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TOTALLY SYMMETRIC n-QUASlGROUPS WmCH SATISFY
THE THREE SYMMETRIES THEOREM

M. Polomjo, Zagreb

Abstract. Tota11y symmetric n-quasigrotips in which every product of three
symmetries is a symmetry are studied in this paper. The strueture of such n-quasi~
group is given in the terms of an abelian group.

Let tQ, A) be a totally symmetric n-quasigroup (short1y TS-n­
-.quasigroup), n;;;. 2, i. e. an n-quasigrQup in which A (x1) = Xn+l

kplies A (x:m) = X9'(n+l)' for any permutation p on {I, 2, ... , n +
+ I} and all Xi) Xz, ••• , Xn+1 e Q, [1]. A permutation R~: Q -+ Q,
R~ (x) = A (ai -1, X, a7-1) is usually ealled the i-th translation in
(Q, A) generated by the (n-1)-tuple a = (aH ",' an-I)' i= 1, 2, .. ,' n.
Qbviously, for a TS-n-quasigroup, all i-th iranslations generated by
the same a e Qn- 1, i = 1; 2, .. " n, coincide and we will denote them
by S•• Further, it is easy tO'show that S~ is the identitY, i, e, S; = 1.
Therefore, Sa will be called the symmetry in (Q, A) generated by
aeQ"-I.

Let f/' be the set of all symmetries in a TS-n-quasigroup (Q, A).
We denote by S (Q) the group generated by f/', and by SO (Q) the
subgroup OI S (Q) generated by the produets of the even numbers of
symmetries.

In this paper we investigate TS-n-:quas1groups in which the three
symmetries theorem holds, i~ e. TS~n-quasigroups satisfYing the
followmg condition:

(A) Every product of three symmetri'es is a symmetry.

This axiom gives a new, geometrica1 justification for the intro .•
duced term »symmetry{(. .

In the sequel,' (Q, A) is a 'TS-n-quasigroup satisfYing (Il), in short
ATS-n-quasigroup. The elements of Q 'will he ealled the points.
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We will prove that the AT S-n-quasigroups have a very simple
representation in terms of anabelian grotlp (Q, +) isomorphic to
SO (Q) (Theorems 4 and 7). In fact, any ATS-n-quasigroup is a en+!_
-system (ef [2], [3]) and vice versa (Theorem 6).

PROPOSITION 1. Let (Q, A) be an ATS-n-quasigroup. Then
SO (Q) is an abelian group. IJ the z'dentity is a symmetry, then SO (Q) =
= S (Q). IJ the identity is not a· symmetry, ther!. the z'ndex oj SO (Q) in
S (Q) zs equa! 2 and the eoset oj So (Q) is ff.

Prooj. For any three symmetries S1) Sz, S3 E[/', the product Sl. $2 S3

is a symmetry, .which implies (Sl Sz S3)2 = 1. Therefore SlSZ·$3 =

= S3 S2 Sl and the commutativity of SO (Q) follows immediately.
The remaining statements are obious from the fact that any element
in S (Q) is a symmetry or a product of two symmetries.

PR,OPOSITION 2. Let S1) Sz, S3, S4 E!/ be given symmetries and
X EQ a point.

a) If Sl (~) =:: Sz (x), then St = Sz.

b) IJ S2 Sl (x) = S4 S3 (x), then S2 Sl = $4 S3'

Prooj. a) For any point y E Q, there is a symmetry SE[/';. for
which s (x) = y, because (Q, A) is an n-quasigroup. Then

Sl (y) = Sl S (x) = Sl S S]. Sl (x) = hS Sl Sl (x) = S2 S (x) = S]. (y),

so that Sl = S].

b) From the assumption Sz Sl (x) =S4 S3 (x), w~ have S Sz Sl (x) =
= S S4 S3 (x), for any symmetry· SE!/. Since S S]. Sl and·s S4 S3 are
both symmetries, the statement a) implies $ ~2 Sl =$ S4 S3' Therefore
S2 Sl = S4 S3'

DefinitiQn 1. For any two (a, b), (e, d) E QZ we define (a, b) ~
~ Ce, d) iff there is a symmetry $ E ff, s,:!chthat s (a)"= d and S (b) = c.

