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CHARACTERIZATIONS OF THE 0-DIMENSIONAL RINGS

M. Arapovié, Sarajevo

Abstract. Throughout this paper rings are understood to be commutative
with unity, and subrings are understood to have same identity as their overrings.
In this paper the following results are given: ¢{) a new proof of the theorem that a
commutative ring R is a #-regular ring if and only if R is a 0-dimensional ring;
1) different characterizations of the 0-dimensional rings; %) if R is a 0-dimensional
ring, then T (R[X]) is also a O-dimensional ring, where R [X] is a polynomial
ring and T (R[X]) is the total quotient ring of R [X]; ) if R is a 0-dimensional
ring and if A is a finitely generated ideal of R, then A" = (¢) for some positive
integer n and for some idempotent element e of R and v) a new proof of the fact
that the ring R, whose total quotient ring T (R) is O-dimensional, is an additively
regular ring.

A commutative ring with unity will be denoted by R. We will
also use the symbol T (R) when we want to emphasize the fact that
T (R) is a total quotient ring, i. e. a ring in which every regular ele-
ment is invertible.

We next recall the following definitions.

Definition 1. A prime ideal P of R is called regular if P con-
tains a regular element of R.

Definition 2. A commutative ring R is called semiprime if R
contains no nonzero nilpotent elements.

Definition 3. A commutative ring R is called regular if for a €
€ R there exists a’ € R such that a?a’ = a.

Definition 4. A commutative ring R is called m-regular if for
a € R there exist a’ € R and a positive integer n such that " =
= (a")?d'.

Definition 5. Let A be an ideal of a commutative ring R. We

call A a radical ideal if it is equal to its radical, i. e. if 4 can be expressed
as the intersection of the prime ideals of R that contain 4.

Definition 6. Let R be a commutative ring with the total quo-
tient ring T (R). We say that R is an additively regular ring if R satis-
fies the condition: If a € T (R), then there exists b€ R such that
a + b is a regular element of T (R).
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It is well known that a minimal prime ideal of R consists of zero-
-divisors of R. ([3), Theorem 84). For completeness, we give a short
proof of this fact here.

LEMMA 1. If P is a regular prime ideal of a commutarive ring
R, then there exists a prime ideal Py of R properly contained in P. There-
fore, every minimal prime ideal of R is non-regular.

Proof. Let us form the ring Rp. Take a prime ideal P, of Rp,
maximal with respect to disjointness from the multiplicative system
of the regular elements of Rp. If P, is a prime ideal of R corresponding

to P; in the natural way, then P, is a prime ideal of R properly con-
tained in P.

~ Let R be a regular ring. It is easy to conclude that R has no non-
zero nilpotent elements. Namely, let ¢ be a nilpotent element of R.
Then there exists @' € R such that a =a?a =a3a'?2 =a*d'?® =
... = 0. Hence, if {P,} is the set of the prime ideals of R, N P; = (0)
and it is possible to present R as a subdirect product of the domains
{RIP;}.

The following theorem characterizes the regular rings. The
implications @) = d) and a) = ¢), can be found in the literature in
one form or another. They are however included here for the fol-
lowing reasons: first it is nicer to have all these facts collected in one
theorem and second the proofs given here are somewhat different,
for example, the proof a)=>¢) is different than the one presented in

(31 p. 64).

THEOREM 2. Let R be a commutative ring with unity. The fol-
lowing statements are equivalent:

a) R is a regular ring;

b) R is a total quotient ring and for a € R there exists an idempotent
e € R such that a = ae and a + (1 — ¢) is a regular element of R;

¢) R is a total guotient ring and for a € R there exists b € R such
that ab = 0 and a + b is a regular element of R;

d) R is a rotal quotient ring and every a € R has the form a = re,
where r is a regular and e is an idempotent element of R;

e) R is a semiprime O-dimensional ring.

Proof. Let R be a semiprime ring and let {P,} be the set of non-
-regular prime ideals of R. Clearly N P; = (0), R/P; is a domain for
every 4, and R is a subdirect product of the domains {R/P;}. An ele-
ment r € R is regular if and only if its component in R/P; is not
equal to zero for every A. An element e of R is idempotent if and only
if its component in R/P; is unity or zero for every A.
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a) = b). Let a be a regular element of R. Then there exists an
a' € R such that a = a?d’, i. e. a(aa’ — 1) = 0, furthermore, since
a is regular aa’ = 1, i. e. a is invertible; therefore R is a total quotient
ring. Suppose @ € R, then there exists a’ € R such that a = a2 4d’.
It is easy to see that e = aa’ is an idempotent element of R whose
component is unity in the places where the component of a is diffe-
rent from zero, and zero in the places where the component of a is
zero. 1 — e is an idempotent element of R that has unity in those
places and only in those places where the component of g is zero.
Hence a + 1 — ¢ is a regular element of R.

b) = ¢). Obvious.

