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THE EXACT SEQUENCE OF A SHAPE FIBRATION

Q. Haxhibegiri, Pristina

Abstract. Using the definition of shape fibration for arbitrary topological spaces
given in [5] we show when a restriction of shape fibration is again a shape fibration
(Theorem 4.1) and when a shape fibration induces an isomorphism of homotopy
pro-groups (Theorem 5.7) obtaining also the exact sequence of shape fibration
(Theorem 5.9).

1. Introduction

The notion of a shape fibration for maps between compact metric
spaces was introduced by S. Marde$i¢ and T. M. Rushing in [11]
and [12]. In [10] Mardes$i¢ has defined shape fibrations for maps between
arbitrary topological spaces. In [5] the author has given an alterna-
tive definition of a shape fibration, which is equivalent to Marde$i¢’s
definition from [10]. Using some results from {5] and [10] we estab-
lish in the present paper the following two facts concerning shape
fibrations p : E — B, which are closed maps of a topological space
E to a normal space B.

() If B, < B is a closed subset of B, then the restriction of p
to Eo = p~ 1 (B,) is also a shape fibration whenever E, and B, are
P-embedded in E and B respectively (Theorem 4.1).

(@) If ecE, b=p(e) and F=p~1(b) is P-embedded in E,
then p induces an isomorphism of the homotopy pro-groups

p.: pro-n, (E, F, ¢) - pro-z, (B, b)

(Theorem 5.7).

As a corollary of (i) one obtains the exact sequence of a shape
fibration (Theorem 5.9).

These results generalize the corresponding results for compact
metric spaces from {11] and {12]. The paper can be viewed as a con-
tinuation of papers [5] and {10].

The author wishes to express his gratitude to professors S. Mar-
de$i¢ and S. Ungar for the valuable help received during the writing
of this paper.
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2. On resolution of spaces and maps

In this section we recall the definitions of a resolution of a space
and of a resolution of a map [10], and we establish some facts needed
in the sequel.

2.1. Definition ([10]). A map of systems q =(g;): E > E =
= (Ej, qar, A) is a resolution of the space E provided the following
conditions are fulfilled:

(R1) Let P be a polyhedron, ¥” an open covering of Pand f : E -
—~ P a map. Then there is a A€ 4 and a map f; : E; - Psuch that
frq, and f are ¥~near, which we denote by (f24,,f) < ¥~

(R2) Let P be a polyhedron and 7" an open covering of P. Then
there is an open covering?”’ of P with the following property. Whenever
fof' : E;—» P are maps satxsfymg (fa,» f'q,) <¥”, then there is a
2”> 2 such that (fa,y > a,0) <?

If all E,’'s are polyhedra (ANR’s), then q: E = E is called a
polyhedral (ANR) resolution.

2.2. Definition. Let p : E - B be a map. A resolution of p is a
triple (q, r, p), which consists of resolutions q : £~ E and r : B -
— B = (B, 4w, M) of the spaces E and B respectively and of a map
of systems p = (pu @) : E - B satisfying pq =1rp, i. €. puqay=
=r.p, pi.

If a map p=(p» 1) : E—>B=(B;, 73, ) is a level map [5],
then (q,r,p) is called a level-resolurion. In this case p q =rp is equi-
valent to p,q, = p, Aed.

It was shown in [10] that q : E -~ E is a resolution of E if it
satisfies the following conditions:

(B1) For each normal covering # of E there is a A € 2l and a nor-
mal covering %, of E, such that ¢;' (%;) refines %, which is denoted
by ¢;' (%) > %.

(B2) For each e/l and each open neighborhood U of Cl(yg, (E))
in E; there is a A’ > A such that ¢,,. (Ex) < U.

Conversely, if all E; are normal then every resolution q : E -~ E
has properties (B1) and (B2) ([10]), Theorem 6). In particular, every
polyhedral resolution has properties (B1) and (B2).

In the sequel we will use a special type of polyhedral resolutions,
which we will call canonical resolutions. These are polyhedral reso-
lutions r = (r,) : B > B = (Bu, r.ws M) such that ] is a cofinite
directed set, each B, is the nerv |N (y,)| of a normal covering ¥, of
B and ruy : By — By, p < u', is a simplical map such that r,, (V') =
= V implies V' < V, where V' €y, and V €y,. Moreover, r, : B -
— B, is the canonical map given by a locally finite partition of unity
(¥y, V €y,) subordinated to y,, i. e.

u(x) = % Yy (x)V, xeB.
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2.3. THEOREM. (?) Every topological space B admits a cano-
nical resolution.

(#) If * : B -+ B 1is a canonical resolution of B, then every map
p : E— B of topological spaces admits a polyhedral resolution (q, r, p).

A proof is obtained by obvious modifications of the proof of
Theorem 11, [10].

The following lemma is needed in the sequel.

2.4. LEMMA. Let B be a normal space and r = (r;) : B +-B =
= (Bz, 122, A) a polyhedral vesolution of B. Let By — B be a closed
subset and let ro = (r1|By) : By By = (Bop 7 | Boy, A) be a
resolution of Bo such thar every By, is a closed subset of B;. Then for
every open neighborhood V of By in B and for every A€ A there is a
X' > A and an open neighborhood Vi of Bgy in By such that

T;_.vl (V;.') c V.

