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Abstract. In this paper we determine the composition series of the induced

representation δ([ν−bρ, νcρ])× δ([ν
1
2 ρ, νaρ])oσ where a, b, c ∈ 1

2
(2Z+ 1) such

that 1
2
≤ a < b < c, ρ is an irreducible cuspidal unitary representation of

a general linear group and σ is an irreducible cuspidal representation of a
classical group.

Introduction

In this paper we determine the composition series of a class of standard represen-
tations in terms of Mœglin-Tadić classification of discrete series ([4],[5]). Interesting
on its own, this result should also prove valuable for extending results about Jacquet
modules of segment type representations obtained in [3].

To describe our results we introduce some notation. Fix a local non-archimedean
field F of characteristic different than two. Let ρ be an irreducible cuspidal unitary
representation of GL(mρ, F ) (this defines mρ) and x, y ∈ R, such that y − x+ 1 ∈
Z≥0. The set [νxρ, νyρ] = {νxρ, ..., νyρ} is called segment. The parabolically in-
duced representation νyρ × · · · × νxρ has a unique irreducible subrepresentation,
it is essentially square integrable and we denote it by δ([νxρ, νyρ]). Also we de-
note e([νxρ, νyρ]) = e(δ([νxρ, νyρ]) = x+y

2 . If δ is an essentially square integrable
representation of GL(mδ, F ), there exists a segment ∆ such that δ = δ(∆).

Let Gn be a symplectic or (full) orthogonal group having split rank n. Given a
sequence of segments ∆1, ...,∆k, e(∆i) > 0, i = 1, ..., k and an irreducible tempered
representation τ of some Gn′ we denote by Lang(δ(∆1) × · · · × δ(∆k) o τ) the
unique irreducible quotient, called the Langlands quotient, of parabolically induced
representation δ(∆ϕ(1)) × · · · × δ(∆ϕ(k)) o τ where ϕ is a permutation of the set
{1, ..., k} such that e(∆ϕ(1)) ≥ · · · ≥ e(∆ϕ(k)). These induced representations
are called standard representations and are important because by the Langlands
classification every irreducible representation of Gn can be described as a Langlands
quotient. Further if τ is a discrete series representation then by the Mœglin-Tadić
classification of discrete series it is described by an admissible triple (Jord, τcusp, ε).
Here Jord is a set Jordan blocks, τcusp a partial cuspidal support and ε a function
from a subset of Jord∪ (Jord×Jord) into {±1}. Results of Muić about reducibility
of the generalized principal series δ([νxρ, νyρ]) o τ ([7],[6]) are stated case by case
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depending on Jord and x and y where the case x = 1
2 plays an important role. In

our situation, we provide some additional information, see Proposition 2.4. These
results are used to compute composition series of the induced representation

δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ]) o σ

where a, b, c ∈ 1
2 (2Z + 1) such that 1

2 ≤ a < b < c, ρ is an irreducible unitary
cuspidal representation of GL(mρ, F ) and σ an irreducible cuspidal representation

of Gn such that ν
1
2 ρo σ reduces.

The author would like to thank to Ivan Matić for turning his attention to this
problem and to Colette Mœglin for explaining some of her results to him. Also, the
author would like to thank to the referee for suggestion to determine the position
of composition factors.

1. Preliminaries

Let F be a local non-archimedean field of characteristic different than two.
Groups that we consider are as follows. As in [5] we fix a tower of symplectic
or orthogonal non-degenerate F vector spaces Vn, n ≥ 0 where n is the Witt index.
We denote by Gn the group of isometries of Vn. It has split rank n. Also we fix the
set of standard parabolic subgroups in the usual way. Standard parabolic proper
subgroups of Gn are in bijection with the set of ordered partitions of positive inte-
gers m ≤ n. Given positive integers n1, ..., nk such that m = n1 + · · ·+ nk ≤ n the
corresponding standard parabolic subgroup Ps, s = (n1, ..., nk) has the Levi factor
Ms isomorphic to

GL(n1, F )× · · · ×GL(nk, F )×Gn−m.

