ON BANACH ALGEBRAS WITHOUT ZERO DIVISORS

A. Cedilnik, Ljubljana

Abstract

In this article we generalize Edwards' variant of Gel'fand-Mazur theorem for complex Banach algebras to any nonassociative Banach algebras. From this generalization we also obtain that if in a complex nonassociative Banach algebra there is. $$
\lambda\|x\| \cdot\|y\| \leqq\|x y\| \leqq \mu\|x\| \cdot\|y\|
$$ for some fixed positive λ, μ and any elements x, y of the algebra, this algebra is one-

 dimensional.Throughout the paper let H be a (real or complex) normed space which is also a (not neccessarily associative) algebra with continuous multiplication. Such an H we call a normed algebra or, in the case of complete normed space, a Banach algebra. It is well known that if $\|\cdot\|$ is any norm, equivalent to the original norm; there is a positive constant μ such that

$$
\begin{equation*}
\|x y\| \leqq \mu\|x\| \cdot\|y\|(x, y \in H) \tag{1}
\end{equation*}
$$

The following theorem was proved by Edwards:
THEOREM 1. Let H be a complex associative Banach algebra with the norm satisfying (1) with $\mu=1$, and with a unit whose norm. is 1. If

$$
\begin{equation*}
\left\|x^{-1}\right\| \leqq\|x\|^{-1} \tag{2}
\end{equation*}
$$

for any invertible element $x \in H$, then H is isometrically isomorphic to the complex field.

Let L be a regular representation: $L_{x} y=x y$. Since $L_{x-1}=$ $=L_{x}^{-1}$, we can write the inequality (2) in the form

$$
\begin{equation*}
\|x\| \cdot\left\|L_{x}^{-1}\right\| \leqq 1 \tag{3}
\end{equation*}
$$

We intend to generalize Theorem 1 to nonassociative case. Our proof will follow closely the original proof of Edwards.

[^0]THEOREM 2. Let H be a Banach algebra with norm $\|\cdot\|$, let $G=\left\{x \in H \mid \exists L_{x}^{-1}\right\}$ be nonempty and suppose that for some $\delta>0$

$$
\begin{equation*}
\|x\| \cdot\left\|L_{x}^{-1}\right\| \leqq \delta \quad(x \in G) \tag{4}
\end{equation*}
$$

Then $G=H-\{0\}$.
Proof. If $\operatorname{dim} H=0$, we have $G=\emptyset$. If $\operatorname{dim} H=1$, then the proof is trivial. So suppose: $\operatorname{dim} H>1$.

Define $A_{\varrho}=\{z \in H \mid\|z\| \geqq \varrho\}$ for any $\varrho>0 . A_{\varrho}$ is a connected set. If x and y are noncolinear elements in A_{ρ}, they are joined by the path
$\tau \rightarrow f(\tau)=[(1-\tau)\|x\|+\tau\|y\|] \cdot\|(1-\tau) x+\tau y\|^{-1} \cdot[(1-\tau) x+\tau y]$
in A_{φ}. But if $y=\alpha x$ for some number a, we take z in A_{φ}, which is not colinear with x_{2} and compose the path $f(\tau)$ from x to z with another one from z to y.

Observe that $G \cap A_{\varrho}$ is nonempty for every ϱ, since $x \in G$ implies $\alpha x \in G$ for any number $\alpha \neq 0$.

Since we have (1) it follows that $\left\|L_{x}\right\| \leqq \mu\|x\|(x \in H)$. If $x \in G$, there is an open ball in $B(H)$ (the operator algebra on H) of radius ε and with center at L_{x}, in which all the elements are invertible. So, if $z \in H,\|z\|<\varepsilon / \mu$, then $\left\|L_{x}-L_{x+z}\right\|=\left\|L_{z}\right\| \leqq \mu\|z\|<\varepsilon$, which means that L_{x+z} is invertible and $x+z \in G$. Therefore G is open in H and so $G \cap A_{\ell}$ is open in the relative topology of A_{ℓ}.

Now let $\left\{x_{n}\right\} \subset G \cap A_{e}$ be a sequence converging to x. Clearly, $x \in A_{2}$. We will show that $x \in G$. Since $\left\|L_{x_{n}}^{-1}\right\| \leqq \delta /\left\|x_{n}\right\| \leqq \delta / \varrho$, we have:

$$
\begin{gathered}
\left\|L_{x_{m}}^{-1}-L_{x_{n}^{1}}^{-1}\right\|=\left\|L_{x_{m}^{\prime}}^{-1}\left(L_{x_{n}}-L_{x_{m}}\right) L_{x_{n}}^{-1}\right\| \leqq\left\|L_{x_{x}^{-1} \|}^{-1}\right\| \cdot\left\|L_{x_{n}^{1}}^{-1}\right\| \cdot \\
\cdot\left\|L_{x_{n}}-L_{x_{m}}\right\| \leqq\left(\mu \delta^{2} / \varrho^{2}\right)\left\|x_{n}-x_{m}\right\|,
\end{gathered}
$$