Proof. % = {V, B\B,} is a normal covering of B. Since r is
a polyhedral resolution, it has the property (B1). Consequently, there
is a pe A and there is an open covering %, of B, such that »,' (%,)
refines . Let v € A, » > A, u. Then %, = r,, (%,) is an open covering
of B, such that r;! (U,) refines %. It follows that for each Ue%,

UNClrn(B)# B<UnrBy)#B=1(U)csV (1)

Let us put
V,=U{Ue@, | UnCl(r, (By)) # 8}

Clearly, V, is an open set in B, and Cl(r, (B,)) < V,. Moreover,
by (1), one has
(V) e V. )

The set V, N B,, is an open neighborhood of CI(r, (By)) in By,.
Hence, by property (B2) of 1y, there is a A’ > » such that ». (Bg,) S
C V, N\ By, <V, i. . Byy < 13t (V,). Using normality of B; one
can find an open set Vj in By such that Byy < Vi < Cl1(Vy) &
< r2 (V,). Then V), is the desired neighborhood of By, because,
by (2),

7 (Ve critrgd (V) =r"(V,) e V. 3)

2.5. THEOREM. Let p : E - B be a closed map of a topological
space E into a normal space B, let B, be a closed subset of B and let E, =
= p~ 1 (B,) be P-embedded in E. Furthermore, let (q, r, p) be a poly-
hedral level-resolution of p and let vo = (r1|By) By > By =
= (Box rax | Box, /1) be a resolution of B, such that each By, is a closed
subset of Bs. Then qo = (go1) : Eo = Eq = (Eos, ¢,y | Eons A) s a
resolution of Eo, where qo; = qi| E, and

Eo; = p3' (Boa)s Aed. C))
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Retall that E, < E is P-embedded in E provided every normal
covering %, of E, admits a normal covering % of E such that % | E, =
={UNE,|Ue%} refines % ([1], Theorem 14.7, p. 178).

In order to prove Theorem 2.5 we need the following proposition.

2.6. PROPOSITION. Let p : E - B be a closed map of ropolo-
gical spaces, let B, < B be a closed subset, Ey = p~1(B,) and let U
be an open neighborhood of Eo in E. Then there ts an open neighborhood
V of By in B such that p~* (V) < U.

Proof of 2.6. Since p is a closed mapping and E\ U is a closed
set in E, it follows that V' = B \_p (E \ U) is an open neighborhood
of B, in B having the required property p~* (V) < U.

Proof of Theorem 2.5. (q, r, p) is a level-resolution of p and hence
P4, =730 Aed, (5
Since B, is an inverse system, one also has
tar (Bow) € Bozy A< A ©)
It readily follows that
g, (Eox) € Egy A @)
Cl(q, (Eo)) < Eos Aed. (8)

In order to show that qq : E; — E, is a resolution of E,, it suf-
ficies to verify the conditions (B1) and (B2) for q,.

Condition (B1). Let %, be a normal covering of E,. Since E, is
P-embedded in E, there is a normal covering % of E such that % | E,
refines %,. The polyhedral resolution q : £ - E has the property
(B1) and therefore there is 2 A €4 and an open covering %; of E;
such that g3 (%)) refines %. Then %y, = %, | Ey; is a normal covering
of Eyy and g (%) refines % | E, and thus also refines %,.

Condition (B2). Let A €4 and let Uy, be an open neighborhood
of Cl (g, (Eo)) in Eq;. Then there is an open set U, in E; such that

UiNEg = Ug. )
By normality of E;, there is also an open set Uj in E; such that

Cl(q,(Eo)) = Uy = ClI(Uy) = Un (10)
We put
U = g;' (Up) (1D
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Clearly, U is an open neighborhood of E, = p~1 (B,) in E. Hence,
by proposition 2.6, there is an open neighborhood V of By in B such
that p~1 (V) < U, and therefore

P(ENU) € B\ V. (12)

Using Lemma 2.4 we can find a ' > A and an open neighborhood
Vi of Bgy in B; such that v3' (Vi) < V, which implies

e (BN V) € Bx\ V. (13)

Since U = q;' (U3) = g7 ¢34 (U2), it follows that ¢, (U) < qit (U3),
which together with (10) implies

Cl(gy (U)) = qix (Un). (14)

Furthermore, by (5), (12) and (13), we have p, ¢, (E\\U) =
=ryp(ENU) e (B\ V)< By \Vy, which implies

Clgy (ENU) < p7'(By \Vy) € p3' (By \ Bor) = Ex \Eoz. (15)
By normality of Ej, there is an open set U, in E; such that
Cl(g- (ENU)) € Uy € Cl(Uy) € Ep \\ Egp. (16)
Now (14) and (16) imply
Cl(gx (E)) < gir (U VU Uy.
Using property (B2) for q, we can find a A" » 2’ such that
grr (Ex) € gz (U U Uy, (17
Finally, (7), (17), (16) and (9) imply
Gur (Box') = Qv qwa (Eox?) € qur (Eor N quwr (Ex)) S
< g (Bor N @iy (UD) Y qar (Eor N Uy) <
€ g (Eoy) N U € Egy N Uy = Uy,

3. Approximate homotopy liftings and shape fibrations

3.1. Definition ([5]). Let p=(pnly :E = (Epqu,A) >B =
= (B;, 35, /1) be a level map of systems. We say that p has the apro-
ximate homotopy lifting property (AHLP) with respect to a class of
spaces Z provided for each A € 4 and for arbitrary normal coverings
% and ¥ of E; and B, respectively, there is a A’ > 1 and a normal
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covering ¥"' of B, with the following property. Whenever X € 2" and
h:X —->EyH:X X I B, are maps satisfying

(px b, Ho) <7 M

then there is a homotopy H:XxI~> E, such that

(@ by Ho) < % )
(psH,rp Hy <7 3)

We call A a lifting index and ¥ a lifting mesh for 2,  and ¥".

3.2. THEOREM. Let p : E — B be a level map of systems having
AHLP with respect to the class of all paracompact spaces X. If all E,
are polyhedra, then p has the stronger homotopy Iifting property obtained
from Def. 3.1. by replacing (2) by q,» h = ﬁo.

In the proof we need the following two propositions.

3.3. PROPOSITION. Let P be a polyhedron and % an open co-
vering of P. Then there is an open covering ¥V~ of P, which refines % and
has the property thar any two ¥ -near maps f, g : X - P from an arbit-
rary rtopological space X into P are %-homotopic.

