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CLOSED GRAPHS ON CONVERGENCE SPACES

R. A. Herrmann!, Annapolis, Maryland USA

Abstract. This is the fourth in a series of investigations answering various un-
solved problems relative to convergence spaces. The major goal of this present
research is to develop the convergence space theory of maps with closed graphs,
answer some previously open questions and to show that many recent results relative
to generalizations of the topological concept of the closed graph such as the strongly
closed graph or maps with property S are in reality simple corollaries to the appro-
priate convergence space proposition. This yields more evidence that the proper
structure in which to study the basic properties of such mappings is not the topolo-
gical space, but is the (pre)convergence space.

1. Introduction

Certain results which appear in this paper have been briefly
reported upon in [9]. This article contains the complete proofs for
the results briefly summarized in [9] as well as definitions, examples
and additional applications and results which are of some interest
to the general topologist.

In 1974, I introduced in [3] a nonstandard generalization for all
of the perfect type maps in the sense of Whyburn [17] and Iliadis
[10] which have ever appeared in the mathematical literature. At
a later date, a slightly better generalization was devised for perfect
type maps relative to standard (pre)convergence spaces in the sense
of Kent [13]. Following the appearance of the results in [7], [8] many
questions have been raised as to the relations, if any, between these
generalized perfect maps and such concepts as the closed or compact
maps and the theory of maps with a closed graph relative to the funda-
mentally important preconvergence structures. The basic reason for
the apparent interest in these new concepts lies in the fact that so
»many« perfect type maps exist. For example, if (X, q), (Y, p) are
preconvergence spaces and f: X — Y is a weakly-continuous injec-
tion, then f~! :(f[X],p) > (X,q) is a perfect map. Moreover, it
is becoming more and more obvious that the proper structure in which
to study the basic properties of such mappings is not the topological
space, but is the preconvergence space [7], [8]. The basis for this last
conclusion lies in the fact, as exemplified above, that many, but not
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all results relative to perfect [10], #-perfect [1], d-perfect [15] maps
and the like which have recently appeared in the literature are simple
corollaries to the more general preconvergence space propositions
as they appear in [3], {4], [7], [8], among other places.

This paper is the first in a series dealing with the relation between
perfect, compact, closed maps; maps with closed graphs and the
like concepts for preconvergence spaces. We also answer some ques-
tions left open in [8]. In this paper we characterize maps with closed
graphs and briefly indicate how these results may be applied to nu-
merous topological areas, such as the theory of strongly closed graphs.
In particular, a major result shows that for preconvergence spaces
(X,9),(Y,p), amap f: X - Y has a closed graph if and only if
whenever a filter # g-converges to x € X and the filter f (&) p-con-
verges to y € Y, then f(x) = y.

2, Preliminaries

We adhere to the following notational conventions and basic de-
finitions. For a set X, F(X) (resp. U (X)) denotes the set of all fil-
ters (resp. ultrafilters) on X. If nonempty 4 < #(X), the power
set of X, and A has the finite intersection property, then [A] denotes
the filter generated by A. If 8+ A €2 (X), then [A] is the principal
filter generated by A. In [13] Kent defines a convergence function on
X to be amap ¢q: F(X) -2 (X) such that

(CS1) for each x € X, x € q ([{x}]),
(CS) it #F, ¥eF(X) and F < ¥, then g(F)c q(9).

Throughout this paper the pairs (X, ¢q), (Y, p), where ¢ and p
are convergence functions, are called preconvergence spaces. A filter
F e F(X) is said to g-converge to x € X if x € ¢ (¥#) and we sometimes
denote this by # > x or simply by # — x.

For a map f:(X,q) > (Y, p) and # e F(X), let f(F)=
= [{f[F] | Fe#}]. Moreover, if # € F(X) and for each FeZ,
FNf[X]+ @, then f-1 (F) = {f[F]| FeZ} e F(X). Also G(f) =
={(xf(x) | [xe X]A [f(x) e Y] denotes the graph of f.

A non-Kuratowski type closure operator is also used for pre-
convergence space investigations. Let 4 < X, then cl,(4) = {x | (x ¢
eX)ANIy(ye UXNA(Aey)A(y3x)}. In general Accl,(4)
and cl,(cl,(A)+cl,(4). A set Ac X is g-closed or simply
closed if A = cl,(4).

Finally, for two filters 4, # e F(X) such that & U ¢ has the
finite intersection property, then & v ¢ € F(X) denotes the smallest
(with respect to <) filter containing & and ¥. All other pertinent
notation and definitions appear in the sequel or in the references.
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3. Main results

THEOREM 3.1. Let f:(X,q) -> (Y, p).

