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THE EXACT SEQUENCE OF A SHAPE FIBRATION

Q. Haxhibeqiri, Priština

Abstract. Using the definition of shape fibration for arbitrary topological spaces
given in [5] we show when a restriction of shape fibration is again a shape fibration
(Theorem 4.1) and when a shape fibration induces an isomorphism of homotopy
pro-groups (Theorem 5.7) obtaining also the exaet sequence of shape fibration
(Theorem 5.9).

1. Introduction

The notion of a shape fibration for maps between compact metric
spaces was introduced by S. Mardešic and T. M. Rushing in [11]
and [12]. In [10] Mardešic has defined shape fibrations for maps between
arbitrary topological spaces. In [5] the author has given an alterna­
tive definition of a shape fibration, which is equivalent to Mardešic's
definition from [10]. Using some results from [5] and [10] we estab­
lish in the present paper the following two facts concerning shape
fibrations p : E --+ B, which are closed maps of a topological space
E to a normaI space B.

(i) If Bo ::; B is a closed subset of B, then the restriction of p
to Eo = p-I (Bo) is also a shape fibration whenever Eo and Bo are
P-embedded in E and B respectively (Theorem 4.1).

(t"z) If e E E, b = P (e) and F = p- I (b) is P-embedded in E,
then p induces an isomorphism of the homotopy pro-groups

p*: pro-nn (E, F, e) -+ pro-nn (B, b)

(Theorem 5.7).

As acorollary of (t"i) one obtains the exact sequence of a shape
fibration (Theorem 5.9).

These resuits generalize the corresponding results for compact
metric spaces from [11] and [12]. The paper can be viewed as a con­
tinuation of papers [5] and [10].

The author wishes to express his gratitude to professors S. Mar­
dešic and Š. Ungar for the valuable help received during the writing
of this paper.

Mathematies st/bjeet classifieations (1980): 55 P 55, 55 Q 07,54 B 25, 55 R 65.
Key words and phrases: Shape fibration, ,homotopy lifting, resolution.
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2. On resolution of space s and maps

In this section we recall the definitions of a resolution of a space
and of a resolution of a map [10], and we establish some facts needed
in the sequeI.

2.1. Definition ([10]). A map of systems q = (qi): E -+ E =
= (Ei., q).i:, ..1) is a resolution of the space E provided the following
conditions are fulfilled:

(Rl) Let P be a polyhedron, "Y an open covering of P andf : E -;>

-+ p a map. Then there is a ), E..1 and a map f;. : Ei. -+ P such that
!J. qi. and f are 1/'-near, which we denote by (f;. qi.' f) ,;;;,,,-

(R2) Let P be a polyhedron and ·r an open covering of P. Then
there is an open covering"Y' of P with the following property. W'henever
f,/, : Ei. -+P are maps satisfying (fq)., /'q) ,;;;i~', then there is a
).' ;> ), such that (fqli:'/' qi.l) ,;;;r.

If all E/s are polyhedra (ANR's), then q: E -+ E is called a
polyhedral (ANR) resolution.

2.2. Definition. Let p : E -+ B be a map. A resolution of p is a
triple (q, r, p), which consists of resolutions q : E -~ E and r : B -+
-+ B = (BI" r"iJ"111)of the spaces E and B respectively and of a map
of systems p = (Pl" n) : E -+ B satisfying p q '= rp, i. e. PI' q;r (I') =
= r" P, Il E il1.

If a map p = (p)., lA) : E -;> B = (B)., rlJ.', 11) is a level map [5],
then (q, r, p) is called a level-resolution. In this case p q = rp is equi­
valent to Pl q). = rl P, ;. E ..1.

It was shown in [10] that q : E -+ E is a resolution of E if it
satisfies the following conditions:

(BI) For each normal covering qt of E there is a ). E.ll and a nor­
mal covering qt}. of El such that q;,l (qt).) refines qt, which is denoted
by q;,l (ql).) ;> q(.

(B2) For each ), ELi and each open neighborhood U of Cl (ql (E))
in El there is a A' ;> A such that qi.l (El') S U.

Conversely, if all El are normal, then every resolution q : E -+ E
has properties (BI) and (B2) ([10]), Theorem 6). In particular, every
polyhedral resolution has properties (BI) and (B2).

In the seque1 we will use a speciai type of polyhedral resolutions,
which we will call canonical resolutions. These are polyhedral reso­
lutions r = (r,.) : B -+ B = (B", rl'iJ"M) such that M is a cofinite
directed set, each B" is the nerv IN (1',,) I of a normal covering YI' of
B and rl'l" : B,,' -+ B,,, Il ,;;;Il', is a simplical map such that r"I" (V') =
= V implies V' S V, where V' El' iJ' and V El'w Moreover, rI' : B -+
-+ BIJ is the canonical map given by a locally finite partition of unity
(tv v> V E I' p') subordinated to I' iJ' i. e.

rl' (x) = L lJFv (x) V,
V.

xEB.
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2.3. THEOREM. (t) Every topological space B admits a cano­
nical resolution.

(ii) If r :B ~ B is a canonical resolution of B, then eve,y map
p : E ~ B of topological spaces admits a polyhedral resolution (q, r, p).

A proof is obtained by obvious modifications of the proof of
Theorem 11, [lO].

The following lemma is needed in the sequel.

2.4. LEMMA. Let B be a normal space and r = (1';,) : B ~ B =
= (B;" 1';'1:, A) a polyhedral resolution of B. Let BO c B be a closed
subset and let rO = (1';, I BO) : BO ~ BO = (Bo;" 1';'1: I BOJ:' A) be a
,'esolution of BO such that every BoJ. is a closed subset of B;,. Then for
every open neighborhood V of BO in B and for every i, E A there is a
I,' ;;;. A and an open neighborhood Vi: of BoJ.' in BI: such that

rj/ (VI!) S;; V.

Proof. <?f = {V, B"'Bo} is a normal covering of B. Since r is
a po1yhedral reso1ution, it has the property (BI). Consequently, there
is a flo E A and there is an open covering 1111p of Bp such that 1';1 (JIII')

refines ql. Let 'p E A, 'p ;;;. i" flo. Then 1111. = 1';; (OltI') is an open covering
of B" such that 1'.-1 (U.) refines qr, It follows that for each UE I1Ir.

