APPROXIMATION THEOREMS FOR FIELDS AND COMMUTATIVE RINGS

M. Arapović, Sarajevo

Abstract. We give another proof of the approximation theorems for incomparable valuations. The proofs are shorter than the proofs in [5]. They can also be applied to valuations in commutative rings which is not the case for the proofs in [5].

1. Introduction. Let (v, Γ) and (w, Λ) be two valuations on a commutative ring R and $w = \varphi \circ v$ where φ is an order homomorphism of the group Γ onto the group Λ . Then we say that w dominates vand denote $w \ge v$. Valuations v and v' are called dependent if there exists a valuation w with w > v and w > v' and $w(R) \neq \{w(1), w(0)\};$ and they are called independent otherwise. Note that w > v implies that $v^{-1}(\infty) = w^{-1}(\infty)$. It is easy to show that $w \ge v$ if and only if $A_v \subseteq$ $\subseteq A_w$ and $v^{-1}(\infty) \subseteq P_w \subseteq P_v$, where A_v and A_w are valuation rings and P_v and P_w are positive ideals of v and w ([4], Proposition 4). Let (R, P) be a Prüfer valuation pair and let R_1 be an overring of R, i. e. let R_1 be a ring with $R \subseteq R_1 \subseteq T(R)$ where T(R) is the total quotient ring of R. Then there exists a prime ideal P_1 of R such that $P_1 \subseteq P$ and (R_1, P_1) is a Prüfer valuation pair ([1], Theorem 2.5). Therefore, if v and w are Prüfer valuations of the total quotient ring T(R), then w > v if and only if $A_w \supseteq A_v$, where A_v and A_w are valuation rings of v and w.

Let v_i , v_j be two incomparable valuations on a commutative ring R, let A_i , A_j be corresponding valuation rings, let P_i , P_j be corresponding positive ideals and let Γ_i , Γ_j be corresponding value groups. Let $v_i^{-1}(\infty) = v_j^{-1}(\infty)$ and let P be the maximal prime ideal of A_i and A_j such that $P \subseteq P_i$ and $P \subseteq P_j$. Certainly, $P \supseteq v_i^{-1}(\infty) = v_j^{-1}(\infty)$ and $P = v_i^{-1}(\infty) = v_j^{-1}(\infty)$ if and only if the valuations v_i and v_j are independent, i. e. the valuation $v_i \wedge v_j$ is trivial. Since the valuations v_i and v_j are incomparable it follows that $P \neq P_i$ and $P \neq P_j$. Let A_{ij} , A_{ji} be the isolated subgroups of the groups Γ_i , Γ_j respectively corresponding to P. $A_{ij} = \Gamma_i$, $A_{ji} = \Gamma_j$ if and only if the valuations v_i and v_j are independent. If $v_i^{-1}(\infty) \neq v_j^{-1}(\infty)$, then the valuations v_i and v_j are independent and let again $A_{ij} = \Gamma_i$, $A_{ji} = \Gamma_j$. Let $\Theta_{ij} : \Gamma_i \to \Gamma_i | A_{ji}$, $\Theta_{ji} : \Gamma_j \to \Gamma_j | A_{ji}$ be the natural

Mathematics subject classifications (1980): Primary 12 J 20, 13 A 18; Secondary 13 F 05.

Key words and phrases: Approximation theorems, field, valuation overrings of a Prüfer ring.

homomorphisms. The groups Γ_i/Δ_{ij} and Γ_j/Δ_{ji} are ordered isomorphic with the value group of $v_i \wedge v_j$, and consequently they can be identified.