Further, if δi is a smooth representation of GL(ni, F ), i = 1, ..., k and τ a smooth
representation of Gn−m, denote by π = δ1 ⊗ · · · ⊗ δk ⊗ τ the representation of Ms

and by

δ1 × · · · × δk o τ = IndGnMs
(π)

the representation induced from π using normalized parabolic induction. If σ is
a smooth representation of Gn we denote by rs(σ) = rMs

(σ) = JacqGnMs
(σ) the

normalized Jacquet module of σ. We have the Frobenius reciprocity

HomGn(σ, IndGnMs
(π)) = HomMs(JacqGnMs

(σ), π).

Let ρ be an an irreducible cuspidal unitary representation of GL(mρ, F ) (this
defines mρ) and x, y ∈ R, such that y − x + 1 ∈ Z≥0. The set [νxρ, νyρ] =
{νxρ, ..., νyρ} is called segment. The induced representation νyρ × · · · × νxρ has
the unique irreducible subrepresentation, it is essentially square integrable, and we
denote it by δ([νxρ, νyρ]). We also denote e([νxρ, νyρ]) = e(δ([νxρ, νyρ]) = x+y

2 .
For y− x+ 1 ∈ Z<0 define [νxρ, νyρ] = ∅ and δ(∅) is the irreducible representation

of the trivial group. Let ∆ = [νxρ, νyρ] and ∆̃ = [ν−yρ̃, ν−xρ̃] where ρ̃ denotes

the contragredient of ρ. We have δ(∆)̃ = δ(∆̃). By [10] if δ is an essentially
square integrable representation of GL(mδ, F ), there exists a segment ∆ such that
δ = δ(∆). If ∆′ and ∆′′ are segments such that ∆′′ ⊆ ∆′ then δ(∆′) × δ(∆′′) is
irreducible and δ(∆′)× δ(∆′′) ∼= δ(∆′′)× δ(∆′).

Given a sequence of segments ∆1, ...,∆k, e(∆i) > 0, i = 1, ..., k and an ir-
reducible tempered representation τ of some Gn′ we denote by Lang(δ(∆1) ×
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· · · × δ(∆k) o τ) the unique irreducible quotient, called the Langlands quotient, of
δ(∆ϕ(1))×· · ·×δ(∆ϕ(k))oτ where ϕ is a permutation of the set {1, ..., k} such that
e(∆ϕ(1)) ≥ · · · ≥ e(∆ϕ(k)). It appears with multiplicity one in the induced represen-

tation and is the unique irreducible subrepresentation of δ(∆̃ϕ(1))×· · ·×δ(∆̃ϕ(k))oτ .
By the Langlands classification every irreducible representation of Gn can be writ-
ten as a Langlands quotient.

If σ is a discrete series representation of Gn then by the Mœglin-Tadić classifica-
tion of discrete series ([4],[5]) it is described by an admissible triple (Jord, σcusp, ε).
We note that the classification, written under a natural hypothesis, is now un-
conditional, see page 3160 of [2]. Here Jord is a set of pairs (a, ρ) where ρ is an
irreducible self-dual cuspidal representation of GL(mρ, F ), a is a positive integer of

parity depending on ρ and δ([ν−(a−1)/2ρ, ν(a−1)/2ρ]) o σ is irreducible. We write
Jordρ = {a : (a, ρ) ∈ Jord} and for a ∈ Jordρ let a− be the largest element of Jordρ
strictly less than a, if such exists. Next, σcusp is the unique irreducible cuspidal
representation of some Gn′ such that there exists an irreducible representation π
of GL(mπ, F ) such that σ ↪→ π o σcusp. It is called the partial cuspidal support
of σ. Finally, ε is a function from a subset of Jord ∪ (Jord × Jord) into {±1}. It
is defined on a pair (a, ρ), (a′, ρ′) ∈ Jord if and only if ρ ∼= ρ′ and a 6= a′. In such
case we formally denote the value on the pair by ε(a, ρ)ε(a′, ρ)−1 and it is equal to
the product of ε(a, ρ) and ε(a′, ρ)−1 it they are defined. Suppose that (a, ρ) ∈ Jord
and a− is defined. Then

ε(a, ρ)ε(a−, ρ)−1 = 1⇔ there exists a representation π′of some Gnπ′

such that σ ↪→ δ([ν(a−+1)/2ρ, ν(a−1)/2ρ]) o π′.

