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ON LINEAR FUNCTIONAL EQUATIONS
IN THE DETERMINATE CASE

W. Jarczyk, Katowice, Poland

Abstract. Let I be the real interval and & a fixed point of I. Suppose that f,
g : I - R are continuous, 0 < (f(x) — §)/(x — & < 1 forxe IN{£}and|g ()] < 1.
Under these assumptions it is shown that if for every continuous function A : I =
R there exists a continuous solution of equation (1), then f is strictly increasing in a
neighbourhood of £. It is the inversion of a result of Kordylewski and Kuczma.

Further, the existence of continuous solutions of equations (1) is studied from
the Baire category point of view.

1. This paper is devoted to the study of a set of linear functional
equations

pof=gp+h Q)

having continuous solutions.

Suppose that I is a real interval and & is an element of I. De-
note by C the set of all real continuous functions defined on I and
endow it, if I is compact, with the uniform metric. Define

C={geCig®) #0,xelx# &,

C,={geC :jg®] <1}
and
F={feC:0<(f(x) —8/(x—8& <l,xel,x#§&}

. A theory of continuous solutions of equation (1), with (f,g, ) € F X
X C' X C, has been developed in [1], [5] and [6], Chapter II. Some
results have been obtained under additional assumption of strict
monotonicity of f in a neighbourhood of &. In particular the following
result is an immediate consequence of Theorems 2.10 and 3.2 of [6}.

THEOREM 1. Suppose that feF and ge C,. If f is strictly
increasing in a neighbourhood of &, then for every h e C there exists a
solution ¢ € C of equation (1).
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In the present paper we shall show (see Theorem 3) that if we
omit the assumption of strict monotonicity of f in a neighbourhood
of &, then the existence of continuous solutions of equation (1) is a
very rare property in the set F X C, X C. The word »rare¢ is here
meant in the sense of the Baire category.

The similar problem, concerning the case lg(&)] =1 from the
Baire category point of view, has been treated in [2] and [3]. The strict
monotonicity of f in a neighbourhood of & is also essential for the exi-
stence of continuous solutions of the homogencous linear equation

pof=gp
(see [4]).

2. Suppose that f:I -1, g : I - R. Denote by f", n e N, the

n-th iterate of f and put

Gy () = kI;Iog (9], xel, neNo.

Remark 1. If f € F, then £ is the unique fixed point of f.
We start with the following useful

LEMMA 1. Suppose that I is compact. If f € F, then ﬂ )=

= {&} (n particular {f"},en converges uniformly to §&). If, moreove},
g€ C and |g(&)| <1, then {Gujnen converges uniformly to zero.

Proof. In view of the continuity of f every set f"(I) is a compact
interval, and so is ﬂ fr({I). Let ﬂ ) =1[ab]l. Since be
€ n ) < f(f* (I)) for every k eN b=f(x), where x,€
€ f" (I) Choose a subsequence of {x;},en converging to xo€I. Then
Xo € ﬂ ") =[a,b] and b =f(x,). Since &€ ﬂ ), we

have §<b and b = f(xg) < x0 < b, s0 x9 = b and f(b)_b From
Remark 1, b = &. Analogously, ¢ = &, which ends the proof of the
first part of our assertion.

Now choose # €(0, 1) such that |g(&§)| <& < 1. Since lim f*(x) = &

n->o0

uniformly in I and g is uniformly continuous in I, there exists
7, € N such that

lg [f" (¥)]] <® for n>ny and x e L.
Then

G 0] = [Guy )] T I L% (]| < sup |G| 977

for n > ny and x € I, which shows that lim G, (x) = 0 uniformly in 1.

n— oo
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Suppose that f: I -1 and introduce the following equivalence
relation in I: two points x, y €I are said to be equivalent, x ~ ¥, iff
there exist n, m € Ny such that f"(x) = f™ (y) (cf. [6]). The equiva-
lence classes under »~« are called orbits. Denote by C(x) the orbit
of xe L

Remark 2. Let f e Fand x,yel. If x ~ y, then
Pey={(pq) € Ng : f? (%) = f* ()}

is a non-empty set. In the set P, , the following relation can be defined:

(p191) < (P2 q2) iff p; < p, and ¢, < g,.

