SHAPE THEORY OF TRIADS

Takahisa Miyata
Shizuoka Inst. of Sci. and Tech., Fukuroi, Japan

Abstract

In this paper we develop the shape theory for triads of spaces in a systematic way, using polyhedral resolutions for triads of spaces, and give applications, which include the Blakers-Massey homotopy excision theorem whose proof is different from the approach taken by S . Ungar.

1. Introduction

Throughout the paper, spaces mean topological spaces, and maps mean continuous maps. A triad of spaces $\left(X ; X_{0}, X_{1}\right)$ means a space X and two subspaces X_{0} and X_{1} of X such that $X=X_{0} \cup X_{1}$. A triad of spaces $\left(X ; X_{0}, X_{1}\right)$ is an ANR triad if X_{0} and X_{1} are closed subsets of X and $X, X_{0}, X_{1}, X_{0} \cap X_{1}$ are ANR's, and a triad of spaces $\left(X ; X_{0}, X_{1}\right)$ is a polyhedral triad (resp., $C W$ triad) if X is a polyhedron (resp., CW-complex) and X_{0} and X_{1} are subpolyhedra (resp., subcomplexes) of X. A map of triads $f:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(Y ; Y_{0}, Y_{1}\right)$ means a map $f: X \rightarrow Y$ such that $f\left(X_{0}\right) \subseteq Y_{0}$ and $f\left(X_{1}\right) \subseteq Y_{1}$. A homotopy of triads means a map of triads $h:\left(X \times I ; X_{0} \times I, X_{1} \times I\right) \rightarrow\left(Y ; Y_{0}, Y_{1}\right)$.

In this paper we develop the shape theory for triads of spaces in a systematic way, using polyhedral resolutions for triads of spaces, and give applications. The first application is the Blakers-Massey excision theorem in shape theory. The Blakers-Massey theorem in shape theory was first proved by Ungar [7], but our approach is different and is based on the natural construction of our shape theory of triads. Related results for the excision theorems for strong homology and Čech homology were obtained by Ju. T. Lisica and S. Mardešić [4] and T. Watanabe [8]. As the second application, we obtain the

[^0]Mayer-Vietoris sequences in shape theory for triads of spaces with respect to the Čech cohomology theory based on the normal open coverings.

This paper is organized as follows: After we prove some useful properties of ANR triads in the next section, in section 3 we discuss polyhedral resolutions of triads, and in the following section we obtain results concerning the homotopy types of ANR triads, polyhedral triads and CW triads. In section 5 we show that resolutions can be used to define the shape category for triads, and in the final two sections we discuss invariants in this category and obtain the Blakers-Massey homotopy excision theorem and the Mayer-Vietoris sequences in shape theory.

Let $f, g: X \rightarrow Y$ be functions between sets. For any covering \mathcal{V} of Y, $(f, g)<\mathcal{V}$ means that f and g are \mathcal{V}-near. For any covering \mathcal{U} of a set X, if A is a subset of X, then $\mathcal{U} \mid A$ means the covering $\{U \cap A: U \in \mathcal{U}\}$ of A, and the star of A in X with respect to \mathcal{U} means the set $\operatorname{st}(A, \mathcal{U})=\cup\{U \in \mathcal{U}: U \cap A \neq \emptyset\}$.

The author would like to express his thanks to Professor Watanabe for the valuable discussion at Yamaguchi University during the summer of 1998.

2. ANR triads

We will prove some properties of ANR triads that will be needed in later sections. Most of them are analogous to those of single ANR's (see [6]).

Lemma 2.1. Let $\left(P ; P_{0}, P_{1}\right)$ be an ANR triad. Then, for each open covering \mathcal{U} of P, there exist an open neighborhood W of $P_{0} \cap P_{1}$ in P and a map of triads $k:\left(P ; P_{0}, P_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ such that $\left(1_{P}, k\right)<\mathcal{U}$ and $k \mid W$ is a retraction of W onto $P_{0} \cap P_{1}$.

Proof. For $i=0,1,[6$, Lemma 4, p. 86] implies that there exist an open neighborhood V_{i} of $P_{0} \cap P_{1}$ in P_{i} and a map $k_{i}: P_{i} \rightarrow P_{i}$ so that $\left(1_{P_{i}}, k_{i}\right)<\mathcal{U} \mid P_{i}$ and $k_{i} \mid V_{i}$ is a retraction of V_{i} onto $P_{0} \cap P_{1}$. Then $V_{i}=W_{i} \cap P_{i}$ for some open subset W_{i} of P and let $W=W_{0} \cap W_{1}$. Then k_{1} and k_{2} define a map of triads $k:\left(P ; P_{0}, P_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ so that $\left(1_{P}, k\right)<\mathcal{U}$ and $k \mid W$ is a retraction of W onto $P_{0} \cap P_{1}$. \square

Lemma 2.2. Every ANR triad ($P ; P_{0}, P_{1}$) admits an open covering \mathcal{V} of P such that any two \mathcal{V}-near maps of triads into ($P_{;} P_{0}, P_{1}$) are homotopic as maps of triads.

Proof. [6, Theorem 6, p. 39] implies that there exists an open covering \mathcal{U} of P such that any \mathcal{U}-near maps $f, g: X \rightarrow P$ are homotopic where the homotopy is constant on $x \times I$ whenever $f(x)=g(x)$. By Lemma 2.1, there exist an open neighborhood V of $P_{0} \cap P_{1}$ in P and a map of triads $k:\left(P ; P_{0}, P_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ such that $\left(1_{P}, k\right)<\mathcal{U}$ and $k \mid V$ is a retraction of V onto $P_{0} \cap P_{1}$. Now let \mathcal{U}^{\prime} be the open covering $\left\{P \backslash P_{1}, P \backslash P_{0}, V\right\}$ of P, and again by [6, Theorem 6, p. 39], take an open covering \mathcal{V} of P so that any two \mathcal{V}-near maps into P are \mathcal{U}^{\prime}-homotopic. We claim that
\mathcal{V} is a desired open covering. Indeed, let $f, g:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ be \mathcal{V}-near maps of triads, and let $G: X \times I \rightarrow P$ be the \mathcal{U}^{\prime}-homotopy such that $G_{0}=f$ and $G_{1}=g$. Then $G\left(X_{0} \times I\right) \subseteq P \backslash P_{1} \cup V$ and $G\left(X_{1} \times I\right) \subseteq P \backslash P_{0} \cup V$, so $H=k G: X \times I \rightarrow P$ defines a homotopy of triads $H:\left(X \times I ; X_{0} \times I, X_{1} \times I\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ such that $H_{0}=k f$ and $H_{1}=k g$. On the other hand, by the choice of \mathcal{U}, there exist homotopies $K: X_{0} \times I \rightarrow P_{0}$ and $K^{\prime}: X_{1} \times I \rightarrow P_{1}$ such that $K_{0}=f\left|X_{0}, K_{1}=k f\right| X_{0}, K_{0}^{\prime}=f\left|X_{1}, K_{1}^{\prime}=k f\right| X_{1}$ and $K\left|\left(X_{0} \cap X_{1}\right) \times t=f\right| X_{0} \cap X_{1}=k f\left|X_{0} \cap X_{1}=K^{\prime}\right|\left(X_{0} \cap X_{1}\right) \times t$ for $t \in I$. So the map $\bar{K}: X \times I \rightarrow P$ defined by $\bar{K} \mid X_{0} \times I=K$ and $\bar{K} \mid X_{1} \times I=K^{\prime}$ is a homotopy of triads $\bar{K}:\left(X \times I ; X_{0} \times I ; X_{1} \times I\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ such that $\bar{K}_{0}=f$ and $\bar{K}_{1}=k f$, indicating $f \simeq k f$. Similarly, $g \simeq k g$, and hence we have $f \simeq g$ as maps of triads. \square

Lemma 2.3. Let $\left(P ; P_{0}, P_{1}\right)$ be an ANR triad, let $\left(X ; X_{0}, X_{1}\right)$ be a triad of metric spaces such that X_{0}, X_{1} are closed subsets of X and $X=\operatorname{Int}\left(X_{0}\right) \cup$ $\operatorname{Int}\left(X_{1}\right)$, and let A be a closed subset of X. Then every map of triads f : $\left(A ; A \cap X_{0}^{r}, A \cap X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ admits an extension $\tilde{f}:\left(U ; U \cap X_{0}, U \cap\right.$ $\left.X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ for some open neighborhood U of A in X.