Proof. Let K be a triangulation of P so fine that the covering
{St (v, K) | v € K°} refines % (K° denotes the set of vertices of K).
We claim that ¥" = {St (v, K) |v € K°} has the desired property.
Indeed, let f,g : H - P = |K| be #"-near maps. Then there is a
map 4 : X - P such that f and 4 and also 4 and g are contiguous maps
(see the proof of [2], Theorem 2.2). This means that each x € X admits
simplexes o,, 0, € K such that f(x), % (x) €o,, h(x),g(x)€o,. Let

H (x,0), O <t<—;—
H(x, 1) =

1
H, (x, ), —2—<r<1

where
H, (x,0) =1 — 20) f(x) + 2th (x)

Hyx)=Q—-20h(x)+ 2 —1egk

Clearly, H connects f to g. Moreover, for each xe X H({x} X I) <
€ 0, Vo, < St (v, K) for any vertex v of o, N o7. Since {St (v, K) |v €
€ K°} refines % there is a U e % such that H({x} x I) = U.
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3.4. PROPOSITION. Ler X be a paracompact space and % an
open covering of X X I. Then there is a map ¢ : X — (0, 1] such that
each x € X admits a U e U with {x} X [0,¢ (x)] = U.

Proof. For x € X let U, € % be such that (x, 0) € U,. Then there
is an open neighborhood V, of x in X and a number ¢, € (0, 1] such
that V, x [0, ¢,] = U,. Clearly,?” = {V, | x € X} is an open covering
of X. Let 7" be a locally finite open refinement of ¥". For V' e¥”
choose a point x € X such that V' = V,. Then put ¢ =1t,. Let
¥y, V' €¥”) be a partition of unity subordinated to the covering
#”'. Then the desired mapping ¢ : X — (0, 1] is given by

@ (x) = Max {t;. ¥, (x) | V' €¥7}.

Indeed, for each x € X there is a V' €?” such that ¢ (x) = 1, ¥y (x).
Since ¢ (x) > 0, we have x € V'. Moreover, there is an x' € X such
that ¢,» =t and V' < V.. Consequently,

{x} x [0, 9] € V' x [0,25)] € Ve X [0,2¢] € U

Proof of Theorem 3.2. Let p : E -+~ B be a level map of systems
having the AHLP with respect to all paracompact spaces. Let 1 €.
and let ¥ be a normal covering of B,. Choose a star-refinement ¥™* of ¥~
and let % be an open covering of E; which refines p;' (¥*) and is
so fine that any two #-near maps into E; are p;' (¥ *)-homotopic
(Proposition 3.3). Let A" > 2 be a lifting index and let a normal co-
vering ¥~ of B, be a lifting mesh for 4, %, and ¥"*. If h : X — E; and
H:X x I- B, are maps satisfying (py A, Hy) <7, then there is
a homotopy H:Xxx1I - E, satisfying

(s H'y iy H) <V @)

and (q,r A, I';'{,) < %. By the choice of # it follows that there is a
pit (¥ %)-homotopy H” : X X I - E; satisfying

HY =g hy, H! = H. (5)

Then p, H' :Xx1I - B, is a ¥"*-homotopy. By (4) each (x,1) ¢
eX x I admits a V*, €7™* such that p, H (x,0), r;p H(x, 1) €
€ V*..,- Consequently, there is an open neighborhood Uy, of (x, ?)
in X X I such that i H’ (U(x,t)) < V*(x,t) and erH(U(,,,)) = V:::,t)'
Hence # = {Uyy | (x, ) € X X I} is an open covering of
X x I such that for every Ue¥ there is a V*e¥ * satisfying
pi H (U) < V* and ryy H(U) < V* Using Proposition 3.4, one can
find a map ¢ : X - (0, 1] such that each x € X admits a V*e¥™*
such that

i H ({x} x [0, @) € V% rp H({x} X [0, (D) € V*. (6)
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Let us define H : X X I - E; by

{ﬁ"(x,(%), 0<:<?®

2
Heon =18 62 —p() "2 <t<p( @
L& (x, 1) g <e<l

Using (7), (5), (4) and (6) one readily shows that Hy = q;» h and
(P2 H, 1 H) <77

3.5. Definition. A map of topological spaces p : E - B is called
a shape fibration provided there is a polyhedral level-resolution (q, r, p)
of p such that the level map of systems p : E - B has the AHLP with
respect to the class of all topological spaces.

By [10], Theorem 4, if p is a shape fibration and (q, r, p) is an
arbitrary polyhedral resolution of p, then p has the AHLP with respect
to all topological spaces. In [5], Theorem 5.3 it was shown that De-
finition 3.5 is equivalent to the definition of a shape fibration given
by Mardesi¢ in [10]. In particular, one can always assume that the
index set /1 of the inverse systems E and B is cofinite.

4. Restrictions of a shape fibration

The main result of this section is the following theorem.

4.1. THEOREM. Let p:E - B be a shape fibration, which 1is
a closed map of a topological space E to a normal space B. If B, < B
s a closed subset of B and if By and E, = p~* (B,) are P-embedded
in B and E respectively, then po = p | Eo : Eq - B, s also a shape
fibration.

Proof. Let r : (B, By) > (B, Q) be a polyhedral resolution of
a pair of spaces (B, By) ([13}, I, § 6.5). Since B, is P-embedded in
B, the induced morphisms r : B - B and r, : B, - Q are polyhedral
resolutions of B and B, respectively ({13], I §6, Theorem 11). By
construction of the resolution r : (B, B,) - (B, Q) ([13], I § 6, Theo-
rem 10), r : B - B is a canonical resolution of B in the sense of 2.
Let (q, r, p) be a polyhedral resolution of p : E — B given by Theorem
2.3 (#). By [5], Lemma 4.6 and Remark 4.7 we can assume that (q,
r, p) is a polyhedral level-resolution of p. Consequently, q = (g,) :
E—->E = (E), q,),4), r=(r):B —+>B=(B,, ryyA) are poly-
hedral resolutions of E and B respectively, and p =(p;, 14) :E - B
is a level map of systems such that

=710 Acd. ¢y
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Furthermore, by the construction given in [13], I § 6, Theorem 10,
each Q; is a closed polyhedral neighborhood of Cl (r;(B,)) in B; and

T (Qr) € Int Q,, A< A, 2

Using the induction on the number of predecessors of AeA
(«1 is assumed to be cofinite), one can assign to each A a closed poly-
hedral neighborhood C; of Q; in B, such that

1 (Cy) € Int Q;, A<, (3)

Indeed, let 4, be the set of all A € 4 with exactly £ predecessors
different from 2. If 4 €,, we take for C, an arbitrary closed poly-
hedral neighborhood of Q; in B,. Now assume that we have already

E—1
defined C; satisfying (3) for all A € U A, Let Ae Ay and let 4, 4,, ...