According to Lemma 0.2 of [6] there exists an integer % such that
p — g =k for every (p,q) € P,,. So it is obvious that the relation
»<« is a linear order and there exists the smallest element in the space
(Py,ys <)

LEMMA 2. Suppose that X is an arbitrary non-void set, x, € X,
[ XX, gh: X >R, g(x) #0 for every xeX. A solution ¢ of
equation (1) on C (x,) is completely determined by the value of ¢ at x,.
Moreover, if x € C(xy), then

G, (x0) AN IR AT 6)
¢ = G, (%) ( (eo) + 2 G (xo)) kzo Gis1 (x)’

where numbers p, g € N, are choosen in such a manner that f? (x,) =
= f1(x).

Proof. Induction yields

elf"W] "SR
O)="G0) T 2 G )

Applying this formula twice we get

i e D] "R ()]
v = G, (x) r=0 Gi+1 (%)

_ ol ()l S AL @)
G, (%) k=0 Gi41(x)

_ G, (x0) ( hf* (xo)]) R )
G ) Pt s 2 Gors G0)) i Cors ('
The following lemmas will be useful in the next considerations.

The proof of first of them is similar to that of well known Stolz theo-
rem, so we omit it.

, y e IN{&), ne No.
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LEMMA 3. Let A be an arbitrary non-void set, a,, i, : A > R,
neN. Suppose that B,(x) < fp41(x) for x€ A, neN, and lim f,=w

H—>co

uniformly in A. If lim (ap;; — @p)/(Bar1 — Bu) = a € R uniformly

n—>o0
A, in then lim a,/f, = a uniformly in A.

n-—»co

LEMMA 4. Suppose that {by}nexy and {uninex are real sequences
such that u, ~ oo and b,[u, — 0. Then there exists a sequence {t,}ncn such
that t,~>0 and for every convergent (to a real number) sequence {a,}nex
the sequence {a, b, — t, Uy}pey 15 divergent (it has not finite limit).

Proof. Choose a number k, € N such that u, > 0 for every % >»
> ko. For k < ko we define z, arbitrarily, If 2 > k, and lim inf [5,] >
> 0, then we put ¢ = | bju,|2. If k> k, and liminf [b,| = 0,
then we put ¢, = | 1/u, |*/2. The sequence {#;}xcy has the required
property.

The next result is the inversion of Theorem 1.

THEOREM 2. Suppose that feF and geC,. If for every heC
there exists a solution ¢ € C of equation (1), then f is strictly increasing
in a neighbourhood of &.

Proof. Without loss of generality we may assume that I is a compact
interval and £ is its left endpoint. Further, we may assume that
lg(x)| <1 for xeI. The proof is divided into three parts.

1°. Let x4 € I, {x,}sen < C (%) and denote by (p,, ¢,) the smal-
lest element of the set P, ., (see Remark 2). Then the set {p,}nen
is finite.

Assume, for the indirect proof, that the set {p,},¢ v is infinite. Since

P (x,) = fon (x0) for ne N, )
we get
x, # & for ne N, 3)

(otherwise x, = x, = & and p, = 0 for n e N). On account of Lemma 1,
(2) and the infiniteness of the set {p,},ex We have

& = lim inf {7 (x,) = lim inf f% (x).

Obviously x, # &, thus the set {g,}.ex is infinite, too.
Let {x,,}.cv be a convergent subsequence of {x,},ey such that

pku A1 90, qkn A 0. (4)
Define

Xy = Xt Do = Diw 4n =i, for ne N and x = lim x).

Obviously x € I. Now we must distinguish two cases:
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Case A: X ¢ C(xo). At first we shall show that
i) =f(xn)s i<ppj<pp=>n=mand i =] (5
We have
fo (x0) = f7n (x,) = %=1 (f7 () = f% =17 (),

whence

9w > qn and p, — i +j > pp.
Similarly we get

Gy >4, and pp, —j +i>p,.
Consequently,

Gn = qn and p, — i =p;, —j,
and thus n =m and 7 =.