Proof. By [6, Theorem 10, p. 43], the map of pairs $f \mid A \cap X_{0}:(A \cap$ $\left.X_{0}, A \cap X_{0} \cap X_{1}\right) \rightarrow\left(Y_{0}, Y_{0} \cap Y_{1}\right)$ extends to a map of pairs $f_{0}:\left(B_{0}, B_{0} \cap X_{1}\right) \rightarrow$ $\left(Y_{0}, Y_{0} \cap Y_{1}\right)$ for some closed neighborhood B_{0} of $A \cap X_{0}$ in X_{0}. Consider the map of pairs $f_{1}:\left(\left(A \cup B_{0}\right) \cap X_{1},\left(A \cup B_{0}\right) \cap X_{1} \cap X_{0}\right) \rightarrow\left(Y_{1}, Y_{0} \cap Y_{1}\right)$ defined by $f_{1}\left|A \cap X_{1}=f\right| A \cap X_{1}$ and $f_{1}\left|B_{0} \cap X_{1}=f_{0}\right| B_{0} \cap X_{1}$. Again by [6 , Theorem 10, p. 43], f_{1} extends to a map of pairs $f_{1}^{\prime}:\left(B_{1}, B_{1} \cap X_{0}\right) \rightarrow\left(Y_{1}, Y_{0} \cap Y_{1}\right)$ for some closed neighborhood B_{1} of $\left(A \cup B_{0}\right) \cap X_{1}$ in X_{1}. Now let $U^{\prime}=$ $B_{0} \cup B_{1}$, and define a map of triads $\tilde{f}^{\prime}:\left(U^{\prime} ; U^{\prime} \cap X_{0}, U^{\prime} \cap X_{1}\right) \rightarrow\left(Y^{\prime} ; Y_{0}, Y_{1}\right)$ by $\tilde{f}^{\prime} \mid B_{0}=f_{0}$ and $\tilde{f}^{\prime} \mid B_{1}=f_{1}^{\prime}$. Then since $X=\operatorname{Int}\left(X_{0}\right) \cup \operatorname{Int}\left(X_{1}\right), U^{\prime}$ is a closed neighborhood of A in X. Finally, if U is an open subset of X such that $A \subseteq U \subseteq U^{\prime}$, then $\tilde{f}=\tilde{f}^{\prime} \mid U$ is a desired map of triads.

Lemma 2.4. Let $\left(P ; P_{0}, P_{1}\right),\left(X ; X_{0}, X_{1}\right)$ and A be as in Lemma 2.3, and let $f, g:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ be maps of triads. If $f|A \simeq g| A$ as maps of triads from $\left(A ; A \cap X_{0}, A \cap X_{1}\right)$ to $\left(P ; P_{0}, P_{1}\right)$, then there exists an open neighborhood V of A in X such that $f|V \simeq g| V$ as maps of triads from $\left(V ; V \cap X_{0}, X_{1}\right)$ to $\left(P ; P_{0}, P_{1}\right)$.

Proof. Let $H:\left(A \times I ;\left(A \cap X_{0}\right) \times I,\left(A \cap X_{1}\right) \times I\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ be a homotopy of triads such that $H_{0}=f \mid A$ and $H_{1}=g \mid A$, let $B=(A \times I) \cup(X \times$ $0) \cup(X \times 1)$, and define a map of triads $F:\left(B ; B \cap\left(X_{0} \times I\right), B \cap\left(X_{1} \times I\right)\right) \rightarrow$ ($P ; P_{0}, P_{1}$) by $F|A \times I=H, F| X \times 0=f$ and $F \mid X \times 1=g$. Applying Lemma 2.3, F extends to $\tilde{F}:\left(U ; U \cap\left(X_{0} \times I\right), U \cap\left(X_{1} \times I\right)\right) \rightarrow\left(Y ; Y_{0}, Y_{1}\right)$ for some open neighborhood U of B. If V is an open set such that $V \times I \subseteq U$, then $\tilde{H}=\tilde{F} \mid V \times I$ is a desired homotopy.

Lemma 2.5. Let $\left(X ; X_{0}, X_{1}\right)$ be a triad of spaces, let $\left(P ; P_{0}, P_{1}\right)$ and $\left(P^{\prime} ; P_{0}^{\prime}, P_{1}^{\prime}\right)$ be $A N R$ triads; and let $f:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(P^{\prime} ; P_{0}^{\prime}, P_{1}^{\prime}\right)$ and $g_{1}, g_{2}:\left(P^{\prime} ; P_{0}^{\prime}, P_{1}^{\prime}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ be maps of triads such that $g_{1} f \simeq g_{2} f$ as maps of triads. Then there exist an ANR triad $\left(P^{\prime \prime} ; P_{0}^{\prime \prime}, P_{1}^{\prime \prime}\right)$ and maps of triads $f^{\prime}:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(P^{\prime \prime} ; P_{0}^{\prime \prime}, P_{1}^{\prime \prime}\right)$ and $g:\left(P^{\prime \prime} ; P_{0}^{\prime \prime}, P_{1}^{\prime \prime}\right) \rightarrow\left(P^{\prime} ; P_{0}^{\prime}, P_{1}^{\prime}\right)$ such that $f=g f^{\prime}$ and $g_{1} g \simeq g_{2} g$ as maps of triads.

Proof. We can prove this by the argument similar to [6, Lemma 2, p. 52], using Lemma 2.4 in an appropriate place.

Lemma 2.6. Let $\left(X ; X_{0}, X_{1}\right)$ be a triad of spaces where X is normal, let A be a closed subset of X, and let V be an open neighborhood of A in X. Then there exists a map of triads

$$
\begin{aligned}
& r:\left(X \times I ; X_{0} \times I, X_{1} \times I\right) \rightarrow\left(V \times I \cup X \times 0 ;\left(V \cap X_{0}\right) \times I \cup X_{0} \times 0\right. \\
& \left.\left(V \cap X_{1}\right) \times I \cup X_{1} \times 0\right)
\end{aligned}
$$

such that the restriction $r \mid A \times I \cup X \times 0$ is the inclusion.
Lemma 2.7. (Homotopy extension lemma) Let ($X ; X_{0}, X_{1}$) and $A \subseteq X$ be as in Lemma 2.6, and let $\left(Y ; Y_{0}, Y_{1}\right)$ be an $A N R$ triad. If $f, g:(A ; A \cap$ $\left.X_{0}, A \cap X_{1}\right) \rightarrow\left(Y ; Y_{0}, Y_{1}\right)$ are homotopic maps of triads, and if g extends to a map of triads $\tilde{g}:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(Y ; Y_{0}, Y_{1}\right)$, then there is an extension $\tilde{f}:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(Y ; Y_{0}, Y_{1}\right)$ of f such that $\tilde{f} \simeq \tilde{g}$ as maps of triads.

Proof. We can proceed as for [6, Theorem 9, p. 41], using Lemma 2.6. \square

3. Resolutions of triads

Let Top be the category of spaces and maps, and let Top ${ }^{T}$ be the category of triads of spaces and maps of triads. Recall that a resolution of a $\operatorname{triad}\left(X ; X_{0}, X_{1}\right)$ is a morphism $\boldsymbol{p}=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, X_{1}\right)=$ ($\left.\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)$ in pro-Top ${ }^{T}$ with the following two properties [5]:
(R1): Let $\left(P ; P_{0}, P_{1}\right)$ be an ANR triad, and let \mathcal{V} be an open covering of P. Then every map of triads $f:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ admits $\lambda \in \Lambda$ and a map of triads $g:\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ such that $\left(g p_{\lambda}, f\right)<\mathcal{V}$; and
(R2): Let $\left(P ; P_{0}, P_{1}\right)$ be an ANR triad. Then for each open covering \mathcal{V} of P there exists an open covering \mathcal{V}^{\prime} of P such that whenever $\lambda \in \Lambda$ and $g, g^{\prime}:\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ are maps of triads such that $\left(g p_{\lambda}, g^{\prime} p_{\lambda}\right)<\mathcal{V}^{\prime}$, then $\left(g p_{\lambda \lambda^{\prime}}, g^{\prime} p_{\lambda \lambda^{\prime}}\right)<\mathcal{V}$ for some $\lambda^{\prime} \geq \lambda$.
\boldsymbol{p} is an $A N R$-resolution (resp., polyhedral resolution) if $\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right)$ are all ANR triads (resp., polyhedral triads). The pointed version of resolution is also defined similarly.

Theorem 3.1. (Mardešić [5]) Every triad $\left(X ; X_{0}, X_{1}\right)$ of spaces admits an ANR-resolution

$$
\boldsymbol{p}=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)
$$

such that Λ is cofinite and $X_{\lambda}=\operatorname{Int}\left(X_{0 \lambda}\right) \cup \operatorname{Int}\left(X_{1 \lambda}\right)$ for each $\lambda \in \Lambda$.
In this section, we wish to show the following theorem, which we will need in later sections.

Theorem 3.2. Every triad $\left(X ; X_{0}, X_{1}\right)$ of spaces admits a polyhedral resolution $\boldsymbol{p}=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)$ such that Λ is cofinite.

To prove the theorem, we need a couple of lemmas.
Lemma 3.3. Let $\left(X ; X_{0}, X_{1}\right)$ be a triad of spaces, and let

$$
p=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)
$$

be a morphism in pro-Top ${ }^{T}$ such that the induced morphism $p=\left(p_{\lambda}\right): X \rightarrow$ \boldsymbol{X} is a resolution, and the induced morphisms $p \mid X_{0}=\left(p_{\lambda} \mid X_{0}\right): X_{0} \rightarrow \boldsymbol{X}_{0}$ and $p \mid X_{1}=\left(p_{\lambda} \mid X_{1}\right): X_{1} \rightarrow X_{1}$ in pro-Top satisfy property (B1):
(B1): Let $\lambda \in \Lambda$, and let U be an open subset of X_{λ} such that $\mathrm{Cl}\left(p_{\lambda}(X)\right) \subseteq U$. Then there exists $\lambda^{\prime} \geq \lambda$ such that $p_{\lambda \lambda^{\prime}}\left(X_{\lambda^{\prime}}\right) \subseteq U$. Then $\boldsymbol{p}:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)$ is a resolution.