.» A< A be all predecessors of A dxfferent from A. Then 4, ¢ U A

i=1,2,...,k and the closed polyhedral nelghborhoods C,i have
already been constructed. By (2), v3; (Int Q,), ¢ =1,2,..., &k, are
open neighborhoods of Q; in B;. Hence, the same is true for

ﬂ r75 (Int Q;). Therefore, there exists a closed polyhedral neigh-

borhood C; of Q; in B, such that C; < n 175 (Int Q,). Clearly,
i=1
C, satisfies (3).

By (3), C = (Cj, 71| Cy,.1) is an inverse system of polyhedra.
Let r;, : By - Cbe given by #,; =r; | By : By - C;. We claim that
r, is a resolution of By. It suffices to verify the properties (B1l) and
(B2) for r,.

(B1) Let %, be a normal covering of By. Since B, is P-embdded
in B, there is a normal covering # of B such that % | B, refines %,.
Since r : B — B satisfies (B1), there is a 4 € A4 and an open covering
%; of B; such that r;' (%,) refines #%. Then %,;, = %;| C, is an open
covering of C, and r3; (%,;) refines %,.

(B2) Let U be an open neighborhood of Cl (r; (B,)) in C,. Then
U n @, is an open neighborhood of Cl (r; (By)) in Q,. Since r; : By —
— Q has the property (B2), there is a A’ » 4 satisfying »,; (Q,) <
< UN Q,. Then by (3), A" > A’ implies 7, (Cp) € 75 (Int Q) = UL

Again, by induction on the number of predecessors of 14

different from A, one can assign to each A a closed polyhedral neigh-
borhood Bg; of C, in B, in such a way that

T (Boy) € Int Q;, A< A (4)
and that
ro = (r [ Bo) : Bo > Bo = (Bop 2y | Boys 4) (5
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is a resolution of B,.
We now put P, = p;'(C,) and remark that (3) implies

@Gy (Py) e IntP,, A< . (6)
Since Cl(r,(B,)) € C, it follows by Theorem 2.5 that
q;, =(¢,| Eo) : Eo » P = (P, %.;.’.iP;.': A) N

is a resolution of E,.

Arguing as above by induction on the number of predecessors
of 2 different from 4, one can now assign to each A € 4 a closed poly-
hedral neighborhood E,; of P, in E, so that

@1 (Eoy) € Int Py, A< X (8)
Eo; = p1' (Int Byy), Aed ®
9o = (41 J Ey) 1 Ey > Eo = (Eop ] Eqys ) (10

is a polyhedral resolution of E,.

Now (1), (5), (9) and (10) imply that (qg, rp, Po) is a polyhedral
level-resolution of pg : Eq ~> By, where po : Eq - B, is a level-map
of systems given by the maps po, = p; | Eo, : Eos = Bo;. The theo-
rem will be proved if we show that p, : E; - B, has the AHLP with
respect to the class of all topological spaces.

Let 72 e/l and let %,,¥ o be open coverings of E,, and B, res-
pectively. Then for each U e, and each V €%, there are open
sets U’ in E; and V' in B, such that U' N Ey, = U and V' N By, =
= V. Clearly, # = fE\Eo,, U |Ue}and? ={B\ By, V' |V e
€% o} are open coverings of E; and B, respectively, satisfying (#
N AE2\\Eo:}) | Eor = W/o; and ("// N {B\ Bo:}) | Bo,=7%. Let#” =
= {Int C;, B, \Q,} and let % be an open covering of B, such that
W refines both ¥~ and 7.

Since (q, r, p) is a polyhedral level-resolution of the shape fi-
bration p we conclude that p has the AHLP with respect to the class
of all topological spaces. Consequently, there is a 2’ > A and an open
covering #”' of B, such that 4’ is a lifting index and #” is a lifting
mesh for A, # and %" with respect to p. We claim that A’ is a lifting
index and #7§ = #" | By, is a lifting mesh for 4, #, and ¥°, with
respect to po. Indeed, let X be a topological space and let 42: X~ E,;,
H : X x I - By, be mappings satisfying

(por b, Ho) < W5

Let 7: Eyy— E, and j:Byy — B, be the inclusion maps. Then
th: X - E, and JH : X X I — Bj are mappings satisfying

(pl' ih,]' Ho) < 1,-’.
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By the choice of A’ and #™ it follows the existence of a homotopy
H : X x I - E, such that

(gar ih, Ho)< ¥ (11)
and

(03 Hy iy JH) < W' (12)
Since ¥ refines ¥, (12) implies

(2 H, 1z JH) <V (12

(12’) implies that for each (x, 1) € X X I either {p,H (x, 1), 7.y jH (x, ) 3=
cIntC, or {p, H(x,0),rjH(x, )} < B,\ Q; Since, by (4),
ri JH (x5, £) € 30 (Boy) € Qj we conclude that p,lﬁ(x, 1) < Int C,.
Consequently, H maps X x I into p;' (C;) = P; < E,;. Now, since
g1 ih(X) € Eoy, (11) implies Ho(X) S Eoy i. €. gz h(X) N (Ex\Eo;) = 0
and Hoy (X) N (E;\\Eo)) = 0. Therefore,

(@ hs ﬁo) < U.

Since ¥ refines ¥, (12) implies (p; H, 120 JH) < ¥ 0t (poy Hy 120 H)<?"
because H (X X I) < E,;. Since po, H(X X I) N (B; \\ Bop) = 0
and r;; H(X X I) N (B, \\ Boy) = 0 it follows that

(Pos ﬁ: r H) <.

4,2. COROLLARY. Let p: E-—>B be a shape fibration, which is a
closed map, let B, be a closed subset of B and let Eo = p~* (By). If E
and B are (a) paracompact, (b) collectionwise normal or (c) pseudocompact
normal spaces, then po = p | Eo : Eo - By is also a shape fibration.