Now put

Gq (xo) Pa—1 gitl
L = ————, neN, 6
GGy T & Gy " ©

where & = sgng |~ We shall verify that these sequences fulfil
the assumption of Lemma 4. In view of Lemma 1 there exists an 7, €
€ N such that

by =

IG; (x;)! <1 for i >4, and ne N.
For n € N, such that p, > 1, we get
i+ -

z i+1(xrla)l_l

l+1 (xn) =0

U, = §_

=5 (G G011+ (0L~ i

which implies #, — . Furthermore, observe that Lemma 1 gives

. n+ 1 Gn+1 . Al 1
B e, g, = gD
— (- lg@)-*

uniformly in I. Hence and by Lemmas 1 and 3 we get for x €/

n—1 gitl

Jim (3 Gm(x>)/G R
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Consequently,
lim byfu, = Hm Gy (x0) (G (x,) Z e YGry (v)) " =

=0-(1—jg®h=0.

Choose a sequence {t,},ey according to Lemma 4. In the set

= (f Ghen U @hen w8V T U )

=0

we define a function % as follows:

RIS Gl =h@E =k[f'@®] =0, ieN )
and
RIfi(xn] = &*le, neN, ie{0,...,pr — 1}.

The correctness of this definition may be deduced from (3), (5), the
assumption x ¢ C (x,) and the definition of the sequence {(Pu ¢n)}nen-
The points & and fi(x), 7N, are the unique accumulation points of
the set D. Then the convergence of {t,},c » to zero implies the continuity
of & in D. The set D is closed, thus in virtue of Tietze’s theorem there
exists a function % € C, which is an extension of A.

Let ¢ € C be a solution of equation (1). By Lemma 2, (6) and (7)
we have for ne N

Gy, (xo)( o b f (xo)]) "g‘ R If* (6]

? 0 = p,,( ) ?(x0) + zo Gt (%0) k=0 Gir1(xp)

pa—1 k+1
" £ th

= b, ¢ (x0) — k§=:0 m = b, ¢ (x0) — Ly Un,

which, in view of Lemma 4, contradicts continuity of ¢ at x.

Case B: x € C(x,). Let k, 1€ N, be choosen in such a manner
that f* (x) = f'(x,). Our assumptions imply that {x’},le ~ < C(x).
Thus let (i, 7), 7 € N, be the smallest element of the set P, ;. Then

fintk(xp) = finr k¥ (X) = ¥ (%), meN,
whence
ta-+ k= p,and j,+1>gq, for neN.

Hence, according to (4), we obtain lim 7, =lim j, = 0. Let
n—»oco 7n—>00

{L}ne N be such a subsequence of the sequence of posmve integers

that ¢, ~ c© and j, ~ . Set x; = xi,, ¢, = 41,, jn =17, for neN.

In the sequel the proof is similar to that of case A, where Xos {Xi}nens

{pa}nens {gr}nen must be replaced by %, {xi}ncn {z,,},,eN, ('} nens rES-

pectively.
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2°. Now we wish to show that

AneNVaye I(f"(x)=f" () ="' (x) =f"1 ().

Suppose, on the contrary, that there exist sequences {x,},.y and
{¥a}nen such that x,,y, €l and

I Ge) = f"(ya) and "1 (%) # "7 (ya), neN. (8)
Obviously
Xps Yo # & for ne N, 9

Again we distinguish two cases:
Case A: For a certain subsequence {¥; },ex Of {¥a}ney and an
xo € Iwe have y, € C(x,), neN.