If (a, ρ) ∈ Jord and a is even then ε(a, ρ) is defined. Additionally, if a = min(Jordρ)
then

ε(a, ρ) = 1⇔ there exists a representation π′′of some Gnπ′′

such that σ ↪→ δ([ν1/2ρ, ν(a−1)/2ρ]) o π′′.

Now we recall the Tadić formula for computing Jacquet modules. Let R(Gn)
be the Grothendieck group of the category of smooth representations of Gn of
finite length. It is the free Abelian group generated by classes of irreducible rep-
resentations of Gn. If σ is a smooth finite length representation of Gn denote by
s.s.(σ) the semisimplification of σ, that is the sum of classes of composition series
of σ. Put R(G) = ⊕n≥0R(Gn). For π1, π2 ∈ R(G) we define π1 ≤ π2 if π2 − π1

is a linear combination of classes of irreducible representations with non-negative
coefficients. Similarly we have R(GL) = ⊕n≥0R(GL(n, F )). We have the map
µ∗ : R(G)→ R(GL)⊗R(G) defined by

µ∗(σ) = 1⊗ σ +

n∑
k=1

s.s.(r(k)(σ)), σ ∈ R(Gn).

The following result derives from Theorems 5.4 and 6.5 of [9], see also section 1. in
[5]. They are based on Geometrical Lemma (2.11 of [1]).

Theorem 1.1. Let σ be a smooth representation of a finite length of Gn, ρ an
irreducible unitary cuspidal representation of GL(mρ, F ) and x, y ∈ R, such that
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y − x+ 1 ∈ Z≥0.Then

µ∗(δ([νxρ, νyρ]) o σ) =
∑

δ′⊗σ′≤µ∗(σ)

y−x+1∑
i=0

i∑
j=0

δ([νi−yρ̃, ν−xρ̃])× δ([νy+1−jρ, νyρ])× δ′ ⊗ δ([νy+1−iρ, νy−jρ]) o σ′

(1.1)

where δ′⊗ σ′ denotes an irreducible subquotient in the appropriate Jacquet module.

We also note that in the apropriate Grothendieck group

(1.2) δ([νxρ, νyρ]) o σ = δ([ν−yρ̃, ν−xρ̃]) o σ.

2. Basic reducibilities

In this section we fix the notation and prepare some reducibility results. Let ρ be
an irreducible unitary cuspidal representation of GL(mρ, F ) and σ an irreducible

cuspidal representation of Gn such that ν
1
2 ρo σ reduces. By Proposition 2.4 of [8]

ρ is self-dual. Let a, b, c ∈ 1
2 (2Z + 1) such that 1

2 ≤ a < b < c.
The following result is Theorem 2.3 from [6] proved using Jacquet module com-

putation.

Theorem 2.1.

i) The induced representation δ([ν
1
2 ρ, νaρ]) o σ is of length two. Besides its

Langlands quotient it has the unique irreducible subrepresentation, discrete
series σ1. In the appropriate Grothendieck group we have

δ([ν
1
2 ρ, νaρ]) o σ = σ1 + Lang(δ([ν

1
2 ρ, νaρ]) o σ).

Here Jord(σ1) = {(2a+ 1, ρ)}, εσ1
(2a+ 1, ρ) = 1.

ii) The induced representation δ([ν−bρ, νcρ])oσ is of length three. Besides its
Langlands quotient it has two nonisomorphic irreducible subrepresentation
σ2 and σ3. In the appropriate Grothendieck group we have

δ([ν−bρ, νcρ]) o σ = σ2 + σ3 + Lang(δ([ν−bρ, νcρ]) o σ).