¢)=d). Let neR be a nilpotent element of R. Then n+r
is a regular element of R for r € R if and only if r is a regular element
of R. Therefore, if ¢) is valid, then R has no nonzero nilpotent elements.
Let a € R. Then there exists b€ R such that gb=0 and ¢ + b is a

regular element of R. a = (a -+ b)a _T_ 5 and it is easy to conclude
that a__a—rl; is an idempotent element of R that has the unity in those

places where the component of a is different from zero, and in the
other places has the component zero.

d) = ¢). Let P;, P, be prime ideals of R, P, < P,. Let a € P,.
a = re, where r is a regular and e is an idempotent element of R. Since
r ¢ P,, we have e € P,; furthermore ¢ € P, implies 1 —e ¢ P,. Since
¢ (1 —e) =0, it follows that ¢ € P;. Therefore, a € P;. i. e. P, = P,.

e)=>b). Let aeR. Let S be the subring of the direct product
I1 R/P; that is generated by R and the idempotent element eeJ[R/P;
p) i

that has component the unity in those places where the component
of g is different from zero, and in all other places has the component
zero. Therefore, S = R [e]. Since e is a root of the polynomial x2 —
— x € R [x], S is an integral overring of R. Hence, S is a 0-dimensional
ring and therefore S is a total quotient ring. 1 — e 4 @ is a regular

1 1
e € S, therefore, T—o53 has the

1
form ——— =7 re;r,r, €R. It is easy to see that e =
l—e+a 1+ 20371572 Y
1

=1—e+a

element of S, and so

a=(ry+r,e)a=(r; +r)a and therefore eeR.

b) = a). Let a € R. Then there exists an idempotent e € R such

that @ = ae and a + 1 — e is a regular element of R. The equation
1
== 2 4 4 - — . ———
a = a*a’ holds for a a—i—l—eeR'
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Examples of regular rings. The direct product of fields is a re-
gular ring. The subdirect product of fields is a regular ring if and only
if it is a total quotient ring that has the property that for each of its
elements a there exists an idempotent element which has the unity in
those components where the component of a is different from zero
and has the zero element in the remaining components. A Noetherian
semiprime ring that is a total quotient ring (a ring is of this type if
and only if it is a semiprime total quotient ring having only finitely
many prime ideals) is a regular ring; namely, every such ring is a
direct product of finitely many fields. The ring of funcions, defined
on an interval [a, b] taking values in the field of the complex numbers,
is a regular ring. It is shown in {4] that the complete quotient ring
of a semiprime commutative ring R is a regular ring. Suppose the
semiprime ring S is an integral overring of the regular ring R. Since
R is a 0-dimensional ring, § is a 0-dimensional ring also. Therefore,
S is a regular ring.

Let R be a regular ring. Let a5, @, € R and let ¢; and ¢, be the
idempotent elements of R such that a, = a, ¢;,a, = a5 ¢, and a; +
+ (1 — &), a, + (1 — e,) are regular elements of R. It is easy to
verify that e=¢; + (1 —ej)e; =e; + (1 —e;)e; is an idem-
potent element and that (ay, a,) = (¢). So we have derived the known
result that every finitely generated ideal of R is principal and gene-
rated by an idempotent element of R, i. e. if ay, a5, ..., a, € R then
there exists an idempotent element e of R such that (a,, as, ..., @,) =
== (e). ([4), § 3.5. Lemma (von Neumann)). It is easy to prove that
(a1 ags o.xan 1 — &) = (1) and (@i, asy ... ay) (1 — &) = (0) If we
realize R as a subdierct product of fields, then ¢ is the idempotent ele-
ment of that subdirect product that has the unity in those components
where at least one of the elements ay, a,, ..., @, has non-zero compo-
nent, and has zero in the remaining components.

PROPOSITION 3. Let R be a regular ring and let {X;}icq be a
set of indeterminates over R. Then the toral quotient ring T (R [X]) of
R [X] is a regular ring. (We write R [X] instead of R [{Xi}1c4))

Proof. If f e R [X], let A, denote the ideal of R generated by
the coefficients of f. It is known that an element f of R[X] is a zero
divisor if and only if there is a non zero element r of R such that
rA; = (0). ([2], Proposition 24.7). Since R is a regular ring, A, = (e)
for some idempotent element ¢ of R. f(1 —¢) =0 and f 4 (1 —e)
is a regular element of R [X]. It follows by Theorem 2 that the total
quotient ring 7 (R [X]) of R [X] is a regular ring.

It is easy to verify that a homomorphic image of the regular ring
R is a regular ring.