A pair $(a_i, a_j) \in \Gamma_i \times \Gamma_j$ is called compatible if, by the preceding identification, $\Theta_{ij}(a_i) = \Theta_{ji}(a_j)$. Let $v_1, ..., v_s$ (s > 2) be pairwise incomparable valuations of R. $(a_1, a_2, ..., a_s) \in \Gamma_1 \times \Gamma_2 \times \times ... \times \Gamma_s$ is called compatible if and only if every pair (a_i, a_j) $(i \neq j)$ is compatible. If $a_i = v_i(x)$, $a_j = v_j(x)$ $(x \in R)$, then the pair (a_i, a_j) is compatible, since $v_i(x) = w(x) = v_j(x)$, where $w = v_i \wedge v_j$, $v_i(x) = \Theta_{ij}(v_i(x))$, $v_j(x) = \Theta_{ji}(v_j(x))$.

If the valuations $v_1, v_2, ..., v_s$ are pairwise independent, then every $(a_1, a_2, ..., a_s) \in \Gamma_1 \times \Gamma_2 \times ... \times \Gamma_s$ is compatible.

2. THEOREM 1. (Approximation theorem in the neighbourhood of zero). Let $v_1, v_2, ..., v_n$ be noncomparable valuations of the field K, $V_1, V_2, ..., V_n$ valuation rings, $M_1, M_2, ..., M_n$ maximal ideals and $\Gamma_1, \Gamma_2, ..., \Gamma_n$ value groups of these valuations respectively and let $(\alpha_1, \alpha_2, ..., \alpha_n) \in \Gamma_1 \times \Gamma_2 \times ... \times \Gamma_n$ be compatible. Then there exists $x \in K$ such that $v_i(x) = a_i$ (i = 1, 2, ..., n).

Proof. We first show that there exists $a_1 \in K$ such that $v_1(a_1) = 0$, $v_i(a_1) < 0$ (i = 2, 3, ..., n). We will prove this by induction on n. Let n = 2. Take $x_1 \in V_1 \setminus V_2$. If $x_1 \in V_1 \setminus M_1$, then $v_1(x_1) = 0$, $v_2(x_1) < 0$. If $x_1 \in M_1$, then for $1 + x_1$ we have $v_1(1 + x_1) = 0$, $v_2(1 + x_1) < 0$ and so we may take $a_1 = 1 + x_1$. Let n > 2. Suppose that there exist a_1' , $a_1'' \in K$ such that $v_1(a_1') = 0$, $v_i(a_1') < 0$ (i = 2, 3, ..., n - 1); $v_1(a_1'') = 0$, $v_i(a_1'') < 0$ (i = 3, 4, ..., n) and prove that there exists $a_1 \in K$ such that $v_1(a_1) = 0$, $v_i(a_1) < 0$ (i = 2, 3, ..., n). It is easy to conclude that for some positive integer m $v_i(a_1''') \neq v_i(a_1'')$ (i = 2, 3, ..., n). If $v_1(a_1'''' + a_1'') = 0$, then for $a_1 = a_1'''' + a_1''$ we have $v_1(a_1) = 0$, $v_i(a_1) < 0$ (i = 2, 3, ..., n). If $v_1(a_1'''' + a_1'') > 0$, then for $a_1 = 1 + (a_1'''' + a_1'')$ we have $v_1(a_1) = 0$, $v_i(a_1) < 0$ (i = 2, 3, ..., n). Therefore, there exists $a_1 \in K$ such that $v_1(a_1) = 0$, $v_i(a_1) < 0$ (i = 2, 3, ..., n). Therefore, there exists $a_1 \in K$ such that $v_1(a_1) = 0$, $v_i(a_1) < 0$ (i = 2, 3, ..., n). For $a_1 \in K$ such that $a_1(a_1) = 0$, $a_1(a_1) = 0$

Let $P_2, ..., P_n$ be prime ideals of $V_2, ..., V_n$ respectively such that $P_i \not\equiv M_1 \ (i=2,3,...,n)$. Valuation rings $V_1, \ (V_i)_{P_i}$ are incomparable (i=2,3,...,n), therefore there exists $a_1 \in K$ such that $v_1 \ (a_1) = 0$, $(v_i)_{P_i} \ (a_1) > 0$ (i=2,3,...,n); and since P_i is the maximal ideal of $(V_i)_{P_j} \ (i=2,3,...,n)$ it follows that $a_1 \in (V_1 \setminus M_1) \cap \bigcap_{i=2}^n P_i$.