Here Jord(σ2) = Jord(σ3) = {(2b+ 1, ρ), (2c+ 1, ρ)},
εσ2

(2b+ 1, ρ) = εσ2
(2c+ 1, ρ) = 1, εσ3

(2b+ 1, ρ) = εσ3
(2c+ 1, ρ) = −1.

The next proposition follows from Theorem 2.1 of [6].

Proposition 2.2. The induced representation δ([ν−bρ, νcρ])oσ1 is of length three.
Besides its Langlands quotient it has two nonisomorphic irreducible subrepresenta-
tions, discrete series σ4 and σ5. In the appropriate Grothendieck group we have

δ([ν−bρ, νcρ]) o σ1 = σ4 + σ5 + Lang(δ([ν−bρ, νcρ]) o σ1).

Here Jord(σ4) = Jord(σ5) = {(2a+ 1, ρ), (2b+ 1, ρ), (2c+ 1, ρ)},
εσ4(2a+ 1, ρ) = εσ4(2b+ 1, ρ) = εσ4(2c+ 1, ρ) = 1,
εσ5(2a+ 1, ρ) = 1, εσ5(2b+ 1, ρ) = εσ5(2c+ 1, ρ) = −1.

We have

Proposition 2.3. The representation δ([ν−bρ, νcρ]) × δ([ν
1
2 ρ, νaρ]) o σ has two

irreducible subrepresentations σ4 and σ5 and they appear with multiplicity one.
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Proof. By Theorem 2.1 and Proposition 2.2 we have

σ4 ⊕ σ5 ↪→ δ([ν−bρ, νcρ]) o σ1 ↪→ δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ]) o σ.

To see that there are no other irreducible subrepresentations let

π ↪→ δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ]) o σ

be an irreducible subrepresentation. Frobenius reciprocity implies µ∗(π) ≥ δ([ν−bρ, νcρ])×
δ([ν

1
2 ρ, νaρ])⊗σ. We show that δ([ν−bρ, νcρ])×δ([ν 1

2 ρ, νaρ])⊗σ appears with multi-

plicity two in µ∗(δ([ν−bρ, νcρ])×δ([ν 1
2 ρ, νaρ])oσ). Looking for possible occurrences,

formula (1.1) implies that there exist i, j, k, l ∈ Z such that 0 ≤ l ≤ k ≤ a + 1
2 ,

0 ≤ j ≤ i ≤ b+ c+ 1 and

δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ]) ≤ δ([νk−aρ, ν− 1

2 ρ])× δ([νa+1−lρ, νaρ])

×δ([νi−cρ, νbρ])× δ([νc+1−jρ, νcρ]),

σ ≤ δ([νa+1−kρ, νa−lρ])× δ([νc+1−iρ, νc−jρ]) o σ.

Comparing cuspidal support in the first equation equation we see i − c = −b or
c + 1 − j = −b. The second inequality implies k = l and i = j. So we have
i = j = c− b or i = j = c+ b+ 1. Now k = l = a+ 1

2 . This showed that there are

at most two irreducible subrepresentations in δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ])⊗ σ, so

there are no others than σ4 and σ5. �

Now we prove

Proposition 2.4. In the appropriate Grothendieck group we have

δ([ν
1
2 ρ, νaρ]) o σ2 = σ4 + Lang(δ([ν

1
2 ρ, νaρ]) o σ2),

δ([ν
1
2 ρ, νaρ]) o σ3 = σ5 + Lang(δ([ν

1
2 ρ, νaρ]) o σ3).

Proof. By Lemma 6.1 of [7] the induced representations on the left side of equa-
tions reduce. The proof of that lemma claims that all irreducible subquotients of
the induced representations other than belonging Langlands quotients are discrete
series. The argument as in proof of Theorem 2.1 of [6] implies that they are all
subrepresentations.