Then set x, = x4, yn = Yx,» # € N. It follows, by (8), that &,is
the smallest positive integer such that

fra(xp) = ff (yn), neN. (10

Choosing, if necessary, suitable subsequences, we may assume that
’ ’ .
{x:}nen and {y,}scy converge, i. e.

x, >~ x and y, - 3. (11)

Since x, € C(y,), it follows that x, € C(x,) for every neN. Let (p,, ¢,)
be the smallest element of the set Py ., and (z,,s,) the same for the
set Py, .,n € N. In particular we have

I (%) = f (xo); n €N, (12)
and

fin () = fin(xo), neN. (13)
Hence we obtain

fretin () = frutin (v0) = fuin (), we N,
which implies
DPn +]n > km 4, + i,, > k,, for ne N

and lim j, = lim g, = o (k, > o). In virtue of part 1° the sets

n—>oo n-—+ oo
{Putnen and {i}nen are finite, whence, by (11), (12) and (13), we
get x =y =2§. Thus £ is the unique accumulation point of the sets
oo kn oo kn . ,
Ee=U U {f'G)} and E,= U U {f'(yn)}. Consequently,
since £ ¢ E,, none of the elements of E, has an infinite number of
representations of the form f'(x), where ne N and {€{0, ..., k,}.
The set E, has the analogous property.
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Therefore, we may define by induction a sequence {m,},cn Of
positive integers as follows: Put m; = 1 and, m, being defined, define
m, ., as the smallest positive integer m > m, such that

P # 0 O (D} U OD) for €40, o ud

n=m 1=

Set x, = Xmy» VYo = Ymw> Ry = R, for neN. It follows from the
construction of the sequence {m,},ey that

i) =f (), i<kp,j<ki=n=1and i =j, (14)
and the same holds for the sequence {y,}. We shall show that
from=7@)i<k,j<k =>n=1Iland i =] (15)
Assume, for instance, that k, — i< k; —j. Then by (10) we get
f () =f% (n) =571 (f () = 5774 ().
Since k, — i+ j < k;, (14) implies that n =1/ and k, =k, — i + 7,
e 7=j.
Now put

k—1
_ Gk,’. (ym) X gt

by = "7k U= 7y I
Gk,’, () =0 Gis1(xp)

—=N. (16)

Analogously as in the part 1° one can verify that these sequences
fulfil assumptions of Lemma 4.

Choose a sequence {z,}.e 5 according to this lemma. In the set
) ko—1 . o ka—1 .
D=0 "U{remu 0 U Uron v
we define a function A:
RIfE () =&+ e, RIS (9] =R () =0, 17
neN,ie{0, ...,k — 1}.

The correctness of the definition follows from (9), (14) and (15). The
set D is closed and £ is the unique accumulation point of it. Thus
is continuous (¢, - 0) and in virtue of Tietze’s theorem it can be
extended to a function % € C.
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Let ¢ € C be a solution of equation (1). In view of Lemma 2 and
by (10), (16) and (17) we have

(}9(3’;) + ,-go Gi+1 (y:) i=0 —m a

n_ G (D) o N O A = R S AN C)
T (xn> —_ Gk,’, (x;‘l) ( ——) - z =

‘1 .
kn 81+1 tn

:bn :— '—'__—Z_Ibn“ ;_tn :unE\r-
v igo Gy () v n B '

Thus on account of (11) and the continuity of ¢, sequences {@ (x1)},c v
and {g¢ (¥)}nen converge to ¢ (&), contrary to the Lemma 4.

Case B: Every orbit contains a finite number of points of the
set {yn}neN'

- Let { yk,,},,e. ~ be a subsequence of {¥n}ne ~ having at most one point
in common with every orbit and put w, = x;, 2, =¥,neN. In
view of (8) &, is the smallest positive integer such that

[ (w,) = ff(z,), ne N. (18)

Moreover, since z; # z; for 1 #j and C(w;) = C(z;) for every i € N,

ClE)NC(z) =8, Cw)NC;)=80 for i+#j. 19)

Choosing, if necessary, suitable subsequences, we may assume that

{wplnen and {2,},en converge, i. €. w, > w, 2, - 2. Observe, that by
(19) there exists 1, € N such that