PROPOSITION 4. Let ¢ (R) be a homomorphic image of the
regular ring R. Then ¢ (R) is a regular ving.
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Proof. Let ¢ (a) € ¢ (R), where ¢ (a) is the image of a € R. Since
R is a regular ring, there exists a’ € R such that g2 a’'=a. Then
(9 (@)? ¢ (a") = ¢ (a), therefore, ¢ (R) is also a regular ring.

We can characterize the regular rings in terms of radical ideals.

THEOREM 5. Let R be a commutative ring. The following state-
ments are equiralent:

a) R is a regular ring;
b) Every ideal of R is a radical ideal;
¢) Every ideal of R is an idempotent ideal.

Proof. a) = b). Let A be an ideal of R, Since R/A is a regular
ring, A is a radical ideal of R.

b) = ¢). Let A be an ideal of R. It is easy to verify: If 4 # A2
then A2 is not a radical ideal of R. Therefore 4 = A2,

¢) = a). Let aeR. Since (a?) = (a), there exists a’ € R such
that @ = a? a’. Therefore R is a regular ring.

It is easy to show that a m-regular ring is a total quotient ring
and it is known that a commutative ring R is a zw-regular if and only
if R is a O-dimensional ring. The following theorem characterizes the
m-regular rings.

THEOREM 6. The following statements are equivalent:
a) R is a m-regular ring;

b) R is a toral quotient ring and for every r € R there exists an idem-
potent e, € R such that r + (1 — e,) is a regular element of R and r (1 —
— e,) 1s a nilpotent element of R;

¢) R is a total quotient ring and for every a € R there exists b € R
such that a + b is a regular element and ab is a nilpotent element of R;

d) R 1s a total quotient ring and for every a € R there exists a po-
sitive integer n such that a" = re, where r is a regular and e is an idem-
potent element of R.

e) R is a O-dimensional commutative ring.

Proof. a) = b). Let r € R, » a regular element. Then there exists
' € R and a positive integer n such that v = (M2 7', i. e. ¥ ("¢ —
— 1) = 0. It follows, since r is a regular element of R, that "+’ —
—1=0, i. e. (@ 1¢) == 1. Therefore, n-regular rings are total
quotient rings. Let € R. Then there exist ' € R and a positive integer
n such that (r")? ' = #". It is easy to verify that »" ' is an idempotent
element of R, and, therefore, 1 — "¢’ is also an idempotent element
of R. Furthermore, [r(I — ") =r{1 —r¢rY =r(1—r¢)=
=0, hence, (1 —»"¢") is a nilpotent element of R. We will
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show that r 4+ (1 — #"¢") is a regular element of R. It is sufficient to
show that r 4 (1 — " »') ¢ P, for every prime ideal P of R. Let P
be a prime ideal of R. Since r (1 — r*¢') is a nilpotent element of R,
r(1 — ") e P. Hence, either rePor 1 —r"r' € P. If both reP
and 1 —7"v" e€P, then 1 eP. Therefore, r + (1 — "+ )¢ P, i. e.
r + (1 — ") is a regular element of R.

b) = ¢). Obvious.

¢) = d). Let a € R. Then there exist b € R and a positive integer
n such that (ab)" = 0 and a + & is a regular element of R. a" +4 &"
is also a regular element of R. (Namely, if a" + b" € P, P a prime ideal
of R, then ¢" b" =0 implies both a" € P and 5" € P, hence, both a € P
and b € P, therefore, a -+ b € P, but this is not the case.) a" = (a" +

a" a*
+ &) o and T

—{—bz")— 2"( "+b") implies a® _ a2n _ a’ 2
=a a impli an+bn—a2n+b2n" a® 4 b :

is an idempotent element of R, as a" (a*" +

d) = ¢). Let P,, P, be prime ideals of R, P, = P, and let a¢
€ P,. a" = re, r a regular element of R and ¢ an idempotent ele-
ment of R. Since r¢ P,, ec P,. Since eeP,, 1 —eé¢P,. e(l —
— ¢) = 0 implies e € P,. Hence, ae Py, i. e. P, = P,.

e) = ¢). Let a € R and let N be the nilradical of R. Since R is a
0-dimensional ring, R/N is also a 0-dimensional ring, hence, R/N is a
regular ring. It follows that there exists 4 € R such that, for some po-
sitive integer #n, (ab)" = 0 and a -+ b is a regular element of R.

¢) = a). Let ae R. Then there exists b € R such that, for some
positive integer #, (ab)" = 0 and a + & is a regular element of R. From
n n ny — ny2 no__ n\2 1
a"(a" + b") = (@a")* we have a (a™) s

Examples of the m-regular rings. Every regular ring is s-regular.
Artinian rings are m-regular. Let R be a regular ring and let M be a
nonzero R-module. If we define multiplication in the direct sum
R © M of the abelian groups R and M by: (r,m) (v'sm’) = (', rmt’ +
+ ' m), then R @ M is a ring which is a s-regular ring that is not
a regular ring. Let the ring S be an integral overring of the m-regular
ring R. Since R is a O-dimensional ring, S is a 0-dimensional ring
also. Therefore, S is a z-regular ring.

