is primal.
Also, n = 1 if and only if A is commutative.

(ii) = (i). If A is commutative we have nothing to prove, so suppose that A
is quasi-standard and 2-subhomogeneous. Then by [9, Corollary 1, p. 388] for each
point z € X we have

r(Az) = Z dimm, < 2.
[TrI]GZ;
It remains to apply Proposition 3.7. O

Remark 3.10. At the end of this paper we note that every separable continuous
unital C'(X)-algebra A admits a faithful C.E. E : A — C(X) (see e.g. [5]). In
particular, this result applies to continuous subhomogeneous unital C(X)-algebras,
when X is second-countable. In this case for each point x € X, the map FE, :
a; — F(a)(z) defines a faithful state on A,, so Lemma 3.2 implies K(FE,) < oc.
However, this does not imply that FE is of finite index. That is, it may happen that
sup,ex K(E;) = co. Consider for instance the following example:

- Let X be the closed compact subset {0} U{L : n € N} of [0,1].

- Let A be the continuous C(X)-subalgebra of C(X) @ C(X) consisting of

all pairs (f,g) € C(X) ® C(X) such that f(0) = g(0).
- Let E: A— C(X) be a C.E. fixed by the relations

1 nLHf(%)—i—n%rlg(%) if nis odd
B0 (5) -

n%rlf(%) + #g(%) otherwise
where (f, g) € A.
Then F is a faithful C.E. which is not of finite index. Indeed, one has

2020 (5:) = 5/ (3)

for all f € Co(X \{0}) and all integers n € N. Consequently, a convenient constant
K would satisfy K > 2n 4+ 1 for all n € N, which is impossible.

We end this paper with some unresolved problems:

Problem 3.11. Is the converse of Theorem 1.4 also true? Moreover, does every
continuous subhomogeneous unital C'(X)-algebra A admit a C.E. E: A — C(X)
such that the map r(A) - E — id4 is positive? In particular, do we always have
K(A,C(X)) =r(A)?
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