7] ¢ C (wn)’ z ¢ Cc (Z,,), n = np. (20>

It follows from (19) and the assumption f € F that

filw,) =f(wn =>n=m and 7 =j. 2D
Let us put
G (20) ol et
by =2 u, = ———8«—, neN. 223
Gkn (wn) i=0 Gi +1 (7""n) ( ’

As previously one can verify that these sequences fulfil the assumptions
of Lemma 4. Thus let {¢,},cx be a sequence existing on account of
this lemma. In the set

kn—

U (@3l U ey

f= n=ng =0

D=1
n=no

U{ff@}ien Y {f @}ien Y {&}
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define a function % as follows:
Bf ()] = & b B [f(z)] =0, n=ne i€{0,....,k,— 1}, (23)

hIff @)= h[f @) =h()=0,icN,

By (9), (18), (20) and (21) this definition is correct. The set D is closed
and the points &, f" (w) and f, (g) for ne N, are its unique accumu-
lation points. Since 1, - 0, 4 is continuous.

Thus let 7 e C be an extension of /2 and ¢ € C be a solution of
equation (1). In virtue of Lemma 2, (22) and (23) we have

Gy (z\( ! h[f"(zm) M B[ (o))
" /ZL',, — V,"L,,_ﬂ g,) _ —_ —_ _ L =
7 ) Gy, (=) (p( ) i—’z'ﬂ Givi(2) i—go Gt (wn)
ka—1 £i+ 1 t
g () — S b (5 — bt nEN,
bu(l ( u) igo Gi+1 (wn) n ¢ ( n) L, i n s

which, in view of Lemma 4, contradicts continuity of ¢.

3°. Now, we shall show that f |-:, is strictly increasing.

For, assume that f(x) = f(y) for certain x,y € f*~1(I). Hence
x =f""1(xo), v =f""1(yo), where x4, vo €I, and

fi@o) =F( 1 (xo) = £ () = F(3) = F (/' (o)) = [" (30)-

It follows from the part 2° that f"~ ! (xo) = f"~ ' (yo), i. €. x =y and
fls-1( is invertible. Consequently, since fe F, f -1y is strictly
increasing, which ends the proof of our theorem.

3. This section is devoted to the qualitative description of the set
of all equations (1) having continuous solutions. We start with the
following

LEMMA 5. Let I be a compact interval. Then the set Fy of all
functions f € F strictly wncreasing in a neighbourhood of & is of the first
category in F.

Proof. We have Fy = Cj F,, where F,, ne N, is the set of

n=1
" all functions f € F strictly increasing in the interval I N (5 — %, &+ %)
Observe, that every set cl F, contains only increasing functions, so

its interior in F is empty and F, is a nowhere dense set.



On linear functional equations in the... 101

THEOREM 3. Let I be a compact interval. The set
H={(f,g;h)eF»x C, < C:3¢cC gef=gq+n
ts of the first category in F > C, x C.
Proof. The set
B={(fg;hqg)ecF <C,xCxC:q:f=gqg+h

is clesed in F « C, x C x C. Thus H, as a projection of B on the
space F X G, X C, is analytic and has the Baire property (see [7],
Chapter XIII, § 1).

Let fe F\ F, and g €C,. On account of Theorem 2 the section
H;,={heC:3¢ecC ¢<f=gy+ h}

of H is a proper subset of C. In virtue of Lemma 1 of [2] H,, is of
the first category in C. To finish our proof it is sufficient to apply
Theorem 15.4 of {8) and Lemma 5.
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O LINEARNIM FUNKCIONALNIM ]EDNADZBAMA
W. Farczvk, Katowice, Poljska

Sadrzaj

Neka je & € I, I-realni interval a f, g : I — R neprekidne funkcije
takve daje 0 < (f(x) — &) /(x — &) <lzaxel\{£}ilg(® <L
Pod tim pretpostavkama je pokazano: ako za svaku neprekidnu funk-
ciju 1 : I - R postoji neprekidno rjeSenje jednadZbe (1), onda je
f striktno rastuéa u okolini cd &. Nadalje je studirana egzistencija nepre-
kidnih rje$enja jednadzbe (1) sa stanovi$ta Baireovih kategorija.