U n Cl (1'. (BO)) #- 0 <o> U n r. (Bo) #- 0 => 1';1 (U) S;; V (1)

Let us put
V. = u {U E ql" I U n Cl (1'. (Bo)) #- 0}

Clearly, V. is an open set in B. and Cl (1'. (Bo)) S;; V", Moreover,
by (I), one has

r; 1 (V.) S;; V. (2)

The set V. n BOl' is an open neighborhood of Cl (r. (B o)) in BOl"
Renee, by property (B2) of ro, there is a A' ;;;. v such that r,J.' (BOl.) S;;

S;; V. n BO• S;; V., i. e. BOJ: s;; r;;.! (V.). Using normality of BJ: one
can find an open set V;,' in BI: such that BOl: S;; VI: S;; Cl (V;,') S
S;; r;} (V,.). Then Vi: is the desired neighborhood of BoJ.' because,
by (2),

(3)

2.5. TREOREM. Let p : E ~ B be a closed map of a topological
space E imo a normal space B, let BO be a closed subset of B and let EO =
=p-I (Bo) be P-embedded in E. Furthermore, let (q, r, p) be a poly­
hedral level-resolution of p and let ro = (1';, I Bo) : Bo ~ Bo =
= (BOl., ri.;" I Bo;,', .(1) be a resolution of Bo such that each Bo;, is a closed
subset of Bi.. Then qo = (qo;,) : Eo ~ Eo = (Eo;" q;,;,' I EOI:' A) is a
resolution of Eo, where qo;, = q):1Eo and

EOi. = Pil (BOl.), i. ElI. (4)
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Retal1 that Bo S; B is P-embedded in B provided every normal
covering q,o of Bo admits a normal covering lfI of B such that lfI I Bo =
={UnBolUElfI} refines lfI ([1], Theorem 14.7, p. 178).

In order to prove Theorem 2.5 we need the fol1owing proposition.

2.6. PROPOSITION. Let p : B -+ B be a closed map of topolo­
gical spaces, let Bo S; B be a closed subset, Bo = p-l (B o) and let U
be an open neighborJwodof Bo in B. Then there is an open neighborhood
V of Bo in B such that p-l (V) S U.

Proof of 2.6. Since p is a closed mapping and B"- U is a closed
set in B, it fol1ows that V = B "-p (B "- U) is an open neighborhood
of Bo in B having the required property p-l (V) S U.

Proof of Theorem 2.5. (q, r, p) is a level-resolution of p and hence

A EA. (5)

Since 'Bo is an inverse system, one also has

A';;; A'. (6)

It readily fol1ows that

A EA.

(7)

(8)

In order to show that qo : Bo -+ Eo is a resolution of Bo, it suf­
fides to verify the conditions (BI) and (B2) for qo.

Condition (BI). Let 0/10 be a normal covering of Bo. Since Bo is
P-embedded in B, there is a normal covering q, of B such that 0/11 Bo
refines lfI o. The polyhedral resolution q: B -+ E has the property
(BI) and therefore there is a AE A and an open covering O/IA of BA

such that q"i1 (0/1;.)refines 0/1. Then q,oA = O/IAI BOA is a normal covering
of BOA and qol (q'OA) refines q, I Bo and thus also refines lfIo.

Condition (B2). Let ). E A and let UOA be an open neighborhood
of Cl (qA (Bo)) in Bo; .. Then there is an open set UA in BA such that

(9)

By normality of Bi., there is also an open set U" in B~ such that

(10)
We put

(11)
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Clearly, U is an open neighborhood of Eo = p-I (Bo) in E. Renee,
by proposition 2.6, there is an open neighborhood V of Bo in B such
that p-I (V) S; U, and therefore

(12)

Using Lemma 2.4 we can find a A' ;:;. A and an open neighborhood
V;.' of Bo;.' in B;., such that ri'! (V):) S; V, which implies

(13)

Since U = qJ.l (U;,) = qi,1 qil, (U;), it follows that ql (U) S; qJ.l, (U;,),
which together with (10) implies

(14)

Furthermore, by (5), (12) and (13), we have p;., q;.' (E "'U) =
= r;.' p (E '" u) S; r;., (B '" V) S; B;.' '" VJ.', which implies

Cl q;.' (E'" U) S; Pi/ (B): '" Vi:) S; P"i/ (B).' '" Bo;.') = E;.' "'Eo;.'. (15)

By normality of Ei.', there is an open set U): in E;.' such that

Cl (qdE '" U)) S; U;., S; cl (U;.,) S; E;.' '" Eo;." (16)

Now (14) and (16) imply

Cl (qx (E)) S; q"i.1- (U;.) u U;."

Using property (B2) for q, we can find a A" ;:;.A' such that

q;.';." (Ex,) S; q;l, (U;.) u U;,"

Finally, (7), (17), (16) and (9) imply

qi.i." (Eox') = qi.;" qi.'J." (Eo):') S; qi.;" (Eoi.' Il qj.'i:' (E;.")) S;

S; qJ.X (Eoi.' Il q'i.l' (Ui)) u qi.).' (Eoi.' Il UX) S;

(17)

3. Approximate homotopy liftings and shape fibrations

3.1. Definition ([5]). Let p = (pi., lA) : E = (E;., qi.i.', A) -+ B =
= (B;., ri.i.', A) be a level map of systems. We say that p has the apro­
ximate homotopy lifting property (AHLP) with respeet to a class of
spaces !!l' provided for each A E A and for arbitrary norma! coverings
'W and"Y of Ei. and B;. respectively, there is a A' :> A and a normal
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covering iI"' of B)., with the foUowing property. Whenever X E f!f and
h : X -+ E)." H : X x I -+ B)., are maps satisfying

then there is a homotopy fl :X x I -+ E;. such that

(q).): h, flo) -< 0If

(p).B, ru H) -< iI".

(1)

(2)

(3)

We caU A.a lifting index and iI"' a lifting mesh for A., 0If and iI".

3.2. THEOREM. Let p : E -+ B be a level map of systems having

AHLP with respect to the class of all paracompaet spaces X. If all E).

are polyhedra, then p has the stronger homotopy hfting property obtained

from Def. 3.1. by replacing (2) by q;..t h = Bo.

In the proof we need the foUowing two propositions.