@) If G(f) is closed in the product preconvergence space, then whe-
never # e F(X), & —+x c Xandf (F) >y e Y,it follows that f (x) = y.

(&) If whenever 4 c U(X), # »xcX and f(x) >y e Y imply
that f(x) = v, then G (f) is closed.

Proof. (i) Assume that F e F(X), F»xeX, f(F) >yeY
and F e#. Let # = ¢ X p denote the usual product preconvergence
space convergence function on X X Y. We establish that (x,y) €
ecl, (F X f [F]). Suppose that % € U (%), the set of all ultrafilters
containing #. Then f(%)e U (f(#)), % - x and f(%) —y. Since
Fed, f[Flef(#), then F X f[F]e?", where ¥ e U(X X Y)
and ¥ > (x,y). Thus (x,y)ecl,(F X f[F]). Now F X f [F]c
< G(f) implies that G(f) €¥". Hence (x, y) ecl. (G (f)) = G({f)
implies that f(x) = y.

(&) Assume that if % e U(X), % - x and f (%) -y, then f(x) =
=y. Let (w,2) e XX Y — G(f). Then from above it follows that
there does not exist some ¥ € U (X) such that¥” - w and f(¥") - 2.
Assume that (w, 2) € cl; (G (f)). Then there exists some # € U (X X
X Y) such that G(f) e# and # — (w, 2) = (w, f(w)). Now the
first projection P, (#) =% e U(X) and % —-w. Letting (I, f):
: X >X XY be the map defined by (I, f) (x) = (x, f(x)), then it
follows that for each A c XX Y, (I, f)"[A]l c Py [A]1nf~ 1 [P, [A4]].
Thus Py(#YNVFf~H(Py(# ) (L, f)~ 1 (#). Hence [~ 1{(Py(# ")) Py (W)
implies that P, (#") < f(P,(#). Since P,(#") is an ultrafilter,
then P, (#) = f (P, (#) = f (%) — f (w). This contradiction
implies that (@, 2) ¢ cl.(G(f)). Since G (f) < cl. (G (f)) and
X —G(He X —cl. (G(f)), then cl,(G(f)) = G(f) and this com-
pletes the proof.

COROLLARY 3.1.1. A map f:(X,q) +(Y,p) has a closed
graph if and only if whenever F €F (X), # »xeXand f(F)»ye,
then f (x) = y.

Recall that a map f:(X,q) > (Y, p) is weakly-continuous (resp.
continuous) if for each & € U(X) (resp. & € F (X)) such that ¥ —
—+xeX, then f(F) - f(x). If Y is pseudotopological and f: X —
-» Y is weakly-continuous, then f is continuous. As usual a space
(X, q) is compact if each % € U(X) is g-convergent.

THEOREM 3.2. If f:(X,q) = (Y,p) has a closed graph and
Y is compact, then f is weakly-continuous.

Proof. Let G (f) be closed and Y compact. Assume that % €
e U(X) and that # > x € X. Then there exists some y € Y such
that f (%) - y. Theorem 3.1. implies that y = f(x) and the result
follows.



136 R. A. Herrmann

A space is Hausdorff if each ultrafilter converges to at most one
point. Corollary 3.2.3 in [8] shows that if (¥, p) is Hausdorff and
(X, q) > (Y, p) is weakly-continuous, then G (f) is closed in (X X
X Y, 7x). This yields the following result.

THEOREM 3.3. Let Y be compact and Hausdorff. Then f : (X, q) -
— (Y, p) has a closed graph if and only if f is weakly-continuous.

A map f:(X,q) = (Y,p) is perfect [8] if whenever # € U(Y)
and % -y € Y, then for each ¥" € U (X) such that f(¥") = % there
exists some x €f~1(y) such that ¥~ — x.

THEOREM 34. Let f : (X, q9) > (Y, p), X and Y be compact, ¥
Hausdorff, and f [X] closed in Y. If G(f) is closed in X X Y, then f
is perfect.

Proof. Theorem 3.2 implies that f is weakly-continuous. Appli-
cation of Corollary 2.12.1 in [8] implies that f is perfect and the proof
is complete.

For preconvergence spaces the existence of functions with a closed
graph is somewhat more critical than for topological spaces. Let ¢
be a convergence function for the set X. The preropological modification,
g, is defined as follows: x € ¢(&) for# € F (X) if and only if A (x) =
=AU | (U e UXNN U - x)}cZ.