Proof. Clearly, (R2) for $p: X \rightarrow \boldsymbol{X}$ implies (R2) for $p:\left(X ; X_{0}, X_{1}\right) \rightarrow$ $\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)$. So it suffices to verify (R1). Let $\left(P ; P_{0}, P_{1}\right)$ be an ANR triad, let $h:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ be a map of triads, and let \mathcal{V} be an open covering of P. Let \mathcal{V}^{\prime} be an open covering of P such that st $\mathcal{V}^{\prime}<\mathcal{V}$. Apply Lemma 2.1 to \mathcal{V}^{\prime}, we obtain an open neighborhood W of $P_{0} \cap P_{1}$ in P and a map of triads $k:\left(P ; P_{0}, P_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ such that $k \mid W: W \rightarrow P_{0} \cap P_{1}$ is a retraction and $\left(1_{P}, k\right)<\mathcal{V}^{\prime}$. Take an open set W^{\prime} such that $P_{0} \cap P_{1} \subseteq$ $W^{\prime} \subseteq \mathrm{Cl}\left(W^{\prime}\right) \subseteq W$, and let $\mathcal{V}^{\prime \prime}$ be an open covering of P such that $\mathcal{V}^{\prime \prime}<$ $\mathcal{V}^{\prime} \wedge\left\{W^{\prime}, P \backslash P_{0}, P \backslash P_{1}\right\}$. By (R1) for $\boldsymbol{p}: X \rightarrow \boldsymbol{X}$, there exist $\lambda \in \Lambda$ and a map $f: X_{\lambda} \rightarrow P$ such that $\left(h, f p_{\lambda}\right)<\mathcal{V}^{\prime \prime}$. Then $f p_{\lambda}\left(X_{0}\right) \subseteq W^{\prime} \cup P \backslash P_{1}$ and $f p_{\lambda}\left(X_{1}\right) \subseteq W^{\prime} \cup P \backslash P_{0}$. So, $f\left(\mathrm{Cl}\left(p_{\lambda}\left(X_{0}\right)\right)\right) \subseteq \mathrm{Cl}\left(W^{\prime}\right) \cup \mathrm{Cl}\left(P \backslash P_{1}\right) \subseteq W \cup P_{0}$, and so $\mathrm{Cl}\left(p_{\lambda}\left(X_{0}\right)\right) \subseteq f^{-1}\left(W \cup P_{0}\right)$. Similarly, $\mathrm{Cl}\left(p_{\lambda}\left(X_{1}\right)\right) \subseteq f^{-1}\left(W \cup P_{1}\right)$. Since $W \cup P_{0}$ and $W \cup P_{1}$ are open, (B1) for $\boldsymbol{p} \mid X_{0}: X_{0} \rightarrow \boldsymbol{X}_{0}$ and $\boldsymbol{p} \mid X_{1}: X_{1} \rightarrow \boldsymbol{X}_{1}$ imply that there exists $\lambda^{\prime} \geq \lambda$ such that $p_{\lambda \lambda^{\prime}}\left(X_{0 \lambda^{\prime}}\right) \subseteq f^{-1}\left(W \cup P_{0}\right)$ and $p_{\lambda \lambda^{\prime}}\left(X_{1 \lambda^{\prime}}\right) \subseteq f^{-1}\left(W \cup P_{1}\right)$. Now let $f^{\prime}: X_{\lambda^{\prime}} \rightarrow P$ be defined by $f^{\prime}=$ $k f p_{\lambda \lambda^{\prime}}$. Then $f^{\prime}\left(X_{0 \lambda^{\prime}}\right)=k f p_{\lambda \lambda^{\prime}}\left(X_{0 \lambda^{\prime}}\right) \subseteq P_{0}$, and similarly $f^{\prime}\left(X_{1 \lambda^{\prime}}\right) \subseteq P_{1}$. So f^{\prime} defines a map of triads $f^{\prime}:\left(X_{\lambda^{\prime}} ; X_{0 \lambda^{\prime}}, X_{1 \lambda^{\prime}}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ satisfies $\left(f^{\prime} p_{\lambda}, h\right)<\mathcal{V}$. This verifies (R2) for $\boldsymbol{p}:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)$.

Lemma 3.4. Let $\left(X ; X_{0}, X_{1}\right)$ be a triad of spaces, and let $p=\left(p_{\lambda}\right)$: $X \rightarrow X=\left(X_{\lambda}, p_{\lambda \lambda^{\prime}}, \Lambda\right)$ be a morphism in pro-Top. For each $\lambda \in$
Λ, let M_{λ} be the index set for all open coverings $\mathcal{V}_{\lambda, \mu}$ of X_{λ}, and let $M=\left\{\nu=(\lambda, \mu): \lambda \in \Lambda, \mu \in M_{\lambda}\right\}$. For each $\nu=(\lambda, \mu) \in M$, let $\left(Z_{\nu} ; Z_{0 \nu}, Z_{1 \nu}\right)=\left(X_{\lambda} ; \mathrm{st}\left(p_{\lambda}\left(X_{0}\right), \mathcal{V}_{\lambda, \mu}\right), \mathrm{st}\left(p_{\lambda}\left(X_{1}\right), \mathcal{V}_{\lambda, \mu}\right)\right)$, and order M by $\nu=(\lambda, \mu) \leq \nu^{\prime}=\left(\lambda^{\prime}, \mu^{\prime}\right)$ provided $\lambda \leq \lambda^{\prime}$ and $p_{\lambda \lambda^{\prime}}\left(Z_{i \nu}\right) \subseteq Z_{i \nu^{\prime}}, i=0,1$. Now let $r_{\nu}=p_{\lambda}:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(Z_{\nu} ; Z_{0 \nu}, Z_{1 \nu}\right)$ for each $\nu \in M$, and let $r_{\nu \nu^{\prime}}=p_{\lambda \lambda^{\prime}}:\left(Z_{\nu^{\prime}} ; Z_{0 \nu^{\prime}}, Z_{1 \nu^{\prime}}\right) \rightarrow\left(Z_{\nu} ; Z_{0 \nu}, Z_{1 \nu}\right)$ for $\nu \leq \nu^{\prime}$. Then if p is a resolution, then so is the morphism

$$
r=\left(r_{\nu}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow\left(Z ; Z_{0}, Z_{1}\right)=\left(\left(Z_{\nu} ; Z_{0 \nu}, Z_{1 \nu}\right), r_{\nu \nu^{\prime}}, M\right)
$$

in pro-Top ${ }^{T}$.
Proof. It is easy to see that $r \mid X_{0}=\left(r_{\nu} \mid X_{0}\right): X_{0} \rightarrow Z_{0}$ and $r \mid X_{1}=$ $\left(r_{\nu} \mid X_{1}\right): X_{1} \rightarrow Z_{1}$ satisfy property (B1). If p is a resolution, then so is $r \mid X=\left(r_{\nu}\right): X \rightarrow Z$. Lemma 3.3 implies that $r:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(Z ; Z_{0}, Z_{1}\right)$ is a resolution.

Lemma 3.5. Let X be a polyhedron, and let A and B be closed subsets of X such that $X=A \cup B$. Then for any open sets U_{0} and U_{1} in X with $A \subseteq U_{0}$ and $B \subseteq U_{1}$, there exists a polyhedral triad $\left(X ; X_{0}, X_{1}\right)$ such that $A \subseteq \operatorname{Int}\left(X_{0}\right) \subseteq X_{0} \subseteq U_{0}$ and $B \subseteq \operatorname{Int}\left(X_{1}\right) \subseteq X_{1} \subseteq U_{1}$.

Proof of Theorem 3.2. There exists a polyhedral resolution $\boldsymbol{p}=$ $\left(p_{\lambda}\right): X \rightarrow \boldsymbol{X}=\left(X_{\lambda}, p_{\lambda \lambda^{\prime}}, \Lambda\right)$ with cofinite index set Λ (see $[6$, Theorem $7, \mathrm{p}$. 84]). For this \boldsymbol{p}, we have a resolution $\boldsymbol{r}=\left(r_{\nu}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{Z} ; \boldsymbol{Z}_{0}, \boldsymbol{Z}_{1}\right)=$ $\left(\left(Z_{\nu} ; Z_{0 \nu}, Z_{1 \nu}\right), r_{\nu \nu^{\prime}}, M\right)$ as in Lemma 3.4. Let N be the subset of M so that each $\nu \in N$ corresponds to a polyhedral triad ($Z_{\nu} ; Z_{0 \nu}, Z_{1 \nu}$) as in Lemma 3.5. Here note that we can assume that each M_{λ} in Lemma 3.5 is cofinite, and hence N is cofinite. Then the induced morphism $r=\left(r_{\nu}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow$ $\left(\boldsymbol{Z} ; \boldsymbol{Z}_{0}, \boldsymbol{Z}_{1}\right)=\left(\left(Z_{\nu} ; Z_{0 \nu}, Z_{1 \nu}\right), r_{\nu \nu^{\prime}}, N\right)$ is a desired resolution. \square

We also have the pointed analog of Theorem 3.2.
Theorem 3.6. Every triad $\left(X ; X_{0}, X_{1}, x_{0}\right)$ of spaces with a base point admits a polyhedral resolution $\boldsymbol{p}=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}, x_{0}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}, \boldsymbol{x}_{0}\right)=$ $\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}, x_{0 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)$ with a cofinite index set Λ.

