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TOTALLY SYMMETRIC #-QUASIGROUPS WHICH SATISFY
THE THREE SYMMETRIES THEOREM

M. Polonijo, Zagreb

Abstract. Totally symmetric n-quasxgroups in which every product of three
symmetries is a symmetry are studied in this paper, The structure of such n-quasi=-
group is given in the terms of an abelian group,

Let (O, 4) be a totally symmetric n-quasigroup (shortly TS-n-
~quasigroup), # > 2, i. e, an s-quasigreup in which 4 (*7) = %441
implies A (28 = %pme1y for any permutation ¢ on {1,2,...,7 +
41} and all xg %2 00y Xe1 €0, [11. A permutation Ri:Q -0,
RL(x)=A(a}"' %, a]"?) is usually called the #~th translation in
(Q, A) generated by the (n— 1)-tuple @ ==(a15 ...s Gy—1)s 1=1,2, ...37.
Obviously, for a TS-n-quasigroup, all /~th translations generated by
the same aeQ"~%, i=1,2,..., 1, coincide and we will denote them
by se. Further, it is easy to show that s} is the identity, i.e. sz=1.
Therefore, s will be called the symmetry in (Q, 4) generated by
acQ" i,

Let & be the set of all symmetries in a T'S-#-quasigroup (Q, 4).
We denote by S(Q) the group generated by &, and by S°(Q) the
subgroup of S(Q) generated by the products of the even numbers of

symmetries.

In this paper we investigate TS-n-quasigroups in which the three
symmetries- theorem holds, i, e, TS-n-quasigroups satisfying the
following condition:

(A4) Every product of three symmetries is a symmetry.

This axiom gives a new, geometrical justification for thie intro-
duced term ssymmetry¢.

In the sequel, (Q, A) is a T S-n-quasigroup satisfying (4), in short
AT S-n-quasigroup, The elements of O ‘will be called the points,
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We will prove that the ATS-n-quasigroups have a very simple
representation in terms of an -abelian group (Q, +4) isomorphic to
S° (Q) (Theorems 4 and 7). In fact, any AT S-n-quasigroup is a C"*1-
-system (cf [2), {3]) and vice versa (Theorem 6).

PROPOSITION 1. Let (Q, A) be an ATS-n-quasigroup. Then
S°(Q) is an abelian group. If the identity is a symmerry, then S°(Q) =
= S(Q). If the identity is not a symimetry, then the index of S°(Q) in
S(Q) is equal 2 and the coset of S°(Q) is &.

Proof. For any three symmetries sy, 55, §3 €&, the product s, 5, 53
is a symmetry, which implies (s; 55 53)*> = 1. Therefore sy.5,53=
= 535,85, and the commuitativity of S°(Q) follows immediately.
The remaining statements are obious from the fact that any element
in S(Q) is a symmetry or a product of two symmetries.

PROPOSITION 2. Let 5y, 535 S3, 54 €& be given symmetries and
x €Q a point.

@) If sy (x) = 52 (x), then s, = s,.

b) If 555, (%) = 5455 (x), then s, 5) =54 53.

Proof. a) For any point y € Q, there is a symmetry s e &, for
which s (x) =y, because (Q, 4) is an n-quasigroup. Then

ss () =515() =51585(x) =555 5. () =5250) =520,

so that. s, =35,

b) From the assumption s, s; (x) =54 53 (x), we have 5§, §; (x) =
= §5, 53 (x), for any symmetry- s .%. Since ss,5; and ss5.5; are
both symmetries, the statement q) implies s, s; =5 54 53, Therefore
§2 81 = §4 83

Definition 1. For any two (a,b), (¢, d) € 0% we define (a, b))~
% (¢, d) iff there is a symmetry s € &, such that s (@) =d and s (b) = .

Without difficulties, one could prove the following proposition:

PROPOSITION 3. For any' four points a,b,¢,deQ hold:

@) (a,a) = (b, b),

b) (a: a) ~ (b’ C) 1ff b=oq

o) (a,b) = (¢, &) implies (b, a) ~ (d, c).

PROPOSITION 4. ~ is an equivalence relation.

Proof. For any two points a, b € O, there is a symmetry s €%,
such that s(a) = b, which means that the relation % is reflexive. Obvio-
usly, & is a symmetric relation. To prove transitivity, let us suppose
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that (a,b) = (c,d) and (c,d) ~ (e,f), for a,b,c,d,e,f€ Q. Then
there are symmetries $q, §,, §3 € & such that

si(@=d, s;())=¢, () =f=55(a), 5:(d) =&,
which gives
s3(b) =535, (¢) =5351§‘2(f) =s5585)=n40@=sd)=c

and hence (a,5) % (6, f), i. €. & is transitive.

The equivalence classes, i. e. the elements of 02/~ will be denoted
by ab, where (a, b) € ab.

The following proposition is an easy consequence of Proposition 2.

PROPOSITION 5. For any three points a,b,c€Q, there is
exactly one point d € Q, such that ab = cd.

COROLLARY. Let 0€Q be a fixed point. For any two points
a, b e Q, the equality oa = ob is equivalent to a = b.

PROPOSITION 6. For any six points a, b, ¢, p,q,*€Q, ab =
= pq and bc = qr imply ac = pr.

Proof. We have (a,b) = (p,q) and (b,c) ~ (g,7) and there are
symmetries g, S;, §3 €& such that

s1(@)=¢, 51(B)=p () =r=253(a), 52(c) =4q.
Hence '
$3(0) =538, (g) = 535284 (a) = 515255 (a) =51 5,(r) = 3$.(B) =,

so that (a,¢) = (p, 1), i. €. ac = pr,

Definition 2. For any two ab, bc e Q%[~ we define their sum by

ab -+ bec = ac,

From Propositions 5 and 6, it follows that the addition is well
defined on -Q%/~.