Let $(a_1, ..., a_n) \in \Gamma_1 \times ... \times \Gamma_n$, $a_1 = 0$, $a_2 > 0$, $a_3 > 0$,, $a_n > 0$, be compatible. Take $x_i \in V_i$ such that $v_i(x_i) = a_i$ and

let P_i be the minimal prime ideal of V_i that contains x_i , (i = 2, 3, ..., n). Then $P_i \not\equiv M_1$ (i = 2, 3, ..., n). Take $a_1 \in (V_1 \setminus M_1) \cap (\bigcap_{i=2}^n P_i)$. For some positive integer m we have $v_1(a_1^m) = 0$, $v_i(a_1^m) > a_i$ (i = 2, 3, ..., n).

Let $(a_1, ..., a_n) \in \Gamma_1 \times ... \times \Gamma_n$ be compatible. Take $x_i \in K$ such that $v_i(x_i) = a_i$ (i = 1, 2, ..., n). Take $a_i \in K$ (i = 1, 2, ..., n) such that $v_i(a_i) = 0$, $v_j(a_i) > a_j - v_j(x_i)$ $(i, j = 1, 2, ..., n; i \neq j)$. For $x = x_1 a_1 + x_2 a_2 + ... + x_n a_n$ we have $v_i(x) = a_i$ (i = 1, 2, ..., n).

THEOREM 2. (General approximation theorem). Let $v_1, v_2, ...$..., v_n be pairwise incomparable valuations of the field K, let $(\alpha_1, \alpha_2, ...$..., $\alpha_n) \in \Gamma_1 \times ... \times \Gamma_n$ be compatible and let $b_1, b_2, ..., b_n \in K$. Then there exists $x \in K$ such that $v_i (x - b_i) = \alpha_i$ (i = 1, 2, ..., n), if and only if

$$v_i(b_i - b_j) < a_i \Rightarrow a_i - v_i(b_i - b_j) \in \Delta_{ij}. \tag{1}$$

Proof. Suppose that (1) is satisfied. Let $V_1, V_2, ..., V_n$ be valuation rings of $v_1, v_2, ..., v_n$ respectively, and let $D = \bigcap_{i=1}^n V_i$. From Theorem 1 it follows that $V_i = D_{M_i}$, where M_i is the center of v_i on D (i = 1, 2, ..., n) and if M is a maximal ideal of D, then $M = M_i$ for some i. Suppose first that $b_i \in D$ (i = 1, 2, ..., n). We will first prove that there exists $b \in K$ such that v_i ($b - b_i$) $\geq a_i$ (i = 1, 2, ..., n). Let $Q_i = \{b \in D \mid v_i(b) \geq a_i\}$, (i = 1, 2, ..., n) and let $i, j \in \{1, 2, ..., n\}$, $i \neq j$. We will show that $b_i - b_j \in (Q_i + Q_j) \ V_k$ (k = 1, 2, ..., n). Since v_i ($b_i - b_k$) $\leq a_i \Rightarrow a_i - v_i$ ($b_i - b_k$) $\in A_{ik}$ it follows easily that $b_i - b_k \in Q_i \ V_k \subseteq (Q_i + Q_j) \ V_k$, and since v_j ($b_j - b_k$) $\leq a_j \Rightarrow a_j - v_j$ ($b_j - b_k$) $\in A_{jk}$ it follows that $b_j - b_k \in Q_j \ V_k \subseteq (Q_i + Q_j) \ V_k$, (k = 1, 2, ..., n). Therefore $b_i - b_j = (b_i - b_k) + (b_k - b_j) \in (Q_i + Q_j) \ V_k$, (k = 1, 2, ..., n). Therefore, $b_i - b_j \in Q_i + Q_j \in A_j$ (i = 1, 2, ..., n) and by Chinese remainder theorem there exists $b \in D$ such that $b_i - b \in Q_i$ (i = 1, 2, ..., n). Clearly, v_i ($b - b_i$) $\geq a_i$ (i = 1, 2, ..., n).