Proof. The pointed versions of Lemmas 3.3 and 3.4 hold. Thus the theorem follows from the following lemma.

Lemma 3.7. Let $\boldsymbol{p}=\left(p_{\lambda}\right): X \rightarrow \boldsymbol{X}=\left(X_{\lambda}, p_{\lambda \lambda^{\prime}}, \Lambda\right)$ be a resolution, and let $x_{0} \in X$. Then the morphism

$$
\boldsymbol{p}=\left(p_{\lambda}\right):\left(X, x_{0}\right) \rightarrow\left(\boldsymbol{X}, x_{0}\right)=\left(\left(X_{\lambda}, x_{0 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)
$$

where $x_{0 \lambda}=p_{\lambda}\left(x_{0}\right)$ is a resolution.
Proof. (R2) for $\boldsymbol{p}: X \rightarrow \boldsymbol{X}$ implies (R2) for $\boldsymbol{p}:\left(X, x_{0}\right) \rightarrow\left(X, x_{0}\right)$, so it suffices to verify (R1). Let $\left(P, p_{0}\right)$ be a pointed ANR, and let $g:\left(X, x_{0}\right) \rightarrow$
$\left(P, p_{0}\right)$ be a pointed map. Let \mathcal{V} be any open covering of P, and take an open covering \mathcal{V}^{\prime} of P such that st $\mathcal{V}^{\prime}<\mathcal{V}$. [6, Lemma 4, p. 86] implies that there exist an open neighborhood W of p_{0} in P and a map $k: P \rightarrow P$ such that $\left(1_{P}, k\right)<\mathcal{V}^{\prime}$ and $k \mid W: W \rightarrow\left\{p_{0}\right\}$ is a retraction. Now let $\mathcal{V}^{\prime \prime}$ be an open covering of P such that $\mathcal{V}^{\prime \prime}<\mathcal{V}^{\prime} \wedge\left\{W, P \backslash \mathrm{Cl}\left(W^{\prime}\right)\right\}$ where W^{\prime} is an open set such that $p_{0} \in W^{\prime} \subseteq \mathrm{Cl}\left(W^{\prime}\right) \subseteq W$. By (R1) for $p: X \rightarrow \boldsymbol{X}$, there exist $\lambda \in \Lambda$ and a map $h: X_{\lambda} \rightarrow P$ such that $\left(g, h p_{\lambda}\right)<\mathcal{V}^{\prime \prime}$. Let $h^{\prime}=k h: X_{\lambda} \rightarrow P$. Then h^{\prime} defines a pointed map $h^{\prime}:\left(X_{\lambda}, x_{0 \lambda}\right) \rightarrow\left(P, p_{0}\right)$ and $\left(g, h^{\prime} p_{\lambda}\right)<$ st $\mathcal{V}^{\prime}<\mathcal{V}$. This verifies (R1) for $\boldsymbol{p}:\left(X, x_{0}\right) \rightarrow\left(X, x_{0}\right)$.

Lemma 3.8. Let $\left(X ; X_{0}, X_{1}\right)$ be a triad of spaces such that X_{0} and X_{1} are closed subsets of X, and let \mathcal{U} be a covering of X by path-connected subsets of X. Then $\operatorname{st}\left(X_{0}, \mathcal{U}\right) \cap \operatorname{st}\left(X_{1}, \mathcal{U}\right)=\operatorname{st}\left(X_{0} \cap X_{1}, \mathcal{U}\right)$.

Proof. Let $x \in \operatorname{st}\left(X_{0}, \mathcal{U}\right) \cap \operatorname{st}\left(X_{1}, \mathcal{U}\right)$. Without loss of generality, let $x \in X_{0}$. Since $x \in \operatorname{st}\left(X_{1}, \mathcal{U}\right)$, there is $U \in \mathcal{U}$ such that $x \in U$ and $U \cap X_{1} \neq \emptyset$. Then if $U \cap X_{0} \cap X_{1}=\emptyset$, this would contradict the connectedness of the unit interval I. Indeed, let $x^{\prime} \in U \cap X_{1}$. Then for any path $\varphi: I \rightarrow U$ with $\varphi(0)=x$ and $\varphi(1)=x^{\prime}, I$ would be the disjoint union of the nonempty closed subsets $\varphi^{-1}\left(U \cap X_{0}\right)$ and $\varphi^{-1}\left(U \cap X_{1}\right)$. So $U \cap X_{0} \cap X_{1} \neq \emptyset$. Thus $x \in \operatorname{st}\left(X_{0} \cap X_{1}, \mathcal{U}\right)$. The other inclusion is obvious. \square

Theorem 3.9. Every triad $\left(X ; X_{0}, X_{1}\right)$ of spaces such that X_{0} and X_{1} are normally embedded closed subsets of X admits a polyhedral resolution $\boldsymbol{p}=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \cdot \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)$ with Λ being cofinite such that the induced morphisms $\boldsymbol{p}=\left(p_{\lambda}\right): X \rightarrow \boldsymbol{X}, p \mid X_{i}=$ $\left(p_{\lambda} \mid X_{i}\right): X_{i} \rightarrow X_{i}, i=0,1$, and $p \mid X_{0} \cap X_{1}=\left(p_{\lambda} \mid X_{0} \cap X_{1}\right): X_{0} \cap X_{1} \rightarrow$ $\boldsymbol{X}_{0} \cap \boldsymbol{X}_{1}=\left(X_{0 \lambda} \cap X_{1 \lambda}, p_{\lambda \lambda^{\prime}} \mid X_{0 \lambda^{\prime}} \cap X_{1 \lambda^{\prime}}, \Lambda\right)$ are resolutions.

Proof. Indeed, let

$$
r:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(Z ; Z_{0}, Z_{1}\right)=\left(\left(Z_{\nu} ; Z_{0 \nu}, Z_{1 \nu}\right), r_{\nu \nu^{\prime}}, M\right)
$$

be the polyhedral resolution obtained as in the proof of Theorem 3.2. Then the restrictions $\boldsymbol{r} \mid X_{i}: X_{i} \rightarrow Z_{i}, i=0,1$, are resolutions as in [6, Theorem 11, p. 89]. Note that for each $\nu=(\lambda, \mu) \in M$ and $i=0,1, Z_{i \nu}=\operatorname{st}\left(p_{\lambda}\left(X_{i}\right), \mathcal{V}_{\lambda, \mu}\right)$ for some open covering $\mathcal{V}_{\lambda, \mu}$ that is a star covering with respect to some subdivision of $X_{i \lambda}$. Then by Lemma 3.8 the induced morphism $r \mid X_{0} \cap X_{1}=$ $\left(r_{\nu} \mid X_{0} \cap X_{1}\right): X_{0} \cap X_{1} \rightarrow Z_{0} \cap Z_{1}=\left(Z_{0 \nu} \cap Z_{1 \nu}, r_{\nu \nu^{\prime}} \mid Z_{0 \nu} \cap Z_{1 \nu}, M\right)$ forms a resolution as in [6, Theorem 11, p. 89]. \square

4. The homotopy types of ANR triads

We first show
Theorem 4.1. Every ANR triad is homotopy dominated by some polyhedral triad.

Proof. Let $\left(X ; X_{0}, X_{1}\right)$ be an ANR triad. Take an open covering \mathcal{V} of X so that any two \mathcal{V}-near maps of triads to ($X ; X_{0}, X_{1}$) are homotopic (Lemma 2.2), and also take a polyhedral resolution $p=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow$ $\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)$ (Theorem 3.2). Then there exist $\lambda \in \Lambda$ and a map of triads $g:\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right) \rightarrow\left(X ; X_{0}, X_{1}\right)$ such that $\left(1_{X}, g p_{\lambda}\right)<\mathcal{V}$, and hence $1_{X} \simeq g p_{\lambda}$ as maps of triads. \square

The following is an analog of J. H. C. Whitehead's cłassical theorem [9]:
Theorem 4.2. Let $\left(X ; X_{0}, X_{1}\right)$ be a triad of spaces such that $X=$ $\operatorname{Int}\left(X_{0}\right) \cup \operatorname{Int}\left(X_{1}\right)$. If $\left(X ; X_{0}, X_{1}\right)$ is homotopy dominated by a polyhedral triad, then $\left(X ; X_{0}, X_{1}\right)$ has the homotopy type of a polyhedral triad.