Corollary 4.3 follows immediately from Theorem 4.1 because
every closed subset of a space satisfying either one of the conditions
(a), (b) or (¢) is P-embedded in that space (for (a) see [1], Theorem 15.11
and Corollary 17.5, for (b) see [1], Corollary 15.7 and for (c) see [1],
Theorem 15.4).

Since every closed set of a compact Hausdorff space is P-embedded
in that space ([18], p. 372) and since every map of compact Hausdorff
spaces is closed, Theorem 4.1. also implies the following corollary.

4.3, COROLLARY. Let p : E - B be a shape fibration of com-
pact Hausdorff spaces and let By be a closed subset of By E, = p~1 (By).
Then po = p | Eg : Eq - By is also a shape fibration.

Notice that Corollary 4.3 is a generalization of Proposition 4
of [11].
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5. The exact sequence of a shape fibration

The purpose of this section is to show that every shape fibration
induces a certain exact sequence of homotopy pro-groups. This fact
is obtained as a corollary of the main result of this paper, which says
that a shape fibration p : E — B, which is a closed map of a topolo-
gical space E into a normal space B, induces an isomorphism of ho-
motopy pro-groups (Theorem 5.7). In the proof we will need the
following two facts from [6].

5.1. If Y is an ANR and % is a given open covering of Y, then
there is an open refinement ¥~ of % such that any two ¥ -near maps
f>g : X - Y defined on an arbitrary space X are #-homotopic, which
we denote by f ~4 g ([6], Theorem 1.1, p. 111).

52. If Y is an ANR and % is a given open covering of Y, then
there is an open refinement ¥~ of % such that for any two ¥ -near
maps f,g : X -+ Y defined on a metrizable space X and for any ¥"-
-homotopy F: A X I - Y defined on a closed subspace 4 of X
with Fo = f | 4 and F, = g | 4, there exists a #-homotopy H : X %
x I - Y such that H, = f, Hy, =g and H | A x I = F ([6], Theo-
rem 1.2, p. 112).

By a triple of topological spaces (Y, Y;, Y,) we mean a topolo-
gical space Y and two closed subsets Yy € ¥; € Y.

5.3. LEMMA. Let (Y, Y,, Y,) be a triple of ANR-spaces, 1. e.
Y,Y,, Yo, ANR, and let U be an open covering of Y. Then there
exists an open refinement ¥~ of U such that any two ¥ -near maps of me-
trizable triples f, g : (X, X, Xo) = (Y, Y, Y,) are U-homotopic maps
of triples.

Proof. Let & be an open refinement of % such that for any two
SF-near maps f,g:X — Y and any &-homotopy F: X, X I - Y
with Fy =f|X, and F, =g | X, there exists a #-homotopy H :
:X xI-—>Y such that Hy=f, H =g and H|H, X I =F (5.2).
We put &, =& |Y,. Let & be an open refinement of &, such
that for any two #-near maps f;, g; : X; = Y; and any #-homotopy
G:XoxI—>Y, with Gy =f, | Xo, G, = g, | X, there exists an
& -homotopy F':H; XxI—-Y; such that F,=f,, F{ =g, and
F |Xo X I=G (52). Wenow put Z = % | Y,. Let 2’ be an open
refinement of & with the property that any two P’-near maps into Y,

are #-homotopic (5.1).

For each P €% there is an open set Vp in Y such that Vpn
N Y, =P Then?” = {Y \ Yo, Vp, | P’} is an open covering
of Y and ¥” | Y, refines #'. Similarly, there is an open covering
¥7"" of Y such that ¥"'| Y, refines &. Let ¥ be an open covering of Y
which refines ¥, ¥’ nad %. Then 7~ also refines %, because & re-
fines %.
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We claim that the covering ¥~ has the required property. Indeed,
let f,g 1 (X, X, Xo) = (Y, Y, Y,) be ¥ -near maps. Then the maps
fi1Xog|Xo:Xo — Y, are ¥|Yy-near, and therefore also #'-near.
By the choice of #’ there is a Z-homotopy G : X, X I - Y, with
Go =f| X4, G =g | X,. Since 2 refines # we conclude that G
is also an #-homotopy. From (f|X,,g|X,) <7 |Y, it follows
(X, 8] X,) <&, because 7" | Y, refines #. By the choice of &
there is an & ;-homotopy F’ : X, X I - Y, with F, = f |[X,, F{| X, =
=g | X, and F' | X, X I = G. Furthermore, F’ is an %-homotopy,
because ¥, refines &. (f, g) <¥ imply (f, g) <&, because ¥~ refines
& . By the choice of & it follows that there is a #-homotopy H : X X
X I ->Y with Hy =f,H, =g and H| X, x I = F'. H is a homo-
topy of triples, because H (X, x I) = F' (X, x I) € Y, and H (X, X
XKD=F (X XxI)=G(X, xI) <Y,

54. LEMMA. Ler (P, Py, Py) be a triple of polyhedra and let
¥ be an open covering of P. Then there is an open refinement ¥~ of %
such that for any metrizable triple (X, X, X,), any two ¥ -near maps
of wiples f, g : (X, X, X)) - (P, Py, Py) are U-homotopic as maps of
triples.

Proof. Let Q be the polyhedron P endowed with the metric to-
pology. We define Q; and Q, analogously. Then (Q, Q;,Q,) is a
triple of ANR-spaces [8] and the identity map ¢ : (P, P, Py) - (Q,
Q1 Qo) is a homotopy equivalence of triples ([8], Theorem 2.2)
with a homotopy inverse j :(Q, O, Qo) = (P, Py, Py). Let %' be
a star-refinement of % and let (K, K, K,) be a triangulation of (P,
P,, P;) so fine that the star-covering X = {St(v, K)|ve K°} of
P = |K| refines %’ ([17}, p. 125—126). Since each star is an open set
with respect to the metric topology, we conclude that 2 is also an
open covering of Q. The fact that (Q, Q;, Qo) is a triple of ANR-
-spaces implies the existence of an open covering ¥ of Q which refines
2 and has the property from Lemma 5.3 for maps from (X, X;, Xo)
into (Q, O, Qo) (Lemma 5.3). The continuity of 7 : P -+ Q implies
that ¥~ is also an open covering of P. We claim that ¥~ has the required
property.