3.3. PROPOSITION. Let P be a polyhedron and 0/1 an open co­
vering of P. Then there is an open covering il" of P, whz'ch refines 0/1and
has the property that any two il" -near maps f, g : X -+ P from an arbit­
?"ary topological space X into P are IJlt-homotopic.

__ Pr_o_of.Let K he a triangu1ation of P so fine that the covering
{St (v, K) IVE KO} refines 0If (KO denotes the set of vertices of K).
We c1aim that il" = {St (v, K) IVE KO} has the desired property.
Indeed, let f, g : H -+ P = IKI he iI"-near maps. Then there is a
map h : X -+ P such that f and h and also h and g are contiguous maps
(see the proof of [2], Theorem 2.2). This means that each x EX admits
simp1exes (1"" < E K such that f (x), h (x) E (1"" h (x), g (x) E (1~. Let

(HI (x, t),

H(x, t) =
H2 (x, t),

where

HI (x, t) = (1 - 2t)f(x) + 2th (x)

H2 (x, t) = (2 - 2t) h (x) + (2t - 1)g (x)

C1ear1y, H connects f to g. Moreover, for each x EX H ({x} x I) S
S (1x U (1; S St (v, K) for any vertex v of (1",n (1;. Since {St (v, K) IVE

EKO} refines 0If there is aUE 0If such that H ({x} x 1) S U.
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3.4. PROPOSITION. Let X be a paracompact space and 0// an
open covering of X x I. Then there is a map rp : X -+ (O, I] such that

each x EX admits aUE 0// with {x} x [O, rp (x)] S U.

Proof. For x EX let UJ<E 0/1 be such that (x, O) E UJ<'Then there
is an open neighborhood VJ<of x in X and a number tJ<E (O, 1] such
that VJ<x [O, tJ<]S UJ<'Clearly, "Y = {VJ< Ix EX} is an open covering
of X. Let "Y' be a IocalIy finite open refinement of i/". For V' E"Y'
choose a point x EX such that V' S VJ<' Then put ty' = tJ<' Let
('Py', V' E"Y') be a partition of unity subordinated to the covering
"Y'. Then the desired mapping rp : X -+ (O, 1] is given by

rp (x) = Max {t~, 'P~, (x) I V' E"Y'}.

Indeed, for each x EX there is a V' E"Y' such that rp (x) = tv' 'Pv' (x).
Since rp (x) > O, we have x E V'. Moreover, there is an x' EX such
that tv' = tJ<' and V' S VJ<" Consequently,

{x} x [O, rp ex)] S V' x [O, tv'] S Vx' x [O, tx'] S Ux·

Proof of Theorem 3.2. Let p : E -+ B be a IeveI map of systems
having the AHLP with respeet to all paracompact spaces. Let ). E /1
and Iet"Y be a normaI covering of BJ •• Choose a star-refinement"Y* of"Y
and let 0// be an open covering of Ei. which refines P'i.l ("Y*) and is
so fine that any two o/I-near maps into El. are P'i.! (r*)-homotopic
(Proposition 3.3). Let ).' :> I, be a lifting index and let a normal co­
vering"Y' of Bi.' be a lifting mesh for ).,0/1, and r*. If h : X -+ E;,' and
H: X x I -+ Bi.' are maps satisfying (p;: h, Ho) <, "r', then there is

a homotopy ii' :X x I -+ Ei. satisfying

(4)

and (q;,;: h, H~) <, 0/1. By the choice of 0/1 it folIows that there is a

Pil (i""*)-homotopy ii" :X x I -)- Ei. satisfying

(5)

Then Pi. ii" :X x I -+ Bi. is a i/'*-homotopy. By (4) each (x, t) E

EX >< I admits a V*(x.f) Er* such that Pi. H' (x, t), r;,i.' H (x, t) E
E V*(J<,t). Consequently, there is an open neighborhood U(J<,f) of (x, t)

in X x I such that P;. ii' (U(J<,t») S V*(J<.t) and r.u' H (U(J<,f») S V~x,t)'
Renee "ff/' = {U(J<,f) I (x, t) E X x I} is an open covering of
X x I such that for every U E ir there is a V* E"Y* satisf)ring

P;. ii' eU) S V* and r.u' H (U) S V*. Using Proposition 3.4, one can
find a map rp : X -+ (O, I] such that each x EX admits a V* E"Y*
such that

P;. ii' ({x} x [O, rp ex)]) S V*, r.u' H ({x} x [O, rp (x)]) S V*. (6)
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Let us define ii :X x I -+ E). by

rH-II ( 2t)x, ep(x) ,

li (x, t) = ili' (x, 2t - ep(x)),lii' (x, t),

o .;; t .;; ep (x)
2

CfJ;x) .;; t .;;ep(x)

CfJ(x) < t < 1

(7)

Using (7), (5), (4) and (6) one readi1y shows that Ho = qiX h and

(p;. ii, r;.;: H) < 1/.
3.5. Deji.nition. A map of topo1ogica1 spaces p : E -+ B is called

a shape ji.bration provided there is a po1yhedra11eve1-reso1ution (q, r, p)
of p such that the 1evel map of systems p : E -+ B has the AHLP with
respect to the class of all topo1ogica1 spaces.

By [10], Theorem 4, if P is a shape fibration and (q, r, p) is an
arbitrary po1yhedra1 reso1ution of p, then p has the AHLP with respect
to all topo1ogica1 spaces. In [5], Theorem 5.3 it was shown that De­
finition 3.5 is equiva1ent to the definition of a shape fibration given
by Mardešic in [lO]. In particu1ar, one can a1ways assume that the
index set "1 of the inverse systems E and B is cofinite.

4. Restrictions of a shape fibration

The main result of this section is the following theorem.

4.1. THEOREM. Let p : E -+ B be a shape ji.bration, which is
a closed map of a topological space E to a normal space B. If Bo S B
is a closed subset of B and ii Bo and Eo = p-I (Bo) are P-embedded
z'n B and E respectz'vely, then Po = P [ Eo : Eo -+ Bo is also a shape
ji.bration.