Without difficulties, one could prove the fol1owing proposition:

PROPOSITION 3. For any' four pOJ'nts a, b, c, dE Q hold:

p.) (a~ a) ~ (b, b),

b) (a, a) ~ (b, e) ifj b = c,

e) (a, b) ~ (e, dJ impHe$ (b, a) ~ (d, e).

PROPOSITION 4. ~ is an equivalenee relation.

Prooj. For any two points a, b E Q, there is a symmetry S E 9;
such that sea) =b, which means that.therelation~ is reflexive. Obvio­
usly, ~ is a .symmetric relation. To prove ttansitivity, let us suppose
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~hat (a, b) ::::I (e, d) and (e, d) ::::I (e,f), for a, b, e, d, e,f e Q. Then
there are symmetries $iJ $2' $3 e 9' such that

$1 (a) = d, $1 (b) = e, S~ (e) =1 = $3 (a), $2 (d) = e,

which gives

S3 (b) = S3 Sl (e) = $3 $1 $2 (j) = S2 $1 $3 (f) = Sz $1 (4) = S2 (d) = e

and hence (a, b) ~ (e,f),i. e. ::::I is transitive.

The equivalence classes, i. e. the elements of Q2j::::l will be denoted
by ab, where (a, b) E ah.

The following proposition is an easy eonsequenee of Proposition 2.

PROPOSITION 5. For any three points a, b, e e Q, there is
exaetly one point d e Q, such that ab = cd.

COROLLARY. Let o e Q be a fixed point. For any two points
a, b E Q, the equ~Hty oa = ob i$ equivalent to a = b.

PROPOSITION 6. For any six points a, b, e, p, q, r e Q, a6 =
=pq and be = qr imply ac =pr.

Proo/. We have (a, b) ::::I (p, q) and (b, c) ::::I (q, r) and there are
symmetries SIJ $2,' S3 e [/ such that

Sl (a) = q, Sl (b) = p, S2 (b) = r = S3 (a), S2 (e) =q.
Henee

S3 (e) = S3 $2 (q) = S3 $2 Sl (a) = Sl $2 S3 (a) = Sl $2 (r) = $1 (b) = p,

so that (a, e) ::::I (p, r), i. e. ac =pr.

Definition 2. For any two ah, he e Q2j::::l we define thei! sum by

ah +be = ac.

From Propositions S and 6, it fo1lows that the addition is well
defined on .Q2/~.

THEOREM 1. (Q2j::::l, +) is an abeUangroup.. .
Proo/. Associativity follows immediately. Further, for any two

points a, b e Q, aa is the zero and ba is the inverse of ah. The group
(Q2/::::I; +) is abelian, since for all ah, he e Q2j::::l and any symmetry
SE [/ satisfying s·(e) = /J, we have

ab + he = ac·= hd = he + cd = he + ab,

where d = s (a).
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Applying the corollary of Proposition 5 and Theorem 1 we get
the following theorem.

THEOREM 2. For any fixed point o e Q, let /0 : Q ~ Q2/"" be
the one-to-one mapping given by the equality

/0 (x) = ox.

Suppose that the addition EÐ on Q, with respect to the-point o, is defined
by the /ormu(a

a EÐ b = f;' (/0 (a) +/0 (b).

Then (Q, EÐ) is an abelian group.

COROLLARY. Abelian groups (Q, EÐ) do not depend on the choice
o/ the point o e Q.

THEOREM 3. For any n pOints Xu •••, XII e Q, the equality

Xi EÐ X2 EÐ ••• EÐ XII = $,,-, (A (xmo
is valid.

