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SPECTRA OF SOME OPERATIONS ON INFINITE GRAPHS

M. Petrovié, Kragujevac

Abstract. This paper is a continuation of [6] and the author’s previous paper
[3]. We consider some binary and n-ary operations on infinite graphs and investigate
the finiteness of the spectrum of so obtained graphs (the strong and lexicographic
product and p-sum of graphs).

1. Introduction

Throughout the paper G is an infinite, undirected graph without
loops or multiple edges whose vertex set is X = {xy, x5, ...}.

The adjacency matrix &/ = (a;;) of G is an infinite N X N ma-
trix, where a;; = a**/~2 if x; and x; are adjacent and a,; = 0 if they
are not adjacent (a is a fixed constant, 0 < aq < I).

The infinite matrix 27 can be regarded as the matrix of a bounded
linear operator A in a separable Hilbert space H with an orthonormal
basis {e;}. This operator is always nuclear (see [2]).

o (G) denotes the spectrum of G which is defined to be the spec-
trum o (A) of the operator A. It consists of zero and a sequence 4,, 4,, ...
of non-zero eigenvalues, where each of them is of finite multiplicity.

The vertex set X of G can be partitioned in a unique way into a
finite or infinite number of disjoint subsets X, X,, ... so that any
two vertices from the same subset are not adjacent, and any two sub-
sets are completely connected or completely non-connected in G.
The subsets X, X,, ... are equivalence classes under the equivalence
relation which is defined in the following way: vertices x and y are
equivalent if and only if they have the same neighbours. Subsets
Xy: X5, ... are called characteristic subsets of G. The graph G is of
finite type if it has finite number of characteristic subsets. Otherwise
it is of infinite type (see [4]).

A subgraph g of G obtained by choosing an arbitraty vertex from
each of characteristic subsets is said to be a canonical image of G.
If G is of finite type %k, we often denote it by G = g (X4, ..., Xp).

We quote some known facts about spectra of graphs of finite
type, which will be used in this paper.
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THEOREM 1.1. An infinite graph is of finite type iff it has finite
spectrum.

THEOREM 1.2. Each induced subgraph Gq of an infinite graph G
of finite type is a graph of finite type, too.

These theorems were proved by A. Torgafev in [4] and {5].

2. Main results

2.1. Strong product of two infinite graphs

Definstion 2.1. The strong product G; * G, of two infinite graphs
G, =X, U,) and G, =(X;, U,) is a graph G = (X, U), where
X=X, x X, and the edge set U is defined as follows: Vertices
(x15 x2) and (y;, ¥,) are adjacent in G iff either (x,, y,) € Uy, (x2, ¥2)
€U, or x; =y, (%2,92) €Uy or (x1,51) € Uy, x2 = 3.

THEOREM 2.1. The strong product Gy x G, of infinite graphs
G, and G, without isolated vertices is always a graph of infinite type.

Proof. We are proving that G, * G, does not have two equi-
valent distinct vertices. It is sufficient to prove that any two non-
adjacent vertices (xy,x,) and (v, y,) of Gy %G, do not have the
same neighbours. Since (x;, x,) # (¥, ¥2), they have at least one co-
ordinate distinct; let x, # y,. We distinguish the following two cases:

1° Let (x5, y2) ¢ U,. Because x; is not isolated in G, there is
z; € X, such that (x,, 2;) € U;. Then (zy, x,) is adjacent to (x,, x5)
but not adjacent to {y;,y,).

2° If (x3,y,) € U, then x; # v; and (x;, y,) ¢ U, (since (xy; x,)
and (yy,y,) are non-adjacent). Now, by applying 1° to (x,,v,) ¢ U,
the desired result is obtained.

Because G, » G, does not have two distinct equivalent vertices,
it is a graph of infinite type.

2.2 Lexicographic product of two infinite graphs

Definition 2.2. The lexicographic product G; [G,] of two in-
finite graphs G; = (X,;, U,) and G, = (U,, X,) is a graph G =
= (X, U), where X = X, X X, and the edge set U is defined in
the following way: Vertices (x4, x,) and (y;,y.) are adjacent in G
iff X1 = Y1 (x2,y2) € U2 or (xl,yl) € Ul, (xz,yz) € Uz.

Definition 2.3. An infinite graph G = (X, U) is said to be a graph
complete in parts iff vertex set X can be partitioned into a finite number
of disjoint subsets M;, ..., M, so that



Spectra of some operations on infinite graphs 29

1° Each set M; (i =1,...,n) is completely connected in G;

2° Each two sets M; and M; (i #j) are either non-connected
or completely connected in G.