Let f,g : (X, X, Xo) = (P, Py, P,) be two ¥ -near maps. Then
if and dg are two ¥ -near maps from (X, X, X,) into (Q, Q;, Qo)-
Consequently, by the choice of the covering ¥7, there is a #~homotopy
of wiples H: (X XI, X; XI,Xq XxI) > (0, 0;, Qo) with H, =
=i, Hy =1 Also jH: (X X L X, X [, Xy, X I) > (P, Py, Py) is
a A -homotopy of triples, because j and 1, are contiguous with respect
to K. Furthermore,

JH 1 jif ~ o jig )]
Since ji = 4 1p as a homotopy of triples, we have also
f = jif, @

g X jig 3
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(2), (1) are (3) imply
fptf 2 pjig = x8.
Since A4 refines %’ it follows that

fpif 2 jig~qeg. 4)

Finally, (4) implies f ~4 g, because %’ is a star-refinement of %. The
last homotopy is a homotopy of triples, because such are all the ho-
motopies in (4).

The notion of a resolution of triples q : (E, E{, E,) - (E, E}, Ep)
can be defined just like the notion of a resolution of pairs defined in
[13]. If we look at the proofs of all the facts used in the proof of Theo-
rem 8, I, § 6 in [13] we see that they remain valid provided we re-
place everywhere pairs by triples. In particular, the following ana-
logues of Theorem 8 of [13] I § 6 holds.

5.5. PROPOSITION. Let q:(E, E,, E;) > (E,E,Ep) be a
resolution of (E, E,, E,). Then the corresponding inverse system [(E,
E,, E,)] in H Top? is associated with (E, E,, E,) (in the sense of Morita
[15]) via [q]:(E, Ey, Eo) — [(E, Ey, Eo)].

By a slight modification of Lemma 5 and Theorem 9 of [13],
§ 6, we also obtain the following fact.

5.6. PROPOSITION. Let q:(E, E,, Eo) > (B, E,Eo) be a
morphism tn pro-Top® and let q :E -+ E, g, =q |E, : E; »E, and
Qo =9q |E, : E; » Eo be the induced morphisms in pro-Top. If
q : E =+ E is a resolution of E and qQ,,q, have property (B2), then
q:(E, E, E;) ~(E, E;, E,) 1s a resolution of the triple (E, E,, E,).

We are now able to prove the main result of this paper.

5.7. THEOREM. Let p : E — B be a shape fibration which is a
closed map of a topological space E into a normal space B. If e€ E, b =
=p(e)y, F=p~1(b) and if F is P-embedded in E, then p induces an
tsomorphism of the homotopy pro-groups

p. : pro-w, (E, F, ¢) - pro-n, (B, b).

Proof. The proof is patterned after the proof of Theorem 2
of [12].

(z) Let r:(B,{b}) -+ (B,Q) be a polyhedral resolution of the
pair (B, {b}). Since {6} is P-embedded in B we obtain (as in the proof
of Theorem 4.1) a polyhedral level-resolution (q,r,p) of p : E -+ B
with A cofinite and a resolution ry = r | {b} : {8} » Q of {b}. Then,
q=1(q) :E—-E=(E,qy,A) and r=(r):B +B = (B, r;, 1)
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are polyhedral resolutions of E and B respectively; p = (p;, 1) : E =
—B is a level map of systems such that p,g,=r,p for each A€/ and
r; = (r;| {6} : {6} -~ Q = (Qy 722 | Qsr» A) is such a resolution that
every Q; is a closed polyhedral neighborhood of r, (b)) = b, in B, with

e (Qy) € IntQ,, A<, (5)

Let ¢, = q,(¢e), A €. As in the proof of Theorem 4.1 one can
assign (by induction on the number of predecessors of 1) to each
A e a closed polyhedral neighborhood C; of Q, in B, such that

r (Cy) € Int Q;, A< A (6)

and that r, = (r; | {8}) 1 {b} > C = (C, 7, | Cy,:1) is a polyhedral
resolution of {b}. Again, as in the proof of Theorem 4.1 one constructs
neighborhoods D, of C; in B, such that

riy(Dp) € IntQ;, 2 < 2 )

and that r, == (r, | {b}) : {6} > D = (D;,7; | Dy, 1) is a polyhedral
resolution of {b}. As in the proof of Theorem 4.1 we put P, =p~*(C,)
and see that q, = (¢, F): F > P = (P), q; | Py, A) is a resolution
of F=p~1(b). We then construct closed polyhedral neighborhoods
F, of P, in E; such that

G (Fp) € Int Py, A< X (8)
F,cpit(IntD), Ze.l 9)

and such that q, : E - F = (F), ¢; | Fir,.1) is a polyhedral reso-
lution of F.

By (9) we conclude that for each Ae.l, p,:(E; Fy,e) -
—~(B;, D,, b;). Therefore, for each 1€., p, induces a homomorphism
pix 7ty (Eyy Fyy €;) = 7, (Byy Dy, b). Furthermore, by Proposition 5.6,
we conclude that q : (E, F, ¢) - (E, F, e) is a resolution of the triple
(E, F, ¢), and thus, by Proposition 5.5, the inverse system [(E, F, e)]
in H Top® is associated with (E, F, ¢). Similarly, we conclude that
[(B, D, b)] is associated with (B, b). Therefore, the homomorphisms
p;+ induce a morphism of homotopy pro-groups p, : pro-=, (E, F, ¢) -
- pro-m, (B, b) ([14], p. 318).

(i) In order to show that p, is an isomorphism, it is sufficient,
by Morita’s lemma ([16], Theorem 1.1), to show that for each 4 .1
there is a g e.d, u > 4, and a homomorphism g : @, (Bu, Dy, b,) -
— (E,, F,, e;) such that the following diagram commutes
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qA“*
m E ,F » it
n( arFa e/\)‘ Ty ‘E#' F“,E“)
\\
~-
P\* \g\\ Pux (10)
\\\
T, {By,D,,b,) ==
n (Bai Dy, by) rran Tp (8,0, b))

Since (q, r, p) is a polyhedral resolution of the shape fibration
p : E - B, we can assume that p : E — B has the AHLP with respect
to all topological spaces. Furthermore, since each E; is a polyhedron,
p has the stronger lifting property in the sense of Theorem 3.2 with
respect to all paracompact spaces.