Proo/. Let us define the points Yo,Yu ''''Y''-1 e Q stich that·
Yo = XI and y'Y'+1 = OX'+2' for all i = 0,1, ... , n - 2. It follows
that

XI EÐ X2 EÐ ••• EÐ XII =1;1 (/0 (XI) +/0 (X2) + ...+/0 (x,,) =
=1;' (OX1+ OX2 + ...+ ox,J =/;1 (OYo +YOYl +

+ ...+Y"-2Y"-I) =/;'(OY"_1) =Y"-1'

On the other hand, for all au ... , an-3 e Q and any i = 0,1, ... , n - 2,

$ [Y" Xl+2' a:- 3] = $ [Yl+ U o, a~- 3]

holds, where $ [x~-'] denotes s:&)for x = (xu ,,,,X"-1) eQ,,-1. Hence
we obtain

A (x~) = S [x~-'l(xJ = s [Yo, X2, X;-l] (x,,) =
= s [YI' o, XŠI] (x,,) = s [Yu X3' X:] (o) = ...=

= S [y2' o, X:l (o) = s [Y2,"X4' X;, o] (o) =

[ n-3] [ "-2] [n-I]= $ Y"-2' X,,' O (O) = S Yn-U O (O) = $ O (YII-1)'

Therefore,

[n-I]S O (A (~) =YII-1 = X1 EÐ X2 EÐ ••• EÐ XII'
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COROLLARY. For any tfoo points x, y E Q

[n-I] (( n-2))X $y = S O A x, y, O

ho/ds.

THEOREM 4. For any n points XI, .. ,' XIIE Q, the equality

A (x~) = eXI eX2 e ...e XIIEÐ s r~l](o)
is valid.

[n-I]Proo!, Set o' = s o (o). For any point X E Q, we get

i. e.

1t implies

[n-lJ (n-2)o' = S o (x ex) = A x, ex, o ,

( n-2)e x= A x, o', o .

( n-2)o' e A (xD = o' Et A A (x~), o', o =

["-I] (( ( n-2) "-2))= S o A o', A A (~), o', o , o =

= XI EÐ •• , $ XII

which was to be proved.

THEOREM 5. Given an abelian group (Q, +). For a fixed a E Q,
let All be an n-ary operatt"on on Q, defined by

n-I
All (x1) = - ~ Xi + a.

j=1

Then (Q, All) is an ATS-n-quasigroup.

Proo..f, Obviously, (Q, All) is a TS-n-quasigroup. Further, for
n

U = (UH ,.,' Un-I) e Qft-l, set U = ~ Ui' Then
;=1

Su (x) =All curt, x) = a - U - x,

Therefore, for v = (VH •• ,' VII-I), W = (Wt> •••, WII-I) E Q"-I, V =n-I n-I
= ~ Vj) W = ~ Wj) it follows that;=1 ;=1

Sw Su Sv (x) = a - (u - v + w) -X,
i. e. Sw Su Sy is a symmetry.
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In [2] the notion of enU-system was introduced as a TS-n­
-quasigroup (Q, A) which is bisynunetric (i. e. the expression
A ({A (Xmh::1) is invariant for any permutation of its' elements XI) E
E Q, i,j = 1,2, ..., n). According to the resuIts in [2] (compare [3])
and to our Theorems 4 and 5 the f<,>llowingequivalence holds:

THEOREM 6. TS-n-quasigroup (Q, A) satisfies the axiom (A) if
and only tj it is a en+l_system.

THEOREM 7. Let (Q, A) be an ATS-n-quasigroup. Then the
abelian groups SO (Q) qnd (Q, EÐ) are isomorphic.

Proo/. Any p E SO (Q) couId be written in the form p = Sb S.,
for some a = (au ... , all_I), b = (bu , bn,-1) E Qn-l. Now, by
setting a = al EÐ... EÐan-U b = bI EÐ Ej) bll_1> it follows that

p (x) = A (b~-I, A (a~-I, x)) = a e b EÐ ~',

for all X E Q. Let define h : SO (Q) ~ Q, by the equality

h (p) = h (Sb s.) = a e b,

for all p E SO (Q). Obviously, h is an one-to-one mapping and h (P2 Pl) =
= h (Pl) Ej) h (P2) is valid, for ai1y two Pu P2 E SO (Q), which proves
the statement.
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TOTALNO SIMETRIcNE n-KVAZIGRUPE KOJE ZADOVOLJAVAJU
TEOREM O TRI SIMETRIJE

M. Po/onijo, Zagreb

Sadržaj

U radu se istražuje struktura onih totalno simetricnih n-kvazigrupa
koje imaju svojstvo da je produkt triju simetrija takoder simetrija. Sva­
ka takva n-kvazigrupa može se izraziti u terminima pripadne Abelove
grupe pomaka.