Prooj. Let r: (B, Bo) -+ (B, Q) be a po1yhedra1 reso1ution of
a pair of spaces (B, Bo) ([13], I, § 6.5). Since Bo is P-embedded in
B, the induced morphisms r : B -+ B and r1 : Bo -+ Q are po1yhedra1
resolutions of B and Bo respective1y ([13], I § 6, Theorem 11). By
construction of the reso1ution r : (B, Bo) -+ (B, Q) ([13], I § 6, Theo­
rem 10), r : B -+ B is a canonica1 reso1ution of B in the sense of 2.
Let (q, r, p) be a po1yhedra1 reso1ution of p : E -+ B given by Theorem
2.3 (ii). By [5], Lemma 4.6 and Remark 4.7 we can assume that (q,
r, p) is a po1yhedra1 1eve1-reso1ution of p. Consequently, q = (q).) :
: E -+ E = (E;., q).;.', A), r = (r;.) : B -+ B = (B)., r).J.', A) are po1y­
hedra1 reso1utions of E and B respective1y, and p = (p;., 1.1) : E -+ B
is a 1eve1 map of systems such that

(1)
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Furthermore, by the construction given in (13], I § 6, Theorem 10,
each Q,l is a closed polyhedral neighborhood of Cl (r,l(Bo)) in B,l and

(2)

Using the induction on the number of predecessors of A. E A
("1 is assumed to be cofinite), one can assign to each I. a closed poly­
hedral neighborhood C,l of Q,l in B,l such that

r··, (c.,) ~ Int Q" A < A'.1.1. I. Il. (3)

Indeed, let .!lk be the set of all il. E"1 with exact1y k predecessors
different from I.. If I. E Lto, we take for C;. an arbitrary closed poly­
hedral neighborhood of Q,l in B;.. Now assume that we have already

k-l
defined C,l satisfying (3) for all A. E U "ij• Let I, EAk and let 1.[>1'2''''

j=o
k-l

... , I'k < I, be all predecessors of A different from I•. Then I'i E U LI j,
j=O

i = I,2, ... , k, and the closed po1yhedral neighborhoods Ci.i have
already been constructed. By (2), 1'"i.,~ (Int Q,l), i = 1,2, ... , k, are
open neighborhoods of Qi. in Bk Renee, the same is true for

k

n rJ.i). (Int QJ. Therefore, there exists a closed polyhedral neigh­
i~l

k

borhood Cio of Qi. in Bi. such that C,l ~ n r"i.,~ (Int Q,l,). Clear1y,
i=1

Cio satisfies (3).

By (3), C = (CJ., ri),' C,l', .1) is an inverse system of polyhedra.
Let r.! : Bo -+ C be given by Tv. = r,l I Bo : Bo -+ Ck We claim that
r.! is a resolution of Bo. It suffices to verify the properties (BI) and
(B2) for r2•

(BI) Let o/to be a normal covering of Bo. Since Bo is P-embdded
in B, there is a normal covering 0/1 of B such that 0/1 I Bo refines 0/10,

Since r : B -+ B satisfies (BI), there is a I, E A and an open covering
JII;. of B,l such that ril (o/IJ refines o/t. Then o/IoJ.= lJlfi.j CJ. is an open
covering of Cio and ril (o/toi) refines lJlfo.

(B2) Let U be an open neighborhood of Cl (r;. (Bo)) in Ci.• Then
U n QJ. is an open neighborhood of Cl (r;. (Bo)) in Q;,. Since r1 : Bo -+
-+ Q has the property (B2), there is a A' ;;;.I. satisfying ri,i: (Q;:) ~
~ U n Ql' Then by (3), 1:' ;;;. 1.' implies r,ll" (C,l") ~ rJ.l' (Int Ql') ~ U.

Again, by induction on the number of predecessors of J.. E A
different from il., one can assign to each il. a closed polyhedral neigh­
borhood Bo,l of C;. in BJ. in such away that

(4)

and that
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is a resolution of Bo.

We now put P;. = p;.1 (C;.) and remark that (3) implies

q;.;., (p;.,) !:; Int P)., I. < A'.

Since Cl (ri. (Bo)) !:; C;. it follows by Theorem 2.5 that

ql = (q). lEo) : Eo -+ P = (P)., q)).' j P):, .11)

(6)

(7)

is a resolution of Eo'

Arguing as above by induction on the number of predecessors
of .A. different from l., one can now assign to each J. E A a closed poly­
hedral neighborhood Eo;. of P). in E). so that

q;'i. (EOi,.) !:; Im P)., l. < J.' (8)

Eo;. !:; Pil (Int Bo;.), J. E il (9)

qO = (qi. jEo) : Eo -+ Eo = (EOi., qi.J.'IEoi:,.:1) (lO)

is a polyhedral resolution of Eo.

Now (1), (5), (9) and (10) imply that (qo' ro, Po) is a polyhedral
level-resolution of Po : Eo -+ Bo, where Po : Eo -+ Bo is a level-map
of systems given by the maps PO). = Pi. lEo;. : Eo). -+ Bo).' The theo­
rem will be proved if we show that Po : Eo -+ Bo has the AHLP with
respect to the class of all topological spaces.

Let l. E..:l and let !JI!0,1""0 be open coverings of Eo). and Bo;. res­
pectively. Then for each U E !JI!o and each VEro there are open
sets U' in E). and V' in B;. such that U' n Eo). = U and V' n BoJ.=
= V. Clearly,!JI1 = {E" EoJ.' U' [ UE !JI!o} and 1""= {B" Bo, V' IVE
Ej/o} are open coverings of EJ. and B;. respeetively, satisfying (o/!"
,,{EJ. "EOi,}) I EOi.= o/!O). and (1""" {B "Bo;,}) I Bo;. = 1""0' Let 1~'=
= {Int C;., BJ. "QJ.} and let ir be an open covering of B). such that
if/" refines both r and r'.

Since (q, r, p) is a polyhedral level-resolution of the shape fi­
bration P we conclude that p has the AHLP with respect to the class
of all topological spaces. Consequently, there is a J.' > A and an open
covering il" of Bi.' such that A' is a lifting index and il" is a lifting
mesh for J.., olt and ir with respect to p. We claim that A' is a lifting
index and ir~ = il" I Bo): is a lifting mesh for A, !JI!o and "Yo with
respeet to Po. Indeed, let X be a topological space and let h: X -+ EOi:,

H : X x I -+ Bo;.' be mappings satisfying

(PO): h, Ho) .;;; ir~.
Let i: Eor+ Ei: and j: Bo;.' -+ B;.' be the inclusion maps. Then
ih : X -» Ei: and jH : X x I -+ B;.' are mappings satisfying
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By the choice of A' and if'"' it follows the existence of a homotopy
H : X x I -+ E;. such that

and

(p;. ii, rv: jH) .;; if/".