THEOREM 3.5. Let X and Y be compact and Y be Hausdorff.
If the pretopological modification of q is a topology on X and p is not a
topology on Y, then there does not exist a surjection f : (X, q) - (Y, p)
with a closed graph.

Proof. Simply assume that there exists a surjection f: X - Y
such that G(f) is closed. It follows that f is perfect and weakly-con-
tinuous. However, Theorem 2.8 part (7o) [8] states that  must be a
topology on Y. The result follows from this contradiction.

Let X be an infinite set and % € U (X) a free (i. e. nonprincipal)
ultrafilter on X. Consider any point z e X and let 4, = {U U {Z} |Ue
e}V {{x} |xe X — {2}}. Then ¥, is a base for a topology T, on X.

THEOREM 3.6. Let X be an infinite set and U € U (X) a free
ultrafilter on X. For each z € X, the space (X, T,) is a Hausdorff com-~
pletely normal, fully normal, door topological space.

Proof. Let z,x,y€X, x+ 3, x+ 2,9+ 2 Then {x} n{y} =
= @ and {x}, {y} € T,. Now assume that y = z. Since N {U|U e %} =
= @, then for each w € X — {2} there exists some U, € # such that
w ¢ U,. This implies that {w} N (U, u {z}) = 0. Consequently,
T, is Hausdorff.

Assume that 4, B < X and that (cly (A) N B = A N (clx (B)) =
= @. If z ¢ cly (4), then cly (4) € T,. Thus the T,-open sets cly (A4)
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and X — cly (4) are separating sets for 4 and B. If z ¢ B, then Be
e T, and the T,-open sets B and X — cly (B) are separating sets
for 4 and B. Thus (X, T,) is completely normal.

Let € be an open cover of X. Then there exists some G € € such
that 2 € G. Hence there exists some U e % such that UV {z} c G.
This implies that

{ix} | 2% x € X} U{U U {s))

is an open cover of X which star refines . Thus X is fully normal.

Finally to show that (X, T7) is a door space we need to show that
every subset of X is either open or closed. Hence let 4 « X and
assume that z ¢ A. Then A e T,. On the other hand, if 2 € 4, then
cly (A) = A. Therefore, (X, T.) is a door space and this completes
the proof.

Recall that a preconvergence space is T; if every principal ultra-
filter converges to only one point. The following result is similar to
but much more general then the results which appear in [11] and [12]
where only topological spaces are investigated.

THEOREM 3.7. Let (X, q) be T,. Assume that there exists some
z € X such that for every free ultrafilter % € U (X) the fact that the
tdentity map I : (X, T.) - (X, q) has a closed graph implies that I is
weakly-continuous. Then (X, q) is compact.

Proof. Assume that X is not compact. Then there exists some
non-g-convergent % € U (X). Since every principal ultrafilter g-
-converges, then % is free. Let z be the hypothesized element of X.
Clearly % does not converge to any x € X — {z}. Consider the topo-
logical space (X, T,) determined by # and z. Let & € F(X) such
that & T,-converges to some x € X — {z} and, for the identity map
I, I (¥) is g-convergent to y. Then & is a principal ultrafilter gene-
rated by x. Thus & = [{x}] ={4|[4< X]A [x€A]}. Hence
I(F)=I([{x}]) = [{x}] and I(¥) is a g-convergent to x =3y by
the T, property. Thus I(x) =y. Now let x = 2 and & be T,-con-
vergent to x. Since that T,-neighborhood filter at 2z is {U U {2} |Ue
EU} =A (2) it follows that # (2) c&. Assume that I[(F)=F
is g-convergent to y € X and let ¥ € U (#). Then ¥ is g-convergent
to y, and A (2) =¥ (i. e. y ead, (A (2))). From the construction
of 4" (2), it follows that either ¥" = % or ¥ = [2]. However, since
% does not g-converge, then this implies that ¥ = [2]. Therefore
from the T, property it follows that 2 = y. Consequently, I(2) =y
and Theorem 3.1 imply that I has a closed graph. From the hypo-
thesis, it follows that I is weakly-continuous. Since % is T,-convergent
to z then I (%) = % is g-convergent of I (2) = z. This contradiction
completes the proof.
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COROLLARY 3.7.1. Let & be class of all Hausdorff, completely
normal, fully normal, door topological spaces and let (Y, p) be a T,
preconvergence space. If for every X € every bijection f : X - (Y, p)
with a closed graph is weakly-continuous, then Y is compact.

Remark. Obviously, Theorem 3.2 is a very strong converse to
Theorem 3.7.