We can prove the theorem analogously to the proof of $[6$, Theorem $3, \mathrm{p}$. 315], using the two lemmas in the below.

We call the map of triads $\varphi:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(Y ; Y_{0}, Y_{1}\right)$ a weak homotopy equivalence if $\varphi: X \rightarrow Y, \varphi\left|X_{0}: X_{0} \rightarrow Y_{0}, \varphi\right| X_{1}: X_{1} \rightarrow Y_{1}$ and $\varphi \mid X_{0} \cap X_{1}:$ $X_{0} \cap X_{1} \rightarrow Y_{0} \cap Y_{1}$ are all weak homotopy equivalences.

Lemma 4.3. Let $\left(X ; X_{0}, X_{1}\right)$ be a triad of spaces such that $X=\operatorname{Int}\left(X_{0}\right) \cup$ Int $\left(X_{1}\right)$. Then there exist a polyhedral triad $\left(P ; P_{0}, P_{1}\right)$ and a weak homotopy equivalence $\varphi:\left(P ; P_{0}, P_{1}\right) \rightarrow\left(X ; X_{0}, X_{1}\right)$.

Proof. As in [6, Theorem 10, p. 321], we have polyhedral pairs (P_{0}, P_{01}) and $\left(P_{1}, P_{01}\right)$ and maps of triads $\varphi_{0}:\left(P_{0}, P_{01}\right) \rightarrow\left(X_{0}, X_{0} \cap X_{1}\right)$ and $\varphi_{1}:$ $\left(P_{1}, P_{01}\right) \rightarrow\left(X_{1}, X_{0} \cap X_{1}\right)$ such that $\varphi_{0}\left|P_{01}=\varphi_{1}\right| P_{01}$ and $\varphi_{0}, \varphi_{1}, \varphi_{0} \mid P_{01}$ are all weak homotopy equivalences. Let $P=P_{0} \cup P_{1}$, and let $\varphi:\left(P ; P_{0}, P_{1}\right) \rightarrow$ ($X ; X_{0}, X_{1}$) be the map of triads such that $\varphi \mid P_{0}=\varphi_{0}$ and $\varphi \mid P_{1}=\varphi_{1}$. Then by $[2,16.24], \varphi: P \rightarrow X$ is a weak homotopy equivalence. \square

Lemma 4.4. Let $\varphi:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(Y ; Y_{0}, Y_{1}\right)$ be a weak homotopy equivalence. Then for each polyhedral triad $\left(P ; P_{0}, P_{1}\right)$, the induced map $\varphi_{*}:\left[\left(P ; P_{0}, P_{1}\right),\left(X ; X_{0}, X_{1}\right)\right] \rightarrow\left[\left(P ; P_{0}, P_{1}\right),\left(X ; X_{0}, X_{1}\right)\right]$ is a bijection. Here $[$,$] denotes the set of homotopy classes.$

Proof. We can easily modify the proof of $[2,16.20]$, so the proof is omitted.

The following is an immediate consequence of Theorems 4.1 and 4.2.
Theorem 4.5. Let $\left(X ; X_{0}, X_{1}\right)$ be a triad of spaces such that $X=$ $\operatorname{Int}\left(X_{0}\right) \cup \operatorname{Int}\left(X_{1}\right)$. Then the following statements are equivalent:
i) $\left(X ; X_{0}, X_{1}\right)$ has the homotopy type of a polyhedral triad;
ii) $\left(X ; X_{0}, X_{1}\right)$ has the homotopy type of a $C W$ triad;
iii) $\left(X ; X_{0}, X_{1}\right)$ has the homotopy type of an ANR triad;
iv) $\left(X ; X_{0}, X_{1}\right)$ is homotopy dominated by a polyhedral triad;
v) $\left(X ; X_{0}, X_{1}\right)$ is homotopy dominated by a $C W$ triad;
vi) $\left(X ; X_{0}, X_{1}\right)$ is homotopy dominated by an ANR triad.

Remark. The pointed versions of Theorems 4.1, 4.2 and 4.5 also hold.

5. Shape of triads

Let HTop ${ }^{T}$ be the category of triads of spaces and homotopy classes of maps of triads, and let HPol^{T} be the full subcategory of HTop ${ }^{T}$ whose objects are the triads of spaces which have the homotopy type of a polyhedral triad. The corresponding pointed categories are denoted by HTop ${ }_{*}^{T}$ and HPol_{*}^{T}.

Theorem 5.1. Every polyhedral resolution

$$
p=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)
$$

induces an HPol^{T}-expansion

$$
\begin{aligned}
& H \boldsymbol{p}=\left(H p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow H\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right) \\
& =\left(\left(H X_{\lambda} ; H X_{0 \lambda}, H X_{1 \lambda}\right), H p_{\lambda \lambda^{\prime}}, \Lambda\right)
\end{aligned}
$$

Here H denotes the functor from the topological category to the homotopy category.

Proof. We must verify properties (E1) and (E2) of [6]. Property (E1) follows from property (R1) if we take an open covering \mathcal{V} as in Lemma 2.2. For property (E2), we proceed as for [6, Theorem 2, p. 75], taking \mathcal{V} as in Lemma 2.2 and using Lemma 2.5 in the place of [6, Lemma 1, p. 46]. \square

By Theorems 3.2 and 5.1, the pair of categories (HTop ${ }^{T}, \mathbf{H P o l}^{T}$) defines a shape category, which we call the shape category of triads and denote by Sh^{T}. Lemmas 2.2 and 2.5 hold in the pointed case, and so the pointed analog of Theorem 5.1 holds. This and Theorem 3.6 imply that the pair of categories $\left(\mathbf{H T o p}_{*}^{T}, \mathrm{HPol}_{*}^{T}\right)$ defines a shape category, which we call the pointed shape category of triads and denote by $\mathbf{S h}_{*}^{T}$.

6. EXCISION THEOREM IN SHAPE THEORY

Throughout this section, all triads are assumed to have base points, and we do not write the base points. For each triad of spaces ($X ; X_{0}, X_{1}$) and for $k \geq 2$, we define the k-th homotopy pro-set of triad pro- $\pi_{k}\left(X ; X_{0}, X_{1}\right)$ as the pro-set $\pi_{k}\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\pi_{k}\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime} *}, \Lambda\right)$ where $p=\left(p_{\lambda}\right)$: $\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)$ is an HPol_{*}^{T} - expansion. For each morphism $\varphi:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(Y ; Y_{0}, Y_{1}\right)$ in $\mathbf{S h}_{*}^{T}$, there is an induced morphism pro- $\pi_{k}(\varphi):$ pro $-\pi_{k}\left(X ; X_{0}, X_{1}\right) \rightarrow \operatorname{pro}-\pi_{k}\left(Y ; Y_{0}, Y_{1}\right)$. Then pro- π_{k} defines a functor from $\mathbf{S h}_{*}^{T}$ to pro- $\mathbf{A b}$ for $k \geq 4$, to pro-Gp for $k=3$, and to pro-Set for $k=2$, where Gp is the category of groups and homomorphisms, $\mathbf{A b}$ is the full subcategory of $\mathbf{G p}$ whose objects are abelian groups, and Set is the category of pointed sets and point preserving functions.

Theorem 6.1. Let ($X ; X_{0}, X_{1}$) be a triad of spaces such that X is normal and X_{0} and X_{1} are normally embedded closed subspaces of X. Then there exist exact sequences of pro-sets

$$
\begin{aligned}
& \rightarrow \operatorname{pro}-\pi_{r+1}\left(X ; X_{0}, X_{1}\right) \xrightarrow{\partial} \text { pro }-\pi_{r}\left(X_{0}, X_{0} \cap X_{1}\right) \xrightarrow{i} \\
& \text { pro }-\pi_{r}\left(X, X_{1}\right) \xrightarrow[\rightarrow]{j} \text { pro }-\pi_{r}\left(X ; X_{0}, X_{1}\right) \rightarrow \\
& \cdots \rightarrow \text { pro }-\pi_{2}\left(X ; X_{0}, X_{1}\right) \xrightarrow{\partial} \text { pro }-\pi_{1}\left(X_{0}, X_{0} \cap X_{1}\right) \xrightarrow{i} \text { pro }-\pi_{1}\left(X, X_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \rightarrow \operatorname{pro}-\pi_{r+1}\left(X ; X_{0}, X_{1}\right) \xrightarrow{\partial^{\prime}} \operatorname{pro}-\pi_{r}\left(X_{1}, X_{0} \cap X_{1}\right) \xrightarrow{i^{\prime}} \\
& \operatorname{pro}-\pi_{r}\left(X, X_{0}\right) \xrightarrow{j^{\prime}} \text { pro }-\pi_{r}\left(X ; X_{0}, X_{1}\right) \rightarrow \\
& \cdots \rightarrow \operatorname{pro}-\pi_{2}\left(X ; X_{0}, X_{1}\right) \xrightarrow{\partial^{\prime}} \text { pro }-\pi_{1}\left(X_{1}, X_{0} \cap X_{1}\right) \xrightarrow{i^{\prime}} \text { pro }-\pi_{1}\left(X, X_{0}\right)
\end{aligned}
$$