Since if/" refines "//', (12) implies

(Pi..ii, ri..i..'jH) .;; "//'.

(11)

(12)

(l2')

(12') implies that for each (x, t) EX xI either {pi..ii(x,t), r;.;:jH(x,t)} S;;

S;; Int C;. or {P;. ii (x, t), rJ,;"jH (x, t)} S;; Bi..'" QJ,' Since, by (4),
rv: jH (x, t) E rJ,),'(BoJ:) S;; QJ,' we conclude that Pi..ji (x, t) S;; Int CJ..

Consequently, H maps X x I into Pil (C;.) = Pi..C Eoi..' Now, since
qJ.):ih (X) S;; Eoi..' (11) implies Ho (X) S;; Eoi..'i. e. qv: h (X) n (Ei.."'Eoi..) = 0
and Ho (X) n (Ei.."'Eoi..) = 0. Therefore,

Since "If/" refines "//, (12) implies (pJi, ru, jH).;; "//, or (Poji, ru,H).;;"//

because II (X x 1) s;; EoJ.' Since POi..H (X x 1) n (Bi.. '" Boi..) = 0
and rJ).'H (X x 1) n (Bi.. '" Boi..) = 0 it follows that

4.2. COROLLARY, Let P: E-+B be a shape jibration, which is a
closed map, let Bo be a closed subset of B and let Eo = p-I (Bo). If E
and B are (a) paraeompaet, (b) eolleetionwise normal or (e) pseudoeompaet
normal spaees, then Po = P lEo: Eo -+ Bo is also a shape jibration.

Corollary 4.3 follows immediate1y from Theorem 4.1 because
every closed subset of a space satisfying either one of the conditions
(a), (b) or (e) is P-embedded in that space (for (a) see [1], Theorem 15.11
and Corollary 17.5, for (b) see [1], Corollary 15.7 and for (e) see [1],
Theorem 15.4).

Since every closed set of a compact Hausdorff space is P-embedded
in that space ([18], p. 372) and since every map of compaet Hausdorff
spaces is closed, Theorem 4.1. also implies the following corollary.

4.3. COROLLARY. Let P : E -+ B be a shape jibration of eom­
pact Hausdorff spaces and let Bo be a closed subset of B, Eo = p-I (Bo).
Then Po = p I Eo : Eo -+ Bo is also a shape jibration.

Notice that Corollary 4.3 is a generalization of Proposition 4
of [11].
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5. The exact sequence of a shape fibration

The purpose of this seetion is to show that every shape fibration
induces a certain exact sequence of homotopy pro-groups. This fact
is obtained as acorollary of the main resu1t of this paper, which says
that a shape fibration p : E -+ B, which is a closed map of a topo10­
gica1 space E into a norma1 space B, induces an isomorphism of ho­
motopy pro-groups (Theorem 5.7). In the proof we will need the
following two facts from [6].

5.1. If Y is an ANR and o/t is a given open covering of Y, then
there is an open refinement j/" of o/t such that any two i/--near maps
f, g : X -+ Y defined on an arbitrary space X are Jlt-homotopic, which
we denote by f c:: "1/ g ([6], Theorem 1.1, p. 111).

5.2. If Y is an ANR and Jlt is a given open covering of Y, then
there is an open refinement j/" of IJItsuch that for any two i~-near
maps f,g : X -+ Y defined on a metrizab1e space X and for any j/"­
-homotopy F: A x I -+ Y defined on a closed subspace A of X
with Fo = f I A and FI = g lA, there exists a IJIt-homotopy H : X X
X I -+ Y such that Ho = f, Ho = g and H lA x I = F ([6], Theo­
rem 1.2, p. 112).

By a trip1e of topo1ogica1 spaces (Y, Y1> YO) we mean a topo1o­
gica1 space Y and two closed subsets YO S YI S Y.

5.3. LEMMA. Let (Y, Y1> YO) be a triple of ANR-spaces, i. e.
Y, Y1, YO E ANR, and let 011 be an open covering of Y. Then there
exists an open refinement j/" of IJItsuch that any tzvo i/" -near maps of me­
trizable triples f, g : (X, XI' Xo) -+ (Y, Y1, YO) are o/I-homotopic maps
of triples.

Proof. Let ff be an open refinement of IJIIsuch that for any two
ff-near maps f, g : X -+ Y and any ff-homotopy F: X1 X 1-+ Y
with Fo = f I X1 and F1 = g I X1, there exists a IJII-homotopy H:
:X xI -+ Y such that Ho =f, H1 =g and H IH1 X 1= F (5.2).
We put ff 1= ff I Yl' Let fLJ be an open refinement of ff1 such
that for any two fLJ-near maps f1' gl : X1 -+ Y1 and any fLJ-homotopy
G : Xo x I -+ Y1 with Go = J1 I Xo, G1 = gl I Xo, there exists an
ff chomotopy F': H1 X 1-+ Y1 such that F~ = J1> F~ = gl and
F' I Xo x 1= G (5.2). We now put 9 = fLJ I Yo' Let 9' be an open
refinement of 9 with the property that any two P' -near maps into YO

are 9-homotopic (5.1).

For each P E/?}J'there is an open set Vp in Y such that Vp n
n YO = P. Then i" = {Y '" YO, Vp, I P E9'} is an open covering
of Y and j/"' I YO refines 9'. Simi1ar1y, there is an open covering
i~"of Y such that j/"" I Y1 refines fLJ. Let j/" be an open covering of Y
which refines j/"', j/"" nad ff. Then j/" also refines IJIt,because ff re­
fines 011.
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We claim that the coveringr has the required property. Indeed,
let f, g : (X, XI' Xo) -+ (Y, Yl> YO) be r-near maps. Then the maps
f I Xo,g I Xo : Xo -+ YO are r/Yo-near, and therefore also 2I"-near.
By the choice of 21" there is a 2I'-homotopy G: Xo x 1-+ YO with
Go = f I Xo, G1 = g I Xo· Since 21' refines 2 we conclude that G
is also an 2-homotopy. From (j I X1,g I XI) <"1/ I YI it follows
(j IX1, gl XI) < 2, because r I YI refines 2. By the choice of 2
there is an 9"chomotopy F' : X [ xI -+ YI with F~ = f ixl, F~ I XI =
= g I XI and F' I Xo x 1= G. Furthermore, F' is an' 9"-homotopy,
because ,9'''1 refines 9". (j, g) < "1/ imp1y (j, g) < 9", because"l/ refines
9". By the choice of 9" it follows that there is a Jl/-homotopy H: X x
x 1-+ Y with Ho = f, Hi = g and H i Xi X 1= F'. H is a homo­
topy oftriples, because H (X[ x I) = F' (XI X I) S; Yi and H (Xo x
x I) = F' (Xo x I) = G (Xo x I) S; YO•