Let π4 be a discrete series subrepresentation of δ([ν
1
2 ρ, νaρ]) o σ2 and π5 a

discrete series subrepresentation of δ([ν
1
2 ρ, νaρ]) o σ3. By Theorem 2.1 σ2 ⊕ σ3 ↪→

δ([ν−bρ, νcρ]) o σ so we have

π4 ⊕ π5 ↪→δ([ν
1
2 ρ, νaρ]) o σ2 ⊕ δ([ν

1
2 ρ, νaρ]) o σ3

∼=δ([ν
1
2 ρ, νaρ]) o (σ2 ⊕ σ3)

↪→δ([ν 1
2 ρ, νaρ])× δ([ν−bρ, νcρ]) o σ

∼=δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ]) o σ.

(2.1)

By Proposition 2.3 π4 and π5 are not isomorphic and we have

δ([ν
1
2 ρ, νaρ]) o σ2 =π4 + Lang(δ([ν

1
2 ρ, νaρ]) o σ2),(2.2)

δ([ν
1
2 ρ, νaρ]) o σ3 =π5 + Lang(δ([ν

1
2 ρ, νaρ]) o σ3)(2.3)

where {π4, π5} = {σ4, σ5}.
We now prove that π4 = σ4 and π5 = σ5. It is enough to see that επ4(2a +

1, ρ)επ4
(2b + 1, ρ)−1 = 1. Since εσ2

(2b + 1, ρ) = 1 and min(Jordρ(σ2)) = 2b + 1 ∈
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2Z there exists an irreducible representation τ of Gn+(c+ 1
2 )mρ such that σ2 ↪→

δ([ν
1
2 ρ, νbρ]) o τ . Now we have

π4 ↪→δ([ν
1
2 ρ, νaρ]) o σ2 ↪→ δ([ν

1
2 ρ, νaρ])× δ([ν 1

2 ρ, νbρ]) o τ ∼=

δ([ν
1
2 ρ, νbρ])× δ([ν 1

2 ρ, νaρ]) o τ ↪→

δ([νa+1ρ, νbρ])× δ([ν 1
2 ρ, νaρ])× δ([ν 1

2 ρ, νaρ]) o τ.

By Lemma 3.2 of [5] there exists an irreducible representation τ ′ of Gn+(2a+c+ 3
2 )mρ

such that

π4 ↪→ δ([νa+1ρ, νbρ]) o τ ′.

Now επ4(2a + 1, ρ)επ4(2b + 1, ρ)−1 = 1 As we proved that π4 = σ4 and π5 = σ5

equations (2.2) and (2.3) give the claim of the proposition. �

3. The main theorem

Theorem 3.1. The induced representation δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ]) o σ is of

length six, and it has two non-isomorphic irreducible subrepresentations. They are
discrete series. In the appropriate Grothendieck group we have

δ([ν−bρ, νcρ])×δ([ν 1
2 ρ, νaρ]) o σ =

σ4 + σ5 + Lang(δ([ν
1
2 ρ, νaρ]) o σ2) + Lang(δ([ν

1
2 ρ, νaρ]) o σ3)

+Lang(δ([ν−bρ, νcρ]) o σ1) + Lang(δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ]) o σ).

Moreover

Lang(δ([ν
1
2 ρ, νaρ]) o σ2)⊕ Lang(δ([ν

1
2 ρ, νaρ]) o σ3)⊕ Lang(δ([ν−bρ, νcρ]) o σ1) ↪→

(δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ]) o σ)/(σ4 ⊕ σ5).

Proof. Suppose that −b+ c ≥ 1
2 + a. Otherwise we have similar proof. We look at

the composition of some intertwining operators

δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ]) o σ → δ([ν

1
2 ρ, νaρ])× δ([ν−bρ, νcρ]) o σ

→ δ([ν
1
2 ρ, νaρ])× δ([ν−cρ, νbρ]) o σ

→ δ([ν−cρ, νbρ])× δ([ν 1
2 ρ, νaρ]) o σ

→ δ([ν−cρ, νbρ])× δ([ν−aρ, ν− 1
2 ρ]) o σ.