Proof. Let

$$
p=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)
$$

be a polyhedral resolution (Theorem 3.6). Then [5, Section 5] implies that the induced morphisms

$$
\left\{\begin{array}{l}
\boldsymbol{p}=\left(p_{\lambda}\right):\left(X, X_{i}\right) \rightarrow\left(\boldsymbol{X}, \boldsymbol{X}_{i}\right)=\left(\left(X_{\lambda}, X_{i \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right) \\
\boldsymbol{p} \mid X_{i}=\left(p_{\lambda} \mid X_{i}\right):\left(X_{i}, X_{0} \cap X_{1}\right) \rightarrow\left(\boldsymbol{X}_{i}, \boldsymbol{X}_{0} \cap \boldsymbol{X}_{1}\right)= \\
\left(\left(X_{i \lambda}, X_{0 \lambda} \cap X_{1 \lambda}\right), p_{\lambda^{\prime}} \mid X_{i \lambda}, \Lambda\right)
\end{array}\right.
$$

are resolutions for $i=0,1$, and hence [6 , Theorem 8, p. 86] implies that those resolutions induce expansions

$$
\left\{\begin{array}{l}
H p=\left(H p_{\lambda}\right):\left(X, X_{i}\right) \rightarrow H\left(\boldsymbol{X}, \boldsymbol{X}_{i}\right)=\left(\left(X_{\lambda}, X_{i \lambda}\right), H p_{\lambda \lambda^{\prime}}, \Lambda\right) \\
H p \mid X_{i}=\left(H p_{\lambda} \mid X_{i}\right):\left(X_{i}, X_{0} \cap X_{1}\right) \rightarrow H\left(\boldsymbol{X}_{i}, \boldsymbol{X}_{0} \cap \boldsymbol{X}_{1}\right)= \\
\left(\left(X_{i \lambda}, X_{0 \lambda} \cap X_{1 \lambda}\right), H p_{\lambda \lambda^{\prime}} \mid X_{i \lambda}, \Lambda\right)
\end{array}\right.
$$

for $i=0,1$. So the homotopy sequences of the triad $\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right)$ (see [$\mathbf{3}$, p.160]) and their naturality give rise to the above exact sequences of pro-sets by the pro-set version of [$\mathbf{6}$, Theorem 10, p. 119].

Theorem 6.2. Let ($X ; X_{0}, X_{1}$) be a triad of spaces such that X is normal and X_{0} and X_{1} are normally embedded closed subspaces of X, and let $m \geq 2$. Then the inclusion induced morphism

$$
i_{*}: \text { pro }-\pi_{r}\left(X_{0}, X_{0} \cap X_{1}\right) \rightarrow \text { pro }-\pi_{r}\left(X, X_{1}\right)
$$

is an isomorphism for $2 \leq r<m$, an epimorphism for $r=m$ and "monic" for $r=1$ i.e., $\operatorname{Ker}\left\{i_{*}: \operatorname{pro}-\pi_{1}\left(X_{0}, X_{0} \cap X_{1}\right) \rightarrow \operatorname{pro}-\pi_{1}\left(X, X_{1}\right)\right\} \approx 0$, if and only if pro $-\pi_{r}\left(X ; X_{0}, X_{1}\right) \approx 0$ for $2 \leq r \leq m$.

Proof. This is an immediate consequence of Theorem 6.1.

Theorem 6.3. (Blakers-Massey theorem in shape theory) Let ($X ; X_{0}, X_{1}$) be a triad of spaces such that X is normal and X_{0} and X_{1} are normally embedded connected closed subspaces of X, and let m, $n \geq 1$. Then if $\left(X_{0}, X_{0} \cap X_{1}\right)$ is n-shape connected and $\left(X_{1}, X_{0} \cap X_{1}\right)$ is m-shape connected, then the inclusion induced morphism

$$
i_{*}: \text { pro }-\pi_{r}\left(X_{0}, X_{0} \cap X_{1}\right) \rightarrow \text { pro }-\pi_{r}\left(X, X_{1}\right)
$$

is an isomorphism for $1 \leq r \leq n+m-1$ and an epimorphism for $r=n+m$.
We prove the following two lemmas before we prove the theorem.
Lemma 6.4. Let $1 \leq n \leq m$, let $\left(X_{i}, A_{i}, B_{i}\right), i=0,1, \ldots, m$, be polyhedral triads such that A_{0} and B_{0} are connected, and let $p_{i}:\left(X_{i} ; A_{i}, B_{i}\right) \rightarrow$ $\left(X_{i+1} ; A_{i+1}, B_{i+1}\right), i=0,1, \ldots, m$, be maps of triads such that the induced maps $\left(p_{i} \mid A_{i}\right)_{*}: \pi_{i}\left(A_{i}, A_{i} \cap B_{i}\right) \rightarrow \pi_{i}\left(A_{i+1}, A_{i+1} \cap B_{i+1}\right)$ for $i=0,1, \ldots, n$ and $\left(p_{i} \mid B_{i}\right)_{*}: \pi_{i}\left(B_{i}, A_{i} \cap B_{i}\right) \rightarrow \pi_{i}\left(B_{i+1}, A_{i+1} \cap B_{i+1}\right)$ for $i=0,1, \ldots, m$ are trivial. Then there exist a polyhedral triad $\left(P ; P^{\prime}, P^{\prime \prime}\right)$ such that $\left(P^{\prime}, P^{\prime} \cap P^{\prime \prime}\right)$ is n-connected and $\left(P^{\prime \prime}, P^{\prime} \cap P^{\prime \prime}\right)$ is m-connected, and maps of triads f : $\left(X_{0} ; A_{0}, B_{0}\right) \rightarrow\left(P ; P^{\prime}, P^{\prime \prime}\right)$ and $g:\left(P ; P^{\prime}, P^{\prime \prime}\right) \rightarrow\left(X_{m} ; A_{m}, B_{m}\right)$ such that $p_{n} \cdots p_{1} p_{0}=g f$.

Proof. Let $\left\{\begin{array}{l}\left(K_{1}, L\right) \\ \left(K_{2}, L\right)\end{array}\right\}$ be triangulations of $\left\{\begin{array}{l}\left(A_{0}, A_{0} \cap B_{0}\right) \\ \left(B_{0}, A_{0} \cap B_{0}\right)\end{array}\right\}$ such that L is a full subcomplex of K_{1} and also of K_{2}. For each $i=0,1, \ldots, m$, let

$$
\left\{\begin{array}{l}
Q_{i}=\left(\left(A_{0} \cap B_{0}\right) \times I\right) \cup\left(\left(\left|K_{1}^{\min \{i, n\}}\right| \cup\left|K_{2}^{i}\right|\right) \times I\right) \\
P_{i}=Q_{i} \cup\left(A_{0} \times 0\right) \\
P_{i}^{\prime}=Q_{i} \cup\left(B_{0} \times 0\right)
\end{array}\right.
$$

Then the polyhedral pairs $\left\{\begin{array}{l}\left(P_{1}, Q_{i}\right) \\ \left(P_{i}^{\prime}, Q_{i}\right)\end{array}\right\}$ respectively have the homotopy types of the polyhedral pairs

$$
\left\{\begin{array}{c}
\left(\left|K_{1}\right| \cup\left|K_{2}^{i}\right|,|L| \cup\left|K_{1}^{\min \{i, n\}}\right| \cup\left|K_{2}^{i}\right|\right) \\
\left(\left|K_{1}^{\min \{i, n\}}\right| \cup\left|K_{2}\right|,|L| \cup\left|K_{1}^{\min \{i, n\}}\right| \cup\left|K_{2}^{i}\right|\right)
\end{array}\right\}
$$

So for $i=0,1, \ldots, m,\left(P_{i}, Q_{i}\right)$ is $\min \{i, n\}$-connected, and $\left(P_{i}^{\prime}, Q_{i}\right)$ is i connected.