5.4. LEMMA. Let (P, Pl' Po) be a triple of polyhedra and let
JII be an open covering of P. Then there is an open refinement r of 0//

such that for any metrizable triple (X, XI' XO), any two j/"-near maps
of triples f, g : (X, X[' X)) -+ (P, Pl> Po) are OII-homotopic as maps of
triples.

Prooj. Let Q be the po1yhedron P endowed with the metric to­
po10gy. We define Qi and Qo ana10gous1y. Then (Q, Ql' Qo) is a
triple of ANR-spaces [8] and the identity map i : (P, Pl' Po) -+ (Q,
Ql> Qo) is a homotopy equiva1ence of triples ([8], Theorem 2.2)
with a homotopy inverse j : (Q, Qu Qo) -+ (P, Pl' Po). Let 011' be
a star-refinement of 011 and let (K, Kl, Ko) be a triangu1ation of (P,
Pl' Po) so fine that the star-covering .YI'= {St (v, K) / V E KO} of
P = IKi refines 0/1' ([17], p. 125-126). Since each star is an open set
with respect to the metric topo1ogy, we conclude that .YI' is also an
open covering of Q. The fact that (Q, Ql> Qo) is a trip1e of ANR­
-spaces implies the existence of an open covering r of Q which refines
.YI'and has the property from Lemma 5.3 for maps from (X, Xl> XO)

into (Q, Qi' Qo) (Lemma 5.3). The continuity of i : P -+ Q imp1ies
thau'/' is also an open covering of P. ~Te claim that r has the required
property.

Let f, g : (X, Xl> XO) -+ (P, Pl' Po) be two r-near maps. Then
if and ig are two r-near maps from (X, Xl> XO) into (Q, Ql> Qo).
Consequently, by the choice of the covering r, there is a .YI'-homotopy
of triples H: (X x I, XI xI, Xo x I) -+ (Q, Qi' Qo) with Ho =
= lJ, HI = igo Also jH: (X x I, Xi X I, Xo x I) -+ (P, Pl' Po) is
a .YI'-homotopy of triples, because j and 1p are contiguous with respect
to K. Furthermore,

jH :jlJ~.Jr jig

Since ji ~.Jr 1p as a homotopy of triples, we have also

f ~.Jr jij,

g ~~jlg.

(1)

(2)

(3)
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(2), (I) are (3) imply
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f~.;r iJf=:::..;rjig =:::'.;r g.

Since ;Y(' refines J1I' it follows that

(4)

Finally, (4) impliesf =tfJg, because 1JlI' is a star-refinement of "11. The
Iast homotopy is a homotopy of triples, because such are all the ho­
motopies in (4).

The notion of a resolution of triples q : (E, El' Eo) -+ (E, El' Eo)
can be defined just like the notion of a resolution of pairs defined in
[13]. If we Iook at the proofs of all the facts used in the proof of Theo­
rem 8, I, § 6 in [13] we see that they remain valid provided we re­
place everywhere pairs by triples. In particular, the following ana­
Iogues of Theorem 8 of [13] I § 6 holds.

5.5. PROPOSITION. Let q: (E, El' Eo) -+ (E, El> Eo) be a
resolution of (E, El' Eo)' Then the corresponding inverse system [(E,
El' Eo)] in H TOp3 is associated with (E, El> Eo) (in the sense of Mm'ita
[15]) via [q]: (E, El' Eo) -+ [(E, El' Eo)].

By a sIight modification of Lemma 5 and Theorem 9 of [13],
§ 6, we also obtain the following facto

5.6. PROPOSITION. Let q: (E, El> Eo) -+ (E, El' Eo) be a
morphism in prO-TOp3 and let q : E -+ E, ql = q I El : El -+ El and
qo = q i Eo : Eo -+ Eo be the induced morphisms in pro-Top. If
q : E -+ E is a resolution of E and ql' qo have property (B2), then
q : (E, El> Eo) -+(E, El' Eo) is a resolution of the triple (E, El' Eo).

We are now able to prove the main result of this paper.

5.7. THEOREM. Let p : E -+ B be a shape jibration which is a
closed map of a topological space E imo a normal space B. If e E E, b =
=p (e), F = p-i (b) and ii F is P-embedded in E, then p induces an
isomorphism of the homotopy pro-groups

p" : pro-nn (E, F, e) -+ pro-nn (B, b).

Proof. The proof is patterned after the proof of Theorem 2
of [12].

(i) Let r :(B, {b}) -+ (B, Q) be a polyhedral resolution of the
pair (B, {b}). Since {b} is P-embedded in B we obtain (as in the proof
of Theorem 4.1) a polyhedral leve1-resolution (q, r, p) of p : E -+ B
with "i cofinite and a resolution rl = r I {b} : {b} -+ Q of {b}. Then,
q = (q;) : E -+ E = (EA, qAA', A) and r = (rA) : B -+ B = (Bl> rA):' .ti)
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are polyhedral resolutions of E and B respective1y; p = (p;., l-J : E ~
~B is a level map of systems such that p;.q;.=r;.p for each A.EA and
r1 = (r;.! {b;.} : {b} ~ Q = (Qi., r;.;., I Qv:, .1) is such a resolution that
every Qi, is a closed polyhedral neighborhood of ri, (b) = bi. in B" with

ru' (Q;.') S; Int Q;., I,< I:. (5)

Let ei. = q;. (e), I, E A. As in the proof of Theorem 4.1 one can
assign (by induction on the number of predecessors of I,) to each
I. E /1 a closed polyhedral neighborhood CJ. of Q;. in BJ. such that

(6)

and that r2 = (ri, i {b}) : {b} ..-» C = (C, riX I Cio" .1) is a polyhedral
resolution of {b}. Again, as in the proof of Theorem 4.1 one constructs
neighborhoods Di, of C;. in Bi, such that

(7)

and that r2 =0 (r;, ! {b}) : rb} ..-» D = (D", ri)o' ! Di:' .1) is a polyhedral
resolution of {b}. As in the proof of Theorem 4.1 we put PJ.= p-I (Ci)
and see that ql = (qi, I F): F ..-» P = (Pi,' q'J: I PJ." /1) is a resolution
of F = P- 1 (b). \Y/e then construct closed polyhedral neighborhoods
Fi, of Pi, in Ei. such that

(8)

(9)

and such that qo : E ..-» F = (F)., qJ.i.' Fi." .1) is a polyhedral reso­
lution of F.