Now let $b_i \in K$ (i = 1, 2, ..., n). Take b_i' , $d \in D$ such that $b_i = \frac{b_i'}{d}$ (i = 1, 2, ..., n), and let $b' \in D$ be such that v_i $(b' - b_i') > a_i + v_i$ (d). Then for $b = \frac{b'}{d}$ we have v_i $(b - b_i) > a_i$ (i = 1, 2, ..., n).

Take $\beta_i \in \bigcap_{\substack{j+i\\j\neq i}} \Delta_{ij}$, $\beta_i > 0$ (i=1,2,...,n) and $\alpha'_i = \alpha_i + \beta_i$ (i=1,2,...,n). Then there exists $b \in K$ such that v_i $(b-b_i) > \alpha'_i$ (i=1,2,...,n). Now, by the approximation theorem in the neighbourhood of zero, there exists $a \in K$ such that v_i $(a) = \alpha_i$ (i=1,2,...,n). For x = a + b we have v_i $(x - b_i) = \alpha_i$ (i=1,2,...,n).

Conversely, suppose that there exists $x \in K$ such that $v_i(x - b_i) = a_i$ (i = 1, 2, ..., n). It is easy to check that then (1) holds ([5], Theorem 3, page 136).

Remark. It is easy to conclude that

$$(v_i (b_i - b_j) < a_i \Rightarrow a_i - v_i (b_i - b_j) \in \Delta_{ij}) \Leftrightarrow (v_i (b_i - b_j) < a_i,$$

$$v_j (b_j - b_i) < a_j \Rightarrow a_i - v_i (b_i - b_j) \in \Delta_{ij}).$$

THEOREM 3. Let $v_1, v_2, ..., v_n$ be pairwise incomparable valuations of the field K, let $(\alpha_1, ..., \alpha_n) \in \Gamma_1 \times ... \times \Gamma_n$ be compatible and let $b_1, ..., b_n \in K$ be such that $v_i(b_i) < \alpha_i \Rightarrow \alpha_i - v_i(b_i) \in \bigcap_{\substack{j \neq i \\ j \neq i}} \mathcal{I}_{i,i}$. Then there exists $b \in K$ such that $v_i(b - b_i) = \alpha_i (i = 1, 2, ..., n)$.

Proof. By the preceding theorem and by the preceding remark it is sufficient to show that

$$v_{i} (b_{i} - b_{j}) < a_{i}, \quad v_{j} (b_{j} - b_{i}) < a_{j} \Rightarrow a_{i} - v_{i} (b_{i} - b_{j}) \in \Delta_{ij}, \ (i, j = 1, 2, ..., n; i \neq j).$$
 Suppose that $v_{i} (b_{i} - b_{j}) < a_{i}, v_{j} (b_{j} - b_{i}) < a_{j}.$