We wish to obtain the following commutative diagram:

$$
\begin{gathered}
\cdots \xrightarrow{p_{n}}\left(X_{n+1} ; A_{n+1}, B_{n+1}\right) \xrightarrow{p_{n+1}} \cdots \xrightarrow{p_{m}}\left(X_{n+1} ; A_{m+1}, B_{m+1}\right) \\
g_{n} \uparrow \\
\cdots \xrightarrow{\subseteq}\left(P_{n} \cup P_{n}^{\prime} ; P_{n}, P_{n}^{\prime}\right) \xrightarrow{\subseteq} \cdots \xrightarrow{\subseteq} \cdots\left(P_{m} \cup P_{m}^{\prime} ; P_{m}, P_{m}^{\prime}\right)
\end{gathered}
$$

We can proceed as in [6, Lemma 3, p. 140]. For g_{0}, let $g_{0} \mid X_{0} \times 0=p_{0}$ and $g_{0}(x \times I)=p_{0}(x)$ for $x \in A_{0} \cap B_{0}$, and using the hypothesis that A_{0} and B_{0} are connected, for each vertex v of $K_{1} \backslash L \cup K_{2} \backslash L$, let $g_{0}(v \times I)$ be a path in A_{1} or B_{1} from $g_{0}(v, 0)=p_{0}(v)$ to $g_{0}(v, 1)=$ the base point of $\left(X_{1} ; A_{1}, B_{1}\right)$. Assume we have defined g_{i-1} for some $i \leq m$. Then for each i-simplex σ of

$$
\left\{\begin{array}{cl}
K_{1} \backslash L \cup K_{2} \backslash L & \text { for } i \leq n \\
K_{2} \backslash L & \text { for } n<i \leq m
\end{array}\right\}
$$

the pair $((\partial \sigma \times I) \cup(\sigma \times 0), \partial \sigma \times 1)$ is an i-cell in

$$
\left\{\begin{array}{cl}
P_{i-1} \text { or } P_{i-1}^{\prime} & \text { for } i \leq n \\
P_{i-1}^{\prime} & \text { for } n<i \leq m
\end{array}\right\}
$$

with its boundary in Q_{i-1}. Then use the hypothesis that $\left(p_{i} \mid A_{i}\right)_{*}=0$: $\pi_{i}\left(A_{i}, A_{i} \cap B_{i}\right) \rightarrow \pi_{i}\left(A_{i+1}, A_{i+1} \cap B_{i+1}\right)(i=0,1, \ldots, n)$ and $\left(p_{i} \mid B_{i}\right)_{*}=0$: $\pi_{i}\left(B_{i}, A_{i} \cap B_{i}\right) \rightarrow \pi_{i}\left(B_{i+1}, A_{i+1} \cap B_{i+1}\right)(i=0,1, \ldots, m)$ to extend the map $p_{i} g_{i-1} \mid(\partial \sigma \times I) \cup(\sigma \times 0)$ to a map $g_{i} \mid \sigma \times I:(\sigma \times I, \sigma \times 1) \rightarrow\left(A_{i+1}, A_{i+1} \cap B_{i+1}\right)$ or $g_{i} \mid \sigma \times I:(\sigma \times I, \sigma \times 1) \rightarrow\left(B_{i+1}, A_{i+1} \cap B_{i+1}\right)$. Thus we obtain a desired map of triads g_{i}. Then we are done if we let $\left(P ; P^{\prime}, P^{\prime \prime}\right)=\left(P_{m} \cup P_{m}^{\prime} ; P_{m}, P_{m_{2}}^{\prime}\right)$, let f : $\left(X_{0} ; A_{0}, B_{0}\right) \rightarrow\left(P ; P^{\prime}, P^{\prime \prime}\right)$ be the inclusion and let $g=g_{m-1}:\left(P ; P^{\prime}, P^{\prime \prime}\right) \rightarrow$ $\left(X_{m} ; A_{m}, B_{m}\right)$.

Lemma 6.5. Let

$$
\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right) \in \text { ob pro-HPol }{ }_{*}^{T}
$$

Then if the inverse systems of pairs $\left(\boldsymbol{X}_{0}, \boldsymbol{X}_{0} \cap \boldsymbol{X}_{1}\right)$ and $\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{0} \cap \boldsymbol{X}_{1}\right)$ are n connected and m-connected, respectively, and if \boldsymbol{X}_{0} and \boldsymbol{X}_{1} are 0 -connected, then for each $\lambda \in \Lambda$, there exists $\lambda^{\prime} \geq \lambda$ so that the map of triads $p_{\lambda^{\prime}}$ factors through a polyhedral triad ($P ; P_{0}, P_{1}$) such that the pairs $\left(P_{0}, P_{0} \cap P_{1}\right)$ and ($P_{1}, P_{0} \cap P_{1}$) are n-connected and m-connected, respectively.

Proof. Without loss of generality, we can assume $n \leq m$ and that all $X_{0 \lambda}$ and $X_{1 \lambda}$ are connected. Then for each $\lambda \in \Lambda$ we have $\lambda=\lambda_{0} \leq \lambda_{1} \leq$ $\cdots \leq \lambda_{m} \leq \lambda_{m+1}=\lambda^{\prime}$ so that $\left(p_{\lambda_{i} \lambda_{i+1}} \mid X_{0 \lambda_{i+1}}\right)_{*}=0: \pi_{m-i}\left(X_{0 \lambda_{i+1}}, X_{0 \lambda_{i+1}} \cap\right.$ $\left.X_{1 \lambda_{i+1}}\right) \rightarrow \pi_{m-i}\left(X_{0 \lambda_{i}}, X_{0 \lambda_{i}} \cap X_{1 \lambda_{i}}\right)$ for $i=m, m-1, \ldots, m-n$ and $\left(p_{\lambda_{i} \lambda_{i+1}} \mid X_{1 \lambda_{i+1}}\right)_{*}=0: \pi_{m-i}\left(X_{1 \lambda_{i+1}}, X_{0 \lambda_{i+1}} \cap X_{1 \lambda_{i+1}}\right) \rightarrow \pi_{m-i}\left(X_{1 \lambda_{i}}, X_{0 \lambda_{i}} \cap\right.$ $X_{1 \lambda_{i}}$) for $i=m, m-1, \ldots, 0$. Then the lemma follows from Lemma 6.4.

Proof of Theorem 6.3. Let $\left(X ; X_{0}, X_{1}\right)$ be as in the hypothesis, and let $p=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)$ be a polyhedral resolution of $\left(X ; X_{0}, X_{1}\right)$. Without loss of generality, we can assume $n \leq m$ and that all $\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right)$ are polyhedral triads such that
all $X_{0 \lambda}$ and $X_{1 \lambda}$ are connected. Fix $\lambda \in \Lambda$. Then by Lemma 6.5, there exist $\lambda^{\prime} \geq \lambda$, a polyhedral triad ($P ; P_{0}, P_{1}$) such that the pairs ($P_{0}, P_{0} \cap$ P_{1}) and ($P_{1}, P_{0} \cap P_{1}$) are n-connected and m-connected, respectively, and maps of triads $f:\left(X_{\lambda^{\prime}} ; X_{0 \lambda^{\prime}}, X_{1 \lambda^{\prime}}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ and $g:\left(P ; P_{0}, P_{1}\right) \rightarrow$ $\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right)$ such that $p_{\lambda \lambda^{\prime}}=g f$. Then the Blakers-Massey theorem in homotopy theory implies that the inclusion $j:\left(P_{0}, P_{0} \cap P_{1}\right) \hookrightarrow\left(P, P_{1}\right)$ induces the map $j_{*}: \pi_{r}\left(P_{0}, P_{0} \cap P_{1}\right) \rightarrow \pi_{r}\left(P, P_{1}\right)$ which is an isomorphism for $1 \leq$ $r \leq n+m-1$ and an epimorphism for $r=n+m$. Consider the induced commutative diagram in homotopy sets:

where the vertical maps are induced by the inclusions. For $1 \leq r \leq n+m-1$, let $h=g_{*}\left(i_{*}\right)^{-1} f_{*}^{\prime}: \pi_{r}\left(X_{\lambda^{\prime}}, X_{1 \lambda^{\prime}}\right) \rightarrow \pi_{r}\left(X_{0 \lambda}, X_{0 \lambda} \cap X_{1 \lambda}\right)$. Then h fills the diagonal of the following commutative diagram:

$$
\begin{array}{cc}
\pi_{r}\left(X_{0 \lambda}, X_{0 \lambda} \cap X_{1 \lambda}\right) & \stackrel{\left(p_{\lambda \lambda^{\prime}} \mid X_{0 \lambda^{\prime}}\right) *}{\leftrightarrows} \\
i_{\lambda *}\left(X_{0 \lambda^{\prime}}, X_{0 \lambda^{\prime}} \cap X_{1 \lambda^{\prime}}\right) \\
\pi_{r}\left(X_{\lambda}, X_{1 \lambda}\right) & \stackrel{\left(p_{\lambda \lambda^{\prime}} \mid X_{\lambda^{\prime}}\right)_{*}}{\stackrel{ }{2}} \\
i_{\lambda^{\prime} *} \downarrow \\
\pi_{r}\left(X_{\lambda^{\prime}}, X_{1 \lambda^{\prime}}\right)
\end{array}
$$

Morita's lemma [6, Theorem 5, p.113] implies $\boldsymbol{i}_{*}=\left(i_{\lambda *}\right): \pi_{r}\left(\boldsymbol{X}_{0}, \boldsymbol{X}_{0} \cap \boldsymbol{X}_{1}\right) \rightarrow$ $\pi_{r}\left(\boldsymbol{X}, \boldsymbol{X}_{1}\right)$ is an isomorphism for $1 \leq r \leq n+m-1$. Also for $r=n+m, i_{*}$: $\pi_{r}\left(P_{0}, P_{0} \cap P_{1}\right) \rightarrow \pi_{r}\left(P, P_{1}\right)$ is an epimorphism, so $\operatorname{Im}\left(\left(p_{\lambda^{\prime}} \mid X_{\lambda^{\prime}}\right)_{*}\right) \subseteq \operatorname{Im}\left(i_{\lambda *}\right)$. Then [6, Theorem 3, p. 109] implies that $\boldsymbol{i}_{*}=\left(i_{\lambda *}\right): \pi_{n+m}\left(\boldsymbol{X}_{0}, \boldsymbol{X}_{0} \cap \boldsymbol{X}_{1}\right) \rightarrow$ $\pi_{n+m}\left(\boldsymbol{X}, \boldsymbol{X}_{1}\right)$ is an epimorphism. This completes the proof of Theorem 6.3. \square