. 4. Applications

In this section we are interested in applying the above results
to concepts which have recently become of interest to the general
topologist. In order to accomplish this we need only show that pertinent
topological concepts are characterized by specific preconvergence
spaces. Once this has been accomplished, then the reader can simply
translate our previous results into the appropriate topological language.

Recall that if f:(X,q) - (Y, p) is weakly-continuous and p
is a pseudotopological convergence structure, then f is continuous.
Let 7, T be topologies defined on X and Y respectively. A filter # € F (X)
will d-converge to x € X in the sense of Velicko [16] if for each
regular-open G € T containing x there exists some F €% such that
F < G. The d-convergence structure is a topological convergence struc-
ture determined by the semiregularization 7; of v. The topology T, is
the topology generated by the set of all regular-open subsets of X.
A filter # is P-convergent to x € X [8] if for each open neighborhood
G of x there exists some F € % such that F < cly (G), where the clo-
sure is with respect to 7. Let C (X) be the set of all real valued conti-
nuous functions defined on (X, ) and 7, the weak topology on X
generated by C (X). Then a filter # € F (X) is w-convergent to x € X
if # converges to x in the 7, topology [5]. Finally, let &, (x) =
= {clx (G) | (x e clx (G)) A (G € 7)} where x € X. Then a filter # ¢
e F(X) is rc-convergent to x € X [6] if for each H €%, (x) there
exists some F €# such that F <« H. Observe that in the above defi-
nitions for these special types of convergence structures we could
have restricted our attention to filter bases.

As previously observed the § and = convergence structures are
topological. However, the ¢ convergence structure is not in general
topological but is only pretopological in character.

Numerous unusual separation properties can be characterized
by these special convergence spaces. For example, (X, t) is Haus-
dorff (resp. Uryshon, completely-Hausdorff) if and only if (X, d)
(resp. (X,¥), (X, w)) is a Hausdorff convergence space. A space
(X, 1) is weakly-Hausdorff (resp. weakly-completely-Hausdor{f, Haus-
dorff) if and only if (X, §) (resp. (X, w), (X,#)) is a T, convergence
space. Also some unusual compactness type properties may be cha-
racterized by the compactness of convergence spaces. A space (X, 7)
is nearly-compact (resp. quasi-H-closed, completely-Hausdorff, S-
-closed) if and only if (X, d) (resp. (X, &), (X, w), (X, rc)) is a com-
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pact convergence space. Moreover, a map f : (X, t) - (¥, T) is almost-
-continuous (resp. weakly-d-continuous, ¥-continuous, a c¢-map) if
and only if f: (X, 7v) > (Y, ) (resp. f: (X, 1) > (V, ), f:(X,¥) -
- (Y,8), f: (X, v) - (Y, w)) is convergence space continuous. Other
interesting topological concepts follow from the equivalence of these
convergence structures. For example, (X, 7) is regular (resp. almost-
-regular, semiregular, extremely disconnected) if and only if z-con-
vergence is equivalent to dJ-convergence (resp. dJ-convergence is
equivalent to ¢-convergence, r-convergence is equivalent to dJ-con-
vergence, rc-convergence is equivalent to d-convergence). Relative
to the previous results established in this paper, we have that a map f :
(X, 1) + (Y, T) has a strongly closed graph (resp. property S) if
and only if f:(X, 1) > (Y, ) (resp. f: (X, ) - (Y, d)) has a con-
vergence space closed graph. Also, where we do not assume conti-
nuity or surjectivity, it follows that f: (X, 7) - (Y, T) is ¢-perfect
[1] (resp. é-perfect [15]) if and only if f:(X,d) = (Y, (resp.
f:(X,8) - (Y, d)) is convergence space perfect.

The reader may now translate each of the results in section three
into the corresponding topological language associated with these
special types of convergence spaces. For example, let (X, 7) be regu-
lar compact and (Y, T) Hausdorff nearly-compact. If a surjection
f:X — Y has a strongly closed graph, then f is d-perfect.
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ZATVORENI GRAFOVI NA PROSTORIMA KONVERGENCIJE
R. A. Herrmann, Annapolis, Maryland, SAD

Sadrzaj

Ovo je Cetvrti ¢lanak u seriji istraZivanja da se odgovori na razna
nerijeSena pitanja vezana za prostore konvergencije. Glavni cilj ovog
rada je razvijanje teorije preslikavanja sa zatvorenim grafovima $to daje
odgovore na neka otvorena pitanja i ujedno generalizira neke novije re-
zultate koji se odnose na poopcéenja topolo$kog pojma zatvorenog grafa.