Let Z€.l and let ¥}, = {Int C,, B, \ Q;}. Let ' == 2 be a lifting
index for 4, 77 and let¥”), be an open covering of B;-, which is a lifting
mesh for 4, ;. By Lemma 5.4, there is a refinement ¥7}. of #7} such
that any two ¥ j-near maps of triples from (I", 61", J"~ !} into (B;, D;,
b)) are ¥ ;-homotopic as maps of triples, where J"~! = (¢I"~! x I) U
U ("1 x 1). Let ¥ = {Int Cy, B\ Qy} and let ¥} be an open
covering of B,, which refines both the coverings 7- and ¥7;.. Then
¥ refines also #"3 and so %7 is a lifting mesh for 4 and ¥. Finally,
fet w €1, u > A, be a lifting index and let the open covering ¥, of B,
be a lifting mesh for 2’ and #.

Let a ez, (Bu, Dy by) be given by a map @ : (", cI", J"~ 1) »
— (Buy Dy, b,) and let ¢ : J"~ 1 —» E, be the constant map ¢ (J"~ 1) =
= e,. Notice that p. ¢ = @ | J"~*, and therefore

Pup @ | T <Y (1D

Since (I", J"~ 1) ~ (I", I"=1 x 0), one can view ¢ as a map I"~! ¥
x 0 = E, and @ as a homotopy I"~! x I - B, with the initial stage
equal to @ |J"~ 1. Therefore, by (11) and by the choice of u and ¥,
there is a map @I E, such that

@ IJ"_I =qyu® = €&y (12)
(22 D, 11 B) < Wy (13)

Since # refines ¥ (13) implies
(pr , o P) < ¥y = {Int Gy, By \Qr}. (13)

By (7) we have r;, @ (I") < r;, (Dy) < Opps which implies 7;,, @ (61") N
N (By \Qx) = 0. Now (13) implies py @ (¢I") € Cp, i. e
& (©I" < pi* (C,)) = P, < F,,. Thus, we conclude, by (12) that
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@ (I, oI, J*~ 1) » (Ey, Fy, e7). Therefore, [@)ean,(Ey, Fy, e;).
We now define g by

g (@) = g ([P)) = [gs» D) = qu, [B]. (14)

(i) We will now show that g is independent of the choice of é
and @. Let @' :(I"9I",J" 1) > (By, Dy, b,) be another represen-
tative of a == [@] and let &' satisfy (12) and (13) with @, @ replaced
by @', @' respectively. Then @~ @', and thus there is a homotopy

H:(I"x LaI" X I, J"= ' 3¢ I) - (Bus Dy by)

such that Hy =@ and H;, = &'.

We now consider the map A:(I" x Q)u "X ) uJ" !«
x I) - E; given by

BRI x0=8, h|I"x1 =&, h|J=! xXI=e¢.
It is easy to see that 4 is continuous and that
(br by H) < W

By the choice of A’ and %7, it follows the existence of a homotopy
H:I" x I - E, with

HII"x0=g, hlI"*0=¢q,, & (15)
HII"x1=guh!I"x1=gq, & (16)
H|I"' xI=gyh|J"txI=e¢ (17
(p, H, 1, H) < ¥, = {Int C,, B, \ . Q,}. (18)

Since H(@I" x I) € D, (7) implies r;, H(@I" x I) = Q,. There-
fore, r,, HeI" x ) " (B;\ Q,) = 9. By (18) it follows that
p. H(I" x I) < Int C, which implies that H (¢I" X I) < F,. Thus,
we conclude that H:(I" X I, 8I" x I, J"=* X I) - (E,, Fy ;). (15)
and (16) imply

H:q; ®~q, D

Consequently,

g ([P]) = [guwr B) = [q1r '] = g ([#')).
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(iv) We now show that g is a homomorphism of groups. Let
a=a' a’ and let ' = [D'], "’ = [®"]. Then a = [D], where D :
(I oI, J"= 1Y) — (By, Dy, b,) is given by

[@' (x, 25, 1), O<s<

D(x,5,1) = 1 (19)
D' (x,2s—1,10), > <s< 1

29| m

where x € I"~2, ¢t € I. Notice that @', @"' induce (5’, @ (Ir el Y —
— (E;s, Fy, e;) and the analogues of (12) and (13) hold. Let @ :
(o1, Jn— 1) > (Ey, Fy, ep) be defined by

[5' (x, 25, 1), 0<s <—;~

D(x,s,1) = 2
@ ~ 1 (20)
D (x,2s— 1, 1), —2—<s<1

where x eI” 2, t€ 1. From (19), (20) and from (12), (13) applied to
@’ and @, one obtains (12) and (13) for @, which proves

£ ([P)) = gy ([D)).

However, by (20), [@] = [#'] [?"], and thus we obtain g (¢’ ¢”’) =

=g () = g ([P]) = g, (1B = g, ([F') qu, (P"]) = g («) g («")-
Let us establish the commutativity of diagram (10).

(v) First we show that
Drs 8 = Tauy

If a = [@] €, (B[D Dﬂ) b(‘)’ then

P1s 8 (0) = Pry Qarrs ([B1) = [1 01 P) @21
Vips (a) = Yoy ([¢]) = ["Lu D). (217)

Since #’y refines ¥7), (13) implies (p; ?, ryu @) < 77}, By the choice
of ¥, it follows that there is a ¥ ;-homotopy G : (" X I, dI" X
X I, J"=1 X I) + (By, Dys by) with G :py @~ r,, ®. Then 7,4 G:
1y pr P71, D, Since vy py = Py g, it follows p; g;y P~ 73u D.
With this in mind, (21") and (21”) imply (21).

(vi) We now show that gp,, = ¢u,.