Since 1
2 ≤ a < b < c the first and the third map are isomorphisms. By Theo-

rem 2.1 the kernel of the second map is in the appropriate Grothendieck group
δ([ν

1
2 ρ, νaρ]) o σ2 + δ([ν

1
2 ρ, νaρ]) o σ3. By Proposition 2.4 this equals to

σ4 + σ5 + Lang(δ([ν
1
2 ρ, νaρ]) o σ2) + Lang(δ([ν

1
2 ρ, νaρ]) o σ3).

By Theorem 2.1 the kernel of the last map is in the appropriate Grothendieck group
δ([ν−cρ, νbρ]) o σ1 = δ([ν−bρ, νcρ]) o σ1 by (1.2), which is by the Proposition 2.2
equal to

σ4 + σ5 + Lang(δ([ν−bρ, νcρ]) o σ1).

The image of the composition is

Lang(δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ]) o σ).
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We see that σ4 and σ5 appear in two kernels, but by Proposition 2.3 they appear
with multiplicity one in the induced representation, so we proved the first formula
of the theorem.

To prove the second formula of the theorem, observe that by Theorem 2.1 and
Propositions 2.2 and 2.3 we have
σ4 ⊕ σ5 ↪→ δ([ν−bρ, νcρ]) o σ1 ↪→ δ([ν−bρ, νcρ])× δ([ν 1

2 ρ, νaρ]) o σ and

(3.1) Lang(δ([ν−bρ, νcρ]) o σ1) ↪→ (δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ]) o σ)/(σ4 ⊕ σ5).

Additionally, Proposition 2.4 and (2.1) imply

σ4⊕σ5 ↪→ δ([ν
1
2 ρ, νaρ])oσ2⊕δ([ν

1
2 ρ, νaρ])oσ3 ↪→ δ([ν−bρ, νcρ])×δ([ν 1

2 ρ, νaρ])oσ

and

Lang(δ([ν
1
2 ρ, νaρ]) o σ2)⊕Lang(δ([ν

1
2 ρ, νaρ]) o σ3) ↪→

(δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ]) o σ)/(σ4 ⊕ σ5)

(3.2)

Now equations (3.1) and (3.2) prove the second formula of the theorem. �

4. Consequences

We have the following result

Corollary 4.1. In the appropriate Grothendieck group we have

δ([ν
1
2 ρ, νaρ]) o Lang(δ([ν−bρ, νcρ]) o σ) =

Lang(δ([ν−bρ, νcρ]) o σ1) + Lang(δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ]) o σ),

δ([ν−bρ, νcρ]) o Lang(δ([ν
1
2 ρ, νaρ]) o σ) = Lang(δ([ν−bρ, νcρ])× δ([ν 1

2 ρ, νaρ]) o σ)

+Lang(δ([ν
1
2 ρ, νaρ]) o σ2) + Lang(δ([ν

1
2 ρ, νaρ]) o σ3).

Except Lang(δ([ν−bρ, νcρ])×δ([ν 1
2 ρ, νaρ])oσ) all irreducible subquotients of induced

representations on the left hand side appear as subrepresentations.

Proof. Using the exactness of the parabolic induction, Theorem 2.1, Proposition
2.4 and (2.1) and Theorem 3.1 we have

δ([ν
1
2 ρ, νaρ]) o Lang(δ([ν−bρ, νcρ]) o σ) ∼=

(δ([ν
1
2 ρ, νaρ])× δ([ν−bρ, νcρ]) o σ)/(δ([ν

1
2 ρ, νaρ]) o (σ2 ⊕ σ3)) ∼=

(δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ]) o σ)/(δ([ν

1
2 ρ, νaρ]) o σ2 ⊕ δ([ν

1
2 ρ, νaρ]) o σ3).

Comparing this with the result of the main theorem gives the first formula of the
corollary. Similarly, for the second formula use Proposition 2.2 and observe that

δ([ν−bρ, νcρ]) o Lang(δ([ν
1
2 ρ, νaρ]) o σ) ∼=

(δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ]) o σ)/(δ([ν−bρ, νcρ]) o σ1).

�
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resentations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165-210.
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