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ON THE SEPARATION AXIOM R,

Jingcheng Tong, Detroit, Michigan, USA

Abstract. In this paper a characteristic property of the separation axiom Ry
is established, which shows the symmetry of Ry in another sense; a new separation
axiom Ry is introduced, it is strictly weaker than Ro and stronger than all the
axioms given by D. N. Misra and K. K. Dube [7].

1. Introduction. The separation axiom R, was introduced by N.
A. Shanin [10]: A topological space (X, 7) is R, iff for each Uer,
x € U implies {x} < U. Many authors have studied the separation
axiom R, (cf. [1 — 9]). Several characterizations were given in [4],
[5], [8]. A few separation axioms weaker then R, were given in [7].
In this paper, we give another characterization of R,, and a new
separation axiom Ry, which is weaker then R, and stronger than all
the axioms in [7].

2. Characterizations of Ry,. Let X be a topological space, x € X.
Let {x} denote the intersection of all open sets containing x, {x} be

the closure of {x}. The following Lemma 1 is Theorem 2.2 () in [5],
Lemma 2 is a special case of Theorem 2.2 (c).

LEMMA 1. A topological space X is R, iff {7} < {;C} for all
xeX.

LEMMA 2. 4 topological space X is Ro iff {x} = {x} for all
x e X.

Since {x} is the intersection of all closed sets containing x, Lemma 2
suggests a natural definition of R,.

Definition 1. A topological space X is R, iff for all x € X, the
intersection of all open sets containing x coincides with the intersection
of all closed sets containing x.

Lemma 1 and the following Theorem 1 show the symmetry of
R, in another sense.

THEOREM 1. Ir a topological space X, if for each x ¢ X, we
have {x} > {x}, then X is R,.
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Proof. If y € {x}, then x e {3} < {s}, hence X is symmetric, X
is R,.

3. The separation axiom Rr. There are four separation axioms
weaker than R, in [7]: R, R,, Ry, Ryp. It has been proved that
R, = R, = Ryp, Rp = Ryp,. We write the definitions of R,; and
R, in the following.

Definition 2. A topological space X is R, iff for x, y € X, {x} # {»}
implies {x} N {y} = 8, {x} or {y}.

Definition 3. A topological space X is R, iff for x e X, {T} N
A {x} = {x} implies that {x}’ = {x} \ {x} is closed.

From Lemma 1,2 and Theorem 1 we know that if X is not R,
then there are some x, {x} \{x} # @, and there are some x, {x}\
\{x} # @. This suggests a new separation axiom. In the following
definition, a set that contains at most one point is called to be dege-
nerate.

. Defimition 4. A topological space is Ry iff for each xe X, both
{x} \{x} and {x} \ {x} are degenerate.
Obviously R, = Ry.

Example 1. Ry > R,. Let X = {a, b, ¢, d} with topology {6, {a},
{a, b}, {c,d}, {a,c,d}, X}. Then X is Ry but not R, since {a} \\
N\ {a} = {8}

Example 2. Ry; R, 5/> Ry. Let X = {a, b,c¢} with topology
{0, {a},{a, b}, {a,c}, X}. Then X is Rp and R,, but X is not Ry
since {a¢} = X and {a} = {a}.

Example 3. To+/> Rr. Let X = {a, b,c} with topology {#, {a},
{a, b}, X}. Then X is T, but not Ry since {a} =X and {a} ={a}.

THEOREM 2. Ry = Ry,

Proof. If X is Ry, and denote <{x) = {x} n {x}, then {x} = IR
U D, {x} =<x> U E, where D, E are degenerate sets and D¢ {x}
E¢ {x} If <x) = {x}, then {x} = {x} U D, {x} = {x} UE. We prove
that {x}' = {x} \ {x} = D is a closed set. Let U be an open set con-
taining {x} Then X\ U is a closed set, and (X \ U) N {x} =D
or @. If (X\ U) N {x} = D, then D is the intersection of two closed
sets hence is also closed. If (X \\ U) N {x} = @, then {x} « U, D c U.
Since D ¢ {x} there is an open set V such that x € V and D & V. Then
{x} n(X\\ V) = D is a closed set. Therefore {x}' is closed whenever
x> = {x}, X is Rp.
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THEOREM 3. R; = R,..

Proof. Let X be Ry and x,ye X. If {37} # [y} and there is an
a € X such that @ # x,a# y but ae{x} Nn{y}, then aefx}, ac{y}
hence x e {a}, yE a} Since {a} = {a) U E, where E is a degenerate
set and E ¢ {a}, thereare following four possible cases for xe {a),

ye{a):
(1) x € {a) and y e <a). We have xe{a), ye{a), but ae{x},

ac{y}, hence {x} ={y} = {a}, impossible.

(@) {x} =E and y e <{a). We have x¢{a} and ye{a}. Since
ac{y}, we have {y} = {a}. There are two cases to discuss about the
relationship between y and "x} (1) y={ 'vl Then fa} = {y} Since

x¢ {a} x e X \ {a}, where X\ La} is open, Lx} e X \\{a} {x}\\

\{*} o {a} > {3 a}, hence {x}\ {x} is not a degenerate set, a
contradiction to the fact that X is Ry. (2) v ¢ [—v—} Since ye—{z} and
a € {x}, we have y € {x}, a contradiction.

(i) x € {a) and {y} = E. Similar to Case (if).
() {x} = {y} = E. We have {x} = {y}, impossible.

Therefore if {x} # {y}, we have {x} N {y} = 06, {x} or {3}, X is R,
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O AKSIOMU SEPARACIJE R,
Fingcheng Tong, Detroit, Michigan, SAD

Sadrzaj

U ¢lanku je nadeno karakteristi¢no svojstvo aksioma separacije R,.
Nadalje je uveden novi aksiom separacije Ry koji je slabijio d R, i jadi
od svih aksioma uvedenih u referenciji [7].