Let B emn,(Eu Fye,) be given by a map ¢ :(I% oI J"°1) —
— (Ey, Fyy e4), 1. €. B =[], and let p,, (f) = [P], where & = p, ¢.
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We put @ = gru@- It is easy to see that @ | J*=1 = e, and py P =

= r7u®, i.e. (12) and (13) hold. Therefore, g ([]) = gur, (D)),

which means that g p,, (8) = ¢, (f). This proves the theorem.
If we pass to the shape groups

7Ytn (E, F, e) = 11(1'_11 pro-z, (E: F, e)
7, (B, b) = lim pro-z, (B, b)
then we obtain from Theorem 5.7 the following corollary.

5.8. COROLLARY. Let p : E - B be a shape fibration, which
is a closed map of topological space E into a normal space B. If ¢ € E,
b=p(e) and if F=p~1(b) is P-embedded in E, then p induces an
isomorphism of the shape groups

p: : % (E, F, €) -, (B, b).

In [7], 5.2, it is shown that whenever (E, F, e) is an object in pro-
-HCW?3, then the following sequence of homotopy progroups is exact.

... = pro-w, (F, e)— pro-n, (E, ) > pro-=, (E, F, ¢) > pro-m,_, (F, &) .

Hence, Theorem 5.7 yields the following result.

5.9. THEOREM. Let p : E - B be a shape fibration, which is
a closed map of a ropological space E into a normal space B. If e € E,
b=1p(e), and if F = p~1 is P-embedded in E, then the following se-
quence of homotopy pro-groups is exact

i 4
... > pro-m, (F, €) — pro-m, (E, €) l_’; pro-z, (B, b) — pro-m,—, (F, e)—+...

Hence i, and p, are morphisms of pro-groups induced by the inclu-
sion map ¢: F - E and by the map p : E - B respectively, and
J is the composition of the inverse of the isomorphism of pro-groups
induced by p : (E, F, ¢) = (B, b, b) (Theorem 5.7) and of the boundary
morphism pro-m, (E, F, ¢) - pro-m,_; (F, ¢) induced by the boundary
homomorphisms 7, (E;, F;, €;) = -1 (F;, €3).

5.10. COROLLARY. Let p : E -+ B be a closed map of metric
ANR spaces (nor necessarily locally compact), which has the AHLP in
the sense of Coram and Duwall [3]. If ec E, b=p(e), F = p~*{b),
then the following sequence is exact

i, Ps é
... = pro-m, (F, ) - n, )E, &) — 7, (B, b) — pro-n,_; (F, &) ...

Proof. By [10], Corollary 4, p is a closed shape fibration and the
assertion follows immediately from Theorem 5.9.



176 Q. Haxhibeqiri

REFERENCES:

{11 R. Alo and H. Shapiro, Normal topological spaces, Cambridge Univ. Press,
London, 1974.

[2] P. Bacon, Continuous functors, General Topology Appl. 5 (1975), 321—331.

[3] D. Coram and P. Duwvall, Approximate fibrations, Rocky Mountain J. Math.
8 (2) (1977), 275—288.

[4] O. Haxhibegiri, Fibrations for topological spaces (Serbo-Croatian), Ph. D.
Thesis, Zagreb, 1980.

[5] —__, Shape fibrations for topological spaces, Glasnik Mat. Ser. III.
17 (37) (1982), 381—401.

[6] S. T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, 1968.

[7] §. Marde§ié, On the Whitehead theorem in shape theory I, Fund. Math.
91 (1976), 51—64.

[8 ., Spaces having the homotopy type of CW-complexes, Mimeo-
graphed Lecture Notes, Univ. of Kentucky, Lexington, 1978.

91 — ____, The foundations of shape theory, Mimeographed Lecture
Notes, Univ. of Kentucky, Lexington, 1978.

[10] ., Approximate polyhedra, resolutions of maps and shape fi-
brations, Fund. Math. 114 (1981), 53—78.

[t} — _ and T. B. Rushing, Shape fibrations I, General Topology
Appl. 9 (1978), 193—215.

[12] , Shape fibrations II, Rocky Mountain J.
Math. 9 (1979), 283—298.

[13) _____ and ¥. Segal, Shape theory, North-Holland Publ. Co., Am-
sterdam, 1982.

[14] ___ _ and $. Ungar, The relative Hurewicz theorem in shape theory,
Glasnik Mat. Ser III 9 (29) (1974), 317—327.

[15] K. Morita, On shapes of topological spaces, Fund. Math, 86 (1975), 251—259.

[16] — ., The Hurewicz and the Whitehead theorems in shape theory,
Sci. Rep. of the Tokyo Kyoiku Daigaku, 12 (1974), 246—258.

[17] E. H. Spanier, Algebraic Topology, McGraw-Hill Book Company, New
York, 1966.

[18] §. Ungar, n-connectedness of inverse systems and applications to shape theory,
Glasnik Mat. Ser I1I, 13 (33) (1978), 371—396.

(Received October 4, 1981) Department of Mathematics
(Revised February 22, 1982) University of Kosovo
Priitina, Yugoslavia

EGZAKTAN NIZ FIBRACIJE OBLIKA
Q. Haxhibegiri, PriStina

Sadrzaj

Koristeti definiciju fibracije oblika izmedu proizvoljnih topolodkih
prostora iz [5], dokazane su slijedeée Cinjenice:

Neka je p : E - B zatvoreno preslikavanje topoloskog prostora E u
normalni prostor B koje je fibracija oblika. Tada
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(@) Ako je B, zatvoren podskup od B, E, = p~1(B,) i ako su
E, i B, P-smjesteni u E odnosno B, onda je i restrikcija p | Eo : Eq —
— B, fibracija oblika. (Teorema 4.1).

(@) Ako je e E, b =p(e) i F =p~1(b) P-smjesten u E, onda
p inducira izomorfizam homotopskih pro-grupa

p. : pro-n,(E, F, ¢) - pro-=, (B, b).

(Teorema 5.7). Kao korolar od (i7) dobivamo slijede¢i egzaktan niz
fibracije oblika

. = pro-m, (F, e) - pro-z,(E, ) - pro-7n,(B, b) - pro-m,_(F,e)—...

(Teorema 5.9).