which implies that $\left\{L_{x_{n}}^{-1}\right\}$ is a Cauchy sequence in $B(H)$ and so it converges to a $U \in B(H)$. We have

$$
\begin{gathered}
\left\|L_{x} U-I\right\| \leqq\left\|L_{x} U-L_{x} L_{x_{n}}^{-1}\right\|+\left\|L_{x} L_{x_{n}}^{-1}-L_{x_{n}} L_{x_{n}}^{-1}\right\| \leqq \\
\leqq\left\|L_{x}\right\| \cdot\left\|U-L_{x_{n}}^{-1}\right\|+\mu\left\|x-x_{n}\right\| \cdot \delta / \varrho,
\end{gathered}
$$

which implies that $L_{x} U=I$. Similarly, $U L_{x}=I$. Consequently, $U=L_{x}^{-1}$, so $x \in G \cap A_{\varrho}$. This shows that $G \cap A_{\ell}$ is closed.

As A_{e} is connected, it follows that $G \cap A_{\mathrm{e}}=A_{\mathrm{e}}$, and since H -$-\{0\}=\bigcup_{e>0} A_{e}$, the proof is complete.

COROLLARY 3. Let H be the algebra from Theorem 2. In the complex case H is topologically isomorphic to the complex field.

Proof. This is a direct consequence of the well known theorem, that a complex Banach algebra in which L_{x} is invertible for any nonzero $x \in H$ is one-dimensional.

COROLLARY 4. Let H be a complex normed algebra with unit and with norm $\|\cdot\|$. Suppose that there exists a positive number λ such that

$$
\begin{equation*}
\lambda\|x\| \cdot\|y\| \leqq\|x y\| \quad(x, y \in H) \tag{5}
\end{equation*}
$$

Then H is topologically isomorphic to the complex field.
Proof. Let \hat{H} be the completion of H. Denote by $\|\cdot\|$ also the norm, extended from H to \hat{H}. Then by the properties of completion (5) remains true for any $x, y \in \hat{H}$.

Because of the existence of unit in \hat{H} the set G from Theorem 2 is not empty. Let $x \in G$. Then for any $y \in \hat{H}-\{0\}$ we have $\|y\|=$ $=\left\|x \cdot L_{x}^{-1} y\right\| \leqq \lambda\|x\| \cdot\left\|L_{x}^{-1} y\right\|$, or $\|x\| \cdot\left\|L_{x}^{-1} y\right\| /\|y\| \leqq 1 / \lambda$, which implies that $\|x\| \cdot\left\|L_{x}^{-1}\right\| \leqq 1 / \lambda$.

Now the conditions of Theorem 2 are satisfied for $\delta=1 / \lambda$ and so Corollary 4 follows from Corollary 3.

Conjecture. If the number field is real then the class of algebras satisfying the assumptions of Corollary 3 coincides with the class of algebras satisfying the assumption of Corollary 4; these algebras have dimension $1,2,4$, or 8 .

We hope to prove this conjecture by showing that these algebras cannot be infinite dimensional and then applying Bott-Milnor theorem about finite dimensional algebras with division.

REFERENCES:

[1] I. Kaplansky, Algebraic and Analytic Aspects of Operator Algebras. Providence, Amer. Math. Society 1970.
[2] R. Larsen, Banach Algebras, An Introduction. Marcel Dekker, Inc., New York 1973.
(Received November 11, 1981)
Biotehniska fakulteta
Vec̆na pot 83
Ljubljana, Yugoslavia

O BANACHOVIH ALGEBRAH BREZ DELJTTELJEV NIČA

A. Cedilnik, Ljubljana

Vsebina

V članku posplošimo Edwardsovo varianto izreka Gelfand-Mazur na neasociativne Banachove algebre. Kot posledico pa dokažemo še, da če v neasociativni kompleksni Banachovi algebri velja

$$
\lambda\|x\| \cdot\|y\| \leqq\|x y\| \leqq \mu\|x\| \cdot\|y\|
$$

za neka pozitivna λ, μ ter poljubna elementa x, y algebre, je algebra enodimenzionalna.

[^0]: Mathematics subject classifications (1980): Primary 17 A 01; Secondary 46 H 05.
 Key wiords and phrases: Nonassociative Banach algebra', Edwards' theorem, invertible left multiplication.

 This article is a part of autor's Ph. D. Thesis at E. Kardelj University of Ljubljana (1981) and of a work supported by the Boris Kidric. Fund, Ijubljana.