PROPOSITION 7. Let A = (ai,as; ..., a,) be a finitely gene-
rated ideal of a O-dimensional ving R. Then there exists a positive integer
n and an idempotent element e of R such that A" = (e). In addition,
A+(Q—e=1), A"+ 1A —e)=(1), 4"(1 — ) =(0).

Proof. Since R is a 0-dimensional ring, there exist positive integers
ny, Ny, ..., ;. and idempotent elements e,, e, ..., ¢, of R such that
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ajr =ajre;, ajz=alre, ..., agr = agt ¢, and a, +(1 —ey); ..., ax+
+ (1 — ¢;) are regular elements of R. Construct the idempotent
element ¢ of R such that (e, e, ..., &) = (e). (For example, (e,, ¢,) =
== (¢), where e is the idempotent element e =¢; + (1 —¢y) e, =
=g, + (1 —e)e, =e +e —e e, of R) Then A" = (¢), where

1 —
;‘Zl n;. (ai al‘ agc(e=>A4"<(e); e=¢ %—E—l——:g—
=a_.—_l—_(e_li_:?5d1€1‘1(i=1,2,...,k)=>(e)gA:(e):(e,.)_C_A,,.)

e is an idempotent element of R with the property: if P is a
prime ideal of R, then e e P if and only if A = P. Therefore, A +
+ A —-—g=(), A"+1 —e = (1), A*(1 —e) = (0).

PROPOSITION 8. Let R be a 0-dimensional ring and let {X:}aca
be a set of indeterminates over R. Then the total quotient ving T(R [X])
of R[X]is a 0-dimensional ring (We write R[X] instead of R[{X3}rc 4l.)

Proof. If f e R[X], A; denotes the ideal of R generated by the
coefficients of f. It is known that an element f of R[X] is a zero divisor
if and only if there is a nonzero element » of R such that rA4; = (0).
([1], Proposition 24.7). Since R is a 0O-dimensional ring, there exist
a positive integer # and an idempotent element e of R such that A} =
= (¢). ¢ is the idempotent element of R with the property: if P is a
prime ideal of R then e e P if and only if 4, = P. Therefore, f +
4+ (1 — e) is a regular element of R [X] and f (1 — ¢) is a nilpotent
element of R [X]. It follows by Theorem 6 that the total quotient
ring T (R [X]) of R[X] is a 0O-dimensional ring.

We can also characterize the 0-dimensional rings in the following
way.

THEOREM 9. Let R be a commutative ring and let N be the nil-
radical of R. The following statements are equivalent:

a) R is a O-dimensional ring;

b) If A is an ideal of R, then A + N 1is the radical of A;

¢) If Ais an ideal of R, then A* + N=A4 + N.

Proof. The proof follows easily using Theorem 5 and the fact

that R is a O-dimensional ring if and only if R/N is a regular ring.

It is known, that a ring R, whose total quotient ring T (R) is
m-regular, is an additively regular ring [2]. Here we shall present
another proof of this fact.

THEOREM 10. Let R be a ring whose total quotient ring T(R)
s m-regular. Then R is an additively regular ving.

Proof. Let x € T(R). Then there exists y € T(R) such that
xy is a nilpotent element and x + ¥ is a regular element of T (R).
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y = ;—; a,r € R, r a regular element of T (R). Then, since xa is a
nilpotent element, either x € P or ae P. If both xe P and ac P,
then both x e P and y = ; € P, hence, x 1y € P, which is impossible
since x -~y is a regular element of T (R). Thgrefore, x +a¢P for
every prime ideal P of T (R), and it follows that x -+ a is a regular
element of T (R).
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KARAKTERIZACIJA PRSTENOVA DIMENZIJE NULA
M. Arapovid, Sarajevo

Sadrzaj

U ovom radu se posmatraju komutativni prstenovi sa jedinicom.
Dati su slijedeéi rezultati: ) novi dokaz teoreme da je komutativni pr-
sten z-regularan prsten ako i samo ako je prsten dimenzije nula; #)
razliCite karakterizacije prstenova dimenzije nula; #7) ako je R prsten
dimenzije nula, onda je T (R[X]) takoder prsten dimenzije nula, gdje je
R [X] prsten polinoma i T (R [X]) totalni prsten razlomaka prstena
R [X]; 1v) ako je R prsten dimenzije nula i ako je A kona¢no generisani
ideal u R, onda A" = (e) za neki prirodni broj » i za neki idempotentni
element ¢ iz R i v) novi dokaz ¢injenice da je prsten R, &iji je totalni pr-
sten razlomaka T (R) prsten dimenzije nula, aditivno regularan prsten.