- 1) If $v_i(b_i) \leqslant v_i(b_j)$, then $v_i(b_i) \leqslant a_i$ and consequently $a_i v_i(b_i) \in \Delta_{ij}$, therefore especially $a_i v_i(b_i b_j) \in \Delta_{ij}$.
- 2) If $v_j(b_j) \le v_j(b_i)$, then we similarly conclude that $a_j v_j(b_j b_i) \in \Delta_{ji}$, i. e. $\overline{a}_j \overline{v_j(b_j b_i)} = \overline{0}$, so that $\overline{a}_i \overline{v_i(b_i b_j)} = \overline{0}$, and therefore $a_i v_i(b_i b_j) \in \Delta_{ij}$.
- 3) If $v_{i}(b_{i}) > v_{i}(b_{j})$ and $v_{j}(b_{j}) > v_{j}(b_{i})$, then $\overline{v_{i}(b_{i})} > \overline{v_{i}(b_{j})} = v_{i}(b_{j}) > v_{j}(b_{i})$, i. e. $\overline{v_{i}(b_{i})} = \overline{v_{i}(b_{j})}$, and therefore $a_{i} v_{i}(b_{i} b_{j}) \in \Delta_{i,j}$.
- 3. Let R be a Prüfer ring, i. e. a ring in which each finitely generated regular ideal is invertible, let $\{M_{\lambda}\}$ be the set of maximal ideals and let $\{P_{\lambda}\}$ be the set of prime ideals of R. It is well known that R is a Prüfer ring if and only if $(R_{\lfloor M_{\lambda}\rfloor}, \lfloor M_{\lambda}\rfloor, R_{\lfloor M_{\lambda}\rfloor})$ is a valuation pair for every $M_{\lambda} \in \{M_{\lambda}\}$. Also, $(R_{\lfloor P_{\lambda}\rfloor}, \lfloor P_{\lambda}\rfloor, R_{\lfloor P_{\lambda}\rfloor})$ is a valuation pair for every $P_{\lambda} \in \{P_{\lambda}\}$. Conversely, if V is a valuation overring of R, then $V = R_{\lfloor P_{\lambda}\rfloor}$ for some $P_{\lambda} \in \{P_{\lambda}\}$ ([3], Chapter X).

Let $\{V_{\lambda}\}$ be the set of valuation overrings of R and let $\{v_{\lambda}\}$ be the corresponding valuations. It is easy to see that Theorems 1, 2, and 3 can be applied to valuations $\{v_{\lambda}\}$.

THEOREM 4. Let R be a Prüfer ring, $V_1, V_2, ..., V_n$ pairwise incomparable valuation overrings of R, let $v_1, v_2, ..., v_n$ be the corresponding valuations, $\Gamma_1, ..., \Gamma_n$ the corresponding value groups, and let $(\alpha_1, ..., \alpha_n) \in \Gamma_1 \times ... \times \Gamma_n$ be compatible. Then there exists $x \in T(R)$ such that $v_i(x) = \alpha_i$ (i = 1, 2, ..., n), where T(R) is the total quotient ring of R.

Proof. First let $(a_1, a_2, ..., a_n) \in \Gamma_1 \times ... \times \Gamma_n$ be compatible and such that $a_1 = 0$, $a_i > 0$ (i = 2, 3, ..., n). Then there exists $x \in R$ such that $v_1(x) = 0$, $v_i(x) > a_i$ (i = 2, 3, ..., n). Namely, take $x_i \in T(R)$ such that $v_i(x_i) = a_i$ (i = 2, 3, ..., n) and let P_i be the minimal prime ideal of V_i that contains $x_i(i = 2, 3, ..., n)$. Take $x \in (V_1 \setminus M_1) \cap (\bigcap_{i=2}^n P_i) \cap R$, where M_1 is the positive ideal of V_1 .

Then for some positive integer m we have $v_1(x^m) = 0$, $v_i(x) > a_i$ (i = 2, 3, ..., n).

Let $(a_1, a_2, ..., a_n) \in \Gamma_1 \times ... \times \Gamma_n$ be compatible. Take x_i , $a_i \in T(R)$ such that $v_i(x_i) = a_i$ (i = 1, 2, ..., n), $v_i(a_i) = 0$, $v_j(a_i) > a_j - v_j(x_i)$ (i, j = 1, 2, ..., n), $i \neq j$. For $x = x_1 a_1 + x_2 a_2 + ... + ... + x_n a_n$ we have $v_i(x) = a_i$ (i = 1, 2, ..., n).