THEOREM 1. (Q¥Y~, +) is an abelian group.

Proof. Associativity follows immediately. Further, for any two
points a, b € 0, aa is the zero and ba is the inverse of ab. The group
(Q?/=; +) is abelian, since for all ab, bc € %)/~ and any symmetry
s € & satisfying s(c) = b, we have

ab + bc = ac-= bd = bc + ¢d = be + ab,

where d = s (a).
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Applying the corollary of Proposition 5 and Theorem 1 we get
the following theorem.

THEOREM 2, For any fixed point o€ Q, let f,: Q- Q?/ be
the ome-to-one mapping given by the equality

T (x) = ox.
Suppose that the addition @ on Q, with respect to the point o, is defined
by the formula
a®b= :‘ (£ (a) +fo (b))
Then (Q, ®) is an abelian group.

COROLLARY. Abelian groups (Q, @) do not depend on the choice
of the point o € Q.

THEOREM 3. For any n points X5 ..., % €Q, the equality
X DX D .. DXy = Sn-1 (A4 (D)
1s valid.
Proof. Let us define the points ¥, ¥1s ooy Y-y € Q such that~

Yo=2x; and y;¥;41 = 0x,.2 for all i=0,1,...,,n— 2, It follows
that

X 0% @ ... @% =[3' (fo (xr) +fo (x2) + oo + o () =
= fo' (oxy + 0x; + ... + 0x) = f7" (0y0 + Yo y1 +
F o F Vno2 Ya-1) =3 (Yn-1) = Yu-1.
On the other hand, for all a4, ..., 8,3 € Qandanyi=0,1,...,n — 2,
sV %142, 0173 = 5 [¥141, 0, 01 73)

holds, where s [x]~'] denotes s, for x = (%, ..., ¥,—1) € 0"~ !, Hence
we obtain

A (x]) = s [x§71] (%) = s [Yos %2, 5] (%)) =
=s[yo0 x;"] (xn) = s [y15 %35 x:] @=..=
=5 [¥2, 0, 41 (0) = 5 [y2,%4, x5, 0] (0) =

=s [y..-z, x..,"zs] (o) =s [y..-n”;2] (o) =s ["51] (Yn-1)-
Therefore,

S["Z!] AED) =Ye1 =% 0% @ ... DX,
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COROLLARY. For any two points x,y € Q

n—1 n—2
ol x®y=s[o](A(x,y,o))

THEOREM 4. For any n points Xy, ...,x,€Q, the equality

-1
A(X]) =0%6%:,0...0% ®s ["o ] (0)
1s valid.

n—1
Proof. Set o' = s[ 0 ] (0). For any point x € Q, we get
-1 n—2
o'=s[o](xex)=A(x,ex,’o),

n—2
ox=2A4 (x, oy, o )
It implies
n-2
oA =4 G—:A(A(x}),o’, 0 ) =

[ a5, 5) -

=5[] e =

=x; .. DX
which was to be proved.

THEOREM 5. Given an abelian group (Q, +). For a fixed ac Q,
let A, be an n-ary operation on Q, defined by

n-1
A, () = — gl x+a

Then (Q, A,) is ani AT S-n~quasigroup.
Proof. Obviously, (Q, 4,) is a TS-n-quasigroup. Further, for

1.
= (1 vus Up—q) € Q"= 1, set u = z: u;. Then
fon

Sa@) =4, \x)=a—u—=x
Therefore, for v = (05 cs0y Vyt)s W= (W1, ceesWy-1) EQ*"" %, v =
n—1 n—1
=3 v, W= 2 w, it follows that
i=1 i=1

SwSaSy(X)=a—(u—v 4 w)—x
i. €. 5y 5, 8y is a symmetry,
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In [2] the notion of C"“-system was introduced as a TS-n-
-quasigroup (Q, A) which is b1symmetnc (i. e. the expression
A ({A (x,‘;')},-l) is invariant for any permutation of its-elements x;; €
€Q, 4,7 =1,2,...,n). According to the results in [2] (compare [3])
and to our Theorems 4 and 5 the following equivalence holds:

THEOREM 6. TS-n-quasigroup (Q, A) satisfies the axiom (A4) if
and only if it is a C"* L-system,

THEOREM 7. Let (Q, A) be an AT S-n-quasigroup. Then the
abelian groups S°(Q) and (Q, @) are isomorphic.

Proof. Any peS°(Q) could be written in the form p = sp Sa
for some a=1{(ay, ..., @y_y)y b =(b1; ..., bu_y) € 0"~ 1. Now, by
setting a=a; @ ... ®ay_y, b=105; @... ®b,_y, it follows that

) =A@ A7, %))=a0bex
for all x € Q. Let define & : S°(Q) - O, by the equality
h(p)="h(spsa) =aob,

for all p e $° (Q). Obviously, 4 is an one-to-one mapping and A(p, p;) =
= h(p;) ® h(p,) is valid, for any two p;, p, € S°(Q), which proves
the statement.
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TOTALNO SIMETRICNE #-KVAZIGRUPE KOJE ZADOVOLJAVAJU
TEOREM O TRI SIMETRIJE

M. Polonijo, Zagreb

Sadrzaj

U radu se istraZzuje struktura onih totalno simetriénih n-kvazigrupa
koje imaju svojstvo da je produkt triju simetrija takoder simetrija. Sva-
ka takva n-kvazigrupa moZe se izraziti u terminima pripadne Abelove
grupe pomaka,