7. Mayer-Vietoris sequences

For each abelian group G, let $\check{H}^{r}(; G)$ denote the r-th Čech cohomology theory with coefficients in G which is based on the normal open coverings. G will be omitted as long as no confusion occurs. Let ($X ; X_{0}, X_{1}$) be a triad of spaces such that X_{0} and X_{1} are normally embedded closed subspaces of X. Then Theorem 3.9 implies the existence of an HPol ${ }^{T}$-expansion $\boldsymbol{p}=\left(p_{\lambda}\right)$: $\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)$ of $\left(X ; X_{0}, X_{1}\right)$ such that the induced morphisms $p=\left(p_{\lambda}\right): X \rightarrow \boldsymbol{X}, p \mid X_{i}=\left(p_{\lambda} \mid X_{i}\right): X_{i} \rightarrow$ $\boldsymbol{X}_{i}, i=0,1$, and $\boldsymbol{p} \mid X_{0} \cap X_{1}=\left(p_{\lambda} \mid X_{0} \cap X_{1}\right): X_{0} \cap X_{1} \rightarrow \boldsymbol{X}_{0} \cap \boldsymbol{X}_{1}=$ $\left(X_{0 \lambda} \cap X_{1 \lambda}, p_{\lambda \lambda^{\prime}} \mid X_{0 \lambda^{\prime}} \cap X_{1 \lambda^{\prime}}, \Lambda\right)$ are expansions. Then for each $\lambda \in \Lambda$, there is a Mayer-Vietoris sequence of the polyhedral triad ($X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}$), which is exact and natural. Hence there is an induced Mayer-Vietoris sequence of

Čech cohomology groups $\operatorname{MV}\left(X ; X_{0}, X_{1}\right)$:

$$
\rightarrow \check{H}^{r-1}\left(X_{0} \cap X_{1}\right) \stackrel{\delta}{\rightarrow} \check{H}^{r}(X) \rightarrow \check{H}^{r}\left(X_{0}\right) \oplus \check{H}^{r}\left(X_{1}\right) \rightarrow \check{H}^{r}\left(X_{0} \cap X_{1}\right) \rightarrow
$$

Then [6, Lemma 1, p. 129] implies the following:
Theorem 7.1. For each triad of spaces $\left(X ; X_{0}, X_{1}\right)$ such that X_{0} and X_{1} are normally embedded closed subsets of X, the Mayer-Vietoris sequence $M V$ ($X ; X_{0}, X_{1}$) of C Cech cohomology groups is exact.

Let $\mathcal{M} \mathcal{V}$ denote the category whose objects are triads of spaces $\left(X ; X_{0}, X_{1}\right)$ such that X_{0} and X_{1} are normally embedded closed subsets of X and whose morphisms $\Phi:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(Y ; Y_{0}, Y_{1}\right)$ are homomorphisms of MayerVietoris sequences (see [1, p. 8]) from MV $\left(X ; X_{0}, X_{1}\right)$ to MV $\left(Y ; Y_{0}, Y_{1}\right)$. Also let $\mathbf{S h}_{N}^{T}$ denote the full subcategory of $\mathbf{S h}^{T}$ whose objects are triads of spaces ($X ; X_{0}, X_{1}$) such that X_{0} and X_{1} are normally embedded closed subsets of X. Then we have

ThEOREM 7.2. There exists a contravariant functor \mathcal{F} from $\mathbf{S h}_{N}^{T}$ to $\mathcal{M} \mathcal{V}$.
Proof. For each $\left(X ; X_{0}, X_{1}\right) \in \mathrm{ob} \mathbf{S h}_{N}^{T}$, let \mathcal{F} be the identity on the objects, i.e., $\mathcal{F}\left(X ; X_{0}, X_{1}\right)=\left(X ; X_{0}, X_{1}\right)$ for each $\left(X ; X_{0}, X_{1}\right) \in$ ob $\mathbf{S h}_{N}^{T}$. Let $\varphi \in \operatorname{Sh}_{N}^{T}\left(\left(X ; X_{0}, X_{1}\right),\left(Y ; Y_{0}, Y_{1}\right)\right)$ be represented by the morphism $\varphi=\left(\varphi_{\mu}\right):\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right) \rightarrow\left(\boldsymbol{Y} ; \boldsymbol{Y}_{0}, \boldsymbol{Y}_{1}\right)$ where $\boldsymbol{p}=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow$ $\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)$ and $\boldsymbol{q}=\left(q_{\mu}\right):\left(Y ; Y_{0}, Y_{1}\right) \rightarrow\left(\boldsymbol{Y} ; \boldsymbol{Y}_{0}, \boldsymbol{Y}_{1}\right)$ are the $\mathbf{H P o l}^{T}$ expansions of $\left(X ; X_{0}, X_{1}\right)$ and $\left(Y ; Y_{0}, Y_{1}\right)$, respectively, such that the induced morphisms $\boldsymbol{p}=\left(p_{\lambda}\right): X \rightarrow \boldsymbol{X}, p \mid X_{i}=\left(p_{\lambda} \mid X_{i}\right): X_{i} \rightarrow \boldsymbol{X}_{i}$ for $i=0,1$, $\boldsymbol{p} \mid X_{0} \cap X_{1}=\left(p_{\lambda} \mid X_{0} \cap X_{1}\right): X_{0} \cap X_{1} \rightarrow \boldsymbol{X}_{0} \cap \boldsymbol{X}_{1}, \boldsymbol{q}=\left(q_{\mu}\right): Y \rightarrow \boldsymbol{Y}$, $\boldsymbol{q} \mid Y_{i}=\left(q_{\mu} \mid Y_{i}\right): Y_{i} \rightarrow Y_{i}$ for $i=0,1$, and $\boldsymbol{q} \mid Y_{0} \cap Y_{1}=\left(q_{\mu} \mid Y_{0} \cap Y_{1}\right):$ $Y_{0} \cap Y_{1} \rightarrow \boldsymbol{Y}_{0} \cap \boldsymbol{Y}_{1}$ are all expansions. Then the morphisms induced by $\varphi, \varphi=\left(\varphi_{\mu}\right): \boldsymbol{X} \rightarrow \boldsymbol{Y}, \varphi \mid X_{i}=\left(\varphi_{\mu} \mid X_{i \varphi(\mu)}\right): X_{i} \rightarrow Y_{i}$ for $i=0,1$, $\varphi \mid X_{0} \cap X_{1}=\left(\varphi_{\mu} \mid X_{0 \varphi(\mu)} \cap X_{1 \varphi(\mu)}\right): X_{0} \cap X_{1} \rightarrow \boldsymbol{Y}_{0} \cap Y_{1}$ define the morphisms $\varphi|X \in \operatorname{Sh}(X, Y), \varphi| X_{i} \in \operatorname{Sh}\left(X_{i}, Y_{i}\right), i=0,1$, and $\varphi \mid X_{0} \cap X_{1} \in$ $\operatorname{Sh}\left(X_{0} \cap X_{1}, Y_{0} \cap Y_{1}\right)$ which make the following diagram commute for $i=0,1$:

where the horizontal maps are the inclusions. Here Sh denotes the shape category in the sense of [6]. Thus we have the following commutative diagram:

Let $\mathcal{F}(\varphi)$ be the homomorphism from $\operatorname{MV}\left(Y ; Y_{0}, Y_{1}\right)$ to $\operatorname{MV}\left(X ; X_{0}, X_{1}\right)$ which is defined by this diagram. It is easy to show that \mathcal{F} defines a functor.

References

[1] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton Univ. Press, Princeton, 1952.
[2] B. Gray, Homotopy Theory, Academic Press, New York, 1975.
[3] S. Hu, Homotopy Theory, Academic Press, New York, 1959.
[4] Ju. T. Lisica and S. Mardešic, Strong homology of inverse systems III, Top. Appl. 20(1985), 29-37.
[5] S. Mardešić, ANR-resolutions of triads, Tsukuba J. Math. 8 (1984), 353-365.
[6] S. Mardesić and J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.
[7] S. Ungar, n-Connectedness of inverse systems and applications to shape theory, Glasnik Mat. 13(33)(1978), 371-396.
[8] T. Watanabe, Cech homology, Steenrod homology and strong homology I, Glasnik Mat. 22(42)(1987), 187-238.
[9] J. H. C. Whitehead, A certain exact sequence, Ann. of Math. 52(1950), 51-110.
Department of Computer Science, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, 437-8555 JAPAN

E-mail address: miyata@mb.sist.ac.jp
Received: 18.03.99.
Revised: 01.09.99

[^0]: 1991 Mathematics Subject Classification. 54C56, 54C55, 55P55, 55Q07.
 Key words and phrases. Shape, triad, homotopy excision, polyhedral triad, homotopy type.