THEOREM 5. Let R be a Prüfer ring, $V_1, V_2, ..., V_n$ pairwise incomparable valuation overrings of R, let $v_1, ..., v_n$ be the corresponding valuations, $\Gamma_1, ..., \Gamma_n$ the corresponding value groups, and let $b_1, b_2, ...$..., $b_n \in T(R)$, where T(R) is the total quotient ring of R. Then there exists $x \in T(R)$ such that $v_i(x - b_i) = a_i (i = 1, 2, ..., n)$, if and only if

 $v_i(b_i - b_j) < a_i \Rightarrow a_i - v_i(b_i - b_j) \in A_{ij}. \tag{1}$

Proof. Let $D=\bigcap_{i=1}^n V_i$. Since $R\subseteq D$, D is a Prüfer ring, and $V_i=D_{[Mi]}$, where M_i is the center of v_i on D (i=1,2,...,n). Moreover, if M is a maximal ideal of D, then $M=M_i$ for some i. Suppose first that $b_i\in D$ (i=1,2,...,n). We will show that there exists $x\in T(R)$ such that $v_i(x-b_i)\geqslant a_i$ (i=1,2,...,n). Let $Q_i=\{b\in D\mid v_i(b)\geqslant a_i\}$, (i=1,2,...,n), and let $i,j\in\{1,2,...,n\}$, $i\neq j$. We will prove that $b_i-b_j\in Q_i+Q_j$. Since Q_i+Q_j is a regular ideal of D it is sufficient to show that $b_i-b_j\in (Q_i+Q_j)$ V_k for every $k\in\{1,2,...,n\}$. Since (1) holds and since an ideal of a Prüfer valuation ring V is v-closed if and only if it is a regular ideal of V, it follows that $b_i-b_k\in Q_i$ $V_k\subseteq (Q_i+Q_j)$ V_k and $b_j-b_k\in Q_j$ $V_k\subseteq (Q_i+Q_j)$ V_k (k=1,2,...,n). Therefore, $b_i-b_j=(b_i-b_k)+(b_k-b_j)\in (Q_i+Q_j)$ $V_k(k=1,2,...,n)$, i. e. $b_i-b_j\in Q_i+Q_j$. Since $b_i-b_j\in Q_i+Q_j$ (i,j=1,2,...,n), by Chinese remainder theorem there exists $b\in D$ such that $b-b_i\in Q_i$ (i=1,2,...,n). Clearly, $v_i(b-b_i)\geqslant a_i$ (i=1,2,...,n). The rest of the proof is the same as in Theorem 2.

THEOREM 6. Let R be a Prüfer ring, $V_1, ..., V_n$ pairwise incomparable valuation overrings of R, $v_1, ..., v_n$ the corresponding valuations, let $(a_1, ..., a_n) \in \Gamma_1 \times ... \times \Gamma_n$ be compatible and let $b_1, ..., b_n \in T(R)$ be such that $v_i(b_i) < a_i \Rightarrow a_i - v_i(b_i) \in \bigcap_{\substack{j \neq i \\ j \neq i}} \Delta_{ij}$. Then there exists $b \in T(R)$ such that $v_i(b - b_i) = a_i(i = 1, 2, ..., n)$.

Proof. Theorem 6 can be proved from Theorem 5 in the same way as Theorem 3 from Theorem 2.

REFERENCES:

- M. B. Boisen, Jr. and M. D. Larsen, Prüfer and valuation rings with zero divisors, Pacific J. Math. 40 (1972), 7-12.
- [2] M. P. Griffin, Valuations and Prüfer rings, Can. J. Math., 26 (1974), 412-429.
- [3] M. D. Larsen and P. J. McCarthy, "Multiplicative theory of ideals," Academic Press, New York, 1971.
- [4] M. E. Manis, Valuations on a commutative ring, Proc. Amer. Math. Soc., 20 (1969), 193—198.
- [5] P. Ribenboim, Theorie des Valuations, University of Montreal Press, Montreal, 1964.

(Received March 3, 1981) (Revised March 12, 1982) Department of Mathematics, University of Sarajevo, 71000. Sarajevo, Yugoslavia.

TEOREME O APROKSIMACIJI ZA POLJA I KOMUTATIVNE PRSTENE

M. Arapović, Sarajevo

Sadržaj

U ovom radu dajemo drugi dokaz teorema o aproksimaciji za neuporedive valuacije. Dokazi su kraći od dokaza u [5], a mogu se primijeniti i na valuacije u komutativnim prstenima što nije slučaj za dokaze u [5]