By (9) we conclude that for each I. E .1, P;.: (Ei,' F;., e,) ..-»

-,(Bi., Di,' b;.). Therefore, for each I, E"1, PJ. induces a homomorphism
Pi,' :;rn (E;., Fi" ei) -:>- jOn(BJ., Di., bJ.). Furthermore, by Proposition 5.6,
we conclude that q : (E, F, e) ~ (E, F, e) is a resolution of the triple
(E, F, e), and thus, by Proposition 5.5, the inverse system [(E, F, e)]
in H Top3 is associated with (E, F, e). Simi1arly, we conclude that
[(B, D, b)] is associated with (B, b). Therefore, the homomorphisms
P,.' induce a morphism of homotopy pro-group s P. : prO-jOn(E, F, e) ..-»

..-» pro-;rn (B, b) ([14], p.318).

(ii) In order to show that P. is an isomorphism, it is sufficient,
by Morita's lemma ([16], Theorem 1.1), to show that for each A. E"1
there is a ft E "'1, ft :> I" and a homomorphism g: jOn(BI" DI" bi') ..-»

..-» (E;., Fi.' e;.) such that the following diagram commutes
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(10)

Since (q, r, p) is a polyhedral resolution of the shape fibration
p : E -;> B, we can assume that p : E -;> B has the AHLP with respect
to all topological spaces. Furthermore, since each E;. is a polyhedron,
p has the stronger lifting property in the sense of Theorem 3.2 with
respect to all paracompact spaces.

Let I. E.1 and let "fJ. = {Int CJ.,B;. "- Q;.}. Let I.' :> I. be a lifting
index for I., 1~. and let-r;., be an open covering of By, which is a lifting
mesh for I" 1~.. By Lemma 5.4, there is a refinement 'r;,of 1';: such
that any two 1/;,-near maps of triples from (In, ar, J" - 1) in to (B;:, D;.',
bi:) are1/;,-homotopic as map s of triples, where r- 1 = (EI"-l X I) u
u (r-1 x 1). Let 1/;: = {Int C;:, B;.,"-Qd and let 1fr,: be an open
covering of B;:, which refines both the coverings ir,: and 'r;,. Then
1f~,refines also -rA, and so il;: is a lifting mesh for i. and 1'~.. Finally,
let fl E ..:'1, lU ;> A', be a lifting index and let the open covering "f/;. of BII

be a lifting mesh for A.' and 1fr,:.

Let a E 7(n (B", D", b,,) be given by a map rp: (I", Cl", r-1) -;>

-;> (BI" DI" bi') and let ep : r-1 -;> El' be the constant map f(' (J" - 1) =
= efl' Notice that PI' ep = rp ! r-1, and therefore

(11)

Since (I", r-1) ~ (r, r-1 x O), one can view f(' as a map In-1 x

x O -;> El' and rp as a homotopy In- 1 X I -;> B" with the initial stage

equal to rp ir-I. Therefore, by (11) and by the choice of !l and "f/;,

there is a map $ :In -;> E;.' such that

(j) Ir- 1 = q;:I' ep = e;.' (12)

(p;" a5, ri:11 rp) .;;; 1f/}.,. (13)

Since "fI/}" refines 1/;: (13) implies

(Pi: $, r;:I' rp) .;;; 1/;: = {Int C;", Bi: "- Q;:}. (13')

By (7) we have r;.,,, rp (aln) S r;.,,, (DI') S Q;.'", which implies ri:11 rp (al") n
n (B;.' "- Q;.,) = 0. Now (13') implies PA' $ (Cl") sC;'" i. e.

(p (aln) S P"i/ (Ci:) = Pi: S F;:. Thus, we conclude, by (i2) that
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t/J : (In, ar, JR-I) --7 (B;." FJ.', eJ.'). Therefore, [t/J] E 1Cn(B;." F).', ej:).

We now define g by

g (a) = g ([t/J]) = [q;'l' <P] = q;;.: [eP]. (14)

(iii) We will now show that g is independent of the choice of (p

and t/J. Let t/J': (In, ar, Jn-l) --7 (Bp, DI" bp) be another represen­
tative of a = [t/J] and let (PI satisfy (12) and (13) with t/J, ;p replaced
by t/J', eP' respectively. Then t/J ':::'.t/J', and thus there is a homotopy

H : (I" X I, ar x I, Jn-l X 1) --7 (Bp, DI" bp)

such that Ho = ep and HI = t/J'.

We now consider the map h; (In x O)U (In X 1) U (1"-1 ><

X 1) --7 B;: given by

h ! l" x O = iP, h I I" x 1 = eP', h I jR- 1 X 1= e;:.

lt is easy to see that h is continuous and that

By the choice of }.' and "If/";." it follows the existence of a homotopy
ii :In x I --7 B;. with

fj ! In x O = q;.;: h I" x O = q;x eP

fj ! r x 1 = q;;: h I I" x 1 = q;;: (ji'

ii I JR-I X 1= q ,h 1 JR-I x 1= ev. I ).

(15)

(16)

(17)

(18)

Since H (ar x I) s; DI' (7) implies I'J.I' H (aln x 1) s; Q;.. There­
fore, 1';J.' H (ar x I) Il (B;. "" Q;) = 0. By (18) it follows that
PI. H (aln x I) S; lnt GJ.'which implies that H (aln x I) S; F).. Thus,
we conclude that ii: (r x I, al" x I, ]"- 1 X I) --7 (E;., Fl, ej). (15)

and (16) imply

Consequently,

g ([t/J]) = [qll' eP] = [q.tJ.' (p'] = g ([t/J']).
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(19)

(iv) We now show that g is a homomorphism of groups. Let
a = a' a" and let a' = [<P'], a" = [<Pil]. Then a = [<P], where <p :

: (r, ar, P-I) -+ (B,,, D,., b,.) is given by

r <P' (x, 2s, t), o <; s <: ~

<p (x, s, t) = t I<pil (x, 2s - I,t), 2 <: s <; I

where x E r-2, tEl. Notice that <p', <pil induce $1, (ji" : (I", al",J"- 1)-+
-+ (E}", FJ.', ei:) and the analogues of (12) and (13) hold. Let (ji :
: (r, ar, P-I) -+ (E;:, Fi." e},,) be defined by

r (P' (x, 2s, t),

'iP (x, s, t) = t (Pil (x, 2s - I, t),
I-<;s<I
2'

(20)

where x E r- 2, tEl. From (19), (20) and from (12), (13) applied to
;P' and (ji", one obtains (12) and (13) for (j), which proves

However, by (20), [<P] = [(PI] [<Pil], and thus we obtain g ((~' a") =
= g (a) = g ([<P]) = q;.A: ([(P]) = q;.A: ([<Pl]) q.l;.: Wl>"]) = g (a') g (a").
Let us establish the commutativity of diagram (10).

(v) First we show that

P;.* g (a) = P;.* qu'* ([~]) = [p;. q;.i.'4>]

rl.!'* (a) = r;oI'* ([<P]) = [r;./' <P].

(21 ')

(21 ")

Since "fI/).. refines"r;, (13) implies (p;: (j), r;.,!, <P) <; ri·. By the choice
of "YA" it fol1ows that there is a "Y~,-homotopy G : (r x I, aln x
x I, p-I X I) -+ (B;.., Di:' b;.') with G : P;" (j) ~ r;:,. <P. Then r;.}" G :
: r;.;.' Px;P ~ ri.fJ <P. Since ru, PA' = p;. q;.).', it fol1ows Pl. qJ.l.' (ji ~ r;.jJ <P.

With this in mind, (21/) and (21") imply (21).

(vi) We now show that gp,.* = q;.jJ*'

Let tJ E nn (E,., F,., e,.) be given by a map ep: (r, ar, P-I) -+
-+ (E!" F,., e,.), i. e. tJ = [cp], and let p;.* (tJ) = [<P], where <p = p,. cp.
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We put (tj = q;:IJ ep. It is easy to see that (tj I p- I = e;: and pi: <p =
= r;:IJ rJ>, i. e. (12) and (13) hold. Therefore, g ([rJ>]) = qiJ.'* ([<P]),

which means that g PIJ* (fJ) = q;.p* (fJ). This proves the theorem.

If we pass to the shape groups

nn (B, F, e) = lim pro-nn (B, F, e)+-

nn (B, b) = lim prO-lln(B, b)+-

then we obtain from Theorem 5.7 the following corollary.

5.8. COROLLARY. Let p : B -+ B be a shape fibration, 'lvhich
is a closed map of topological space B imo a normal space B. If e E B,
b = P (e) and tj F = p-I (b) is P-embedded in B, then p induces an
isomorphism of the shape groups

p* ::1:n (B, F, e) -+ nn (B, b).

In [7], 5.2, it is shown that whenever (E, F, e) is an object in pro­
-HCW~, then the following sequence of homotopy progroups is exact.

... -+ prO-lln(F, e) -+ pro-nn CB, e) -+ prO-ll" (B, F, e) -+ pro-nn_1 (F, e) '7.

Hence, Theorem 5.7 yields the following result.

5.9. THEOREM. Let p : B -+ B be a shape fibration, which is
a closed map of a topological space B imo a normal space B. If e E B,
b = P (e), and if F = p-I is P-embedded in B, then the following se­
quence of homotopy pro-groups z's exact

i* p* (j
... -+ pro-nn (F, e) ~ pro-nn (B, e) ~ pro-nn (B, b) ~ pro-lln-I (F, e) -+ ...

Hence i* and p* are morphisms of pro-groups induced by the inclu­
sion map i: F -+ B and by the map p : B -+ B respectively, and
(j is the composition of the inverse of the isomorphism of pro-groups
induced by p: (B, F, e) -+ (B, b, b) (Theorem 5.7) and of the boundary
morphism pro-nn (B, F, e) -+ pro-nn-I (F, e) induced by the boundary
homomorphisms nn (B;., Fi., ej) -+ nn-I (F;., e,l)'

5.10. COROLLARY. Let p : B -+ B be a closed map of metric
ANR spaces (not necessarily locally compact), which has the AHLP in
the sense of Coram and Duvall [3]. If e E B, b = P (e), F = p- I (b),
then the following sequence is exact

i* p* d
... -+ pro-nn (F, e) -+ nn )B, e) -+ nn (B, b) -+ pro-n,,_1 (F, e) -+ •..

Proof. By [10], Corollary 4, p is a closed shape fibration and the
assertion follows immediately from Theorem 5.9.
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EGZAKT AN NIZ FIBRACIJE OBLIKA

Q. Haxhibeqiri, Priština

Sadržaj

Koristeci definiciju fibracije oblika izmedu proizvoljnih topoloških
prostora iz [5], dokazane su slijedece cinjenice:

Neka je p : E -+ B zatvoreno preslikavanje topološkog prostora E u
normalni prostor B koje je fibracija oblika. Tada
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(i) Ako je Bo zatvoren podskup od B, Eo = p-I (Bo) i ako su
Eo i Bo P-smješteni u E odnosno B, onda je i restrikcija p I Eo : Eo -+
-+ Bo fibracija oblika. (Teorema 4.1).

(ii) Ako je e E E, b = P (e) i F = p-I (b) P-smješten u E, onda
p inducira izomorfizam homotopskih pro-grupa

p* : pro-nn (E, F, e) -+ pro-nn (B, b).

(Teorema 5.7). Kao koro1ar od (ii) dobivamo slijedeci egzaktan niz
fibracije oblika

... -+ pro-nn (F, e) -+ pro-nn (E, e) -+ pro-nn (B, b) -+ pro-nn_1 (F, e) -+ ...

(Teorema 5.9).