THEOREM 2.2. The lexicographic product G, [G,] of two infi-
nite non-trivial graphs G, and G, is of finite type iff G, is of finite type
and G, is complete in parts.

Proof. Necessity. Let G, [G,] be of finite type %k, i. e.
G [G:] =g Ny ..., Ny, and let X, = {x,¥1, 21,755 ...}, X» =
= {X35 Y25 22, V2, ...}. If, contrary, G, is of infinite type, then G, [G,]
contains an induced subgraph G, whose vertex set is {(xi, x,),
(*1>¥2)s (%15 23), ...}, which is of infinite type. Indeed, graphs G,
and G, are isomorphic so they have the same type. Then, by The-
orem 1.2 the graph G, [G,] is of infinite type, which is impossible.

Let x, and y, be adjacent in G,. Consider vertices
Z, = {(xn %2)s (V15 %2)s (215 %2)5 }

Z, = {(xl, ¥2)s (Y15 2) (815 ¥2)s }
of G, [G,]. Vertices from Z, lie in p (1 < p < k) sets

Nip Nip (XS] Ni

p

({, < i, < ... < i,). Denote by

Nl Nij oo NG, M
the projections of

Ny, NZyNi,NZy ... Ny N Z,

onto X;. Then obviously these sets are disjoint and their unjon is X;.

We prove that the sets (1) are completely connected in G,. Let
x; and y,; be two vertices from N;,. Then ((x;, x2), (x1,¥,)) € U,
so that (¥, ¥2), (x1, ¥2)) € U, since vertices from N,;, have the same
neighbours. Whence it follows that (x,,v,) € U,. Since x; and y,
are arbitrary vertices from Nj,, this set must be completely connected
in Gy.

We next prove that if two sets N;, and Ny, are connected, then they
are completely connected. Let x, € N;, and 2, € N;, be adjacent in
Gy 1. e (x5, 2,) € Uy. Let y, and v, be any vertices from Nj, and
Ni,, respectively. Since (x,, 2;) € U; we have ((xy, ¥2), (81, x2)) € U.
But then ((vy, x2), (*1,¥,)) € U (since vertices from N;, have the
same neighbours). Hence, ((xy, x,), (25, ¥2)) € U so that (v, x2),
(v1,32)) € U (since vertices from N;, have the same neighbours).
Therefrom it follows that (y;, v;) € U;. In a similar way, it can be
proved that the vertex z, is adjacent to each vertex from Nj, and the
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vertex x, to each vertex from Nj,. Thus, N;, and Nj, are completely
connected in G,, and we conclude that G, is a graph complete in parts.

Sufficiency. Let G, be a graph of finite type k,i. e. G, = g (N, ...
... N and let G, be a graph complete in parts.

Then the vertex set X = X; X X, of G, [G,] can be partitioned
into n - 2 mutually disjoint subsets M; X N;(f==1,..,n;5=1,...
... k). Any two vertices of set M; X N; are not adjacent, since their
second coordinates are non-adjacent in G,.

Let (x4, ¥o) and (x, y) be arbitrary vertices of M; X N, and let
(4, v) be arbitrary vertex of X adjacent to (x4, ¥o). Then u = x,
(or (uy xo) € Uy) and (v,y,) € U,. If ue M, then either u = x or
(u, x) € U,, since M; is completely connected in G,. If u e M; (I # 1)
then (y, x) € U, since M; and M, are completely connected in G;.
Therefore, either u = x or (i, x) € U,;. On the other side, since yq, y €
€ N, they have the same neighbours in G,, so that (v, y) € U,. Thus
(u, v) is adjacent to (x,y). So, we have proved that all vertices from
M; x N; have the same neighbours in G, [G,]. Hence, all the vertices
of M; x N, are equivalent. Since there are exactly n - k& such sets,
the number of equivalence classes must be less (or equal) to n . k.
Thus G, [G,] is a graph of finite type.

Example 2.1. Let G, = K, and G, = Ky, r,. Then G, [G;]
is a complete bipartite graph Ky, «n,x,xn, If its vertex set is X =
== {x,, X5, ...}, then its spectrum is

1 .
061 16D = {0, = 5 VA A3,
where 4, = 3 a?,4,= 3 a%.
xie X3 xNy ¥ e N1 xN2

2.3 p-sum of infinite graphs

Definition 2.4. The p-sum of infinite graphs G, = (X,, Uy), ...
v Gp =X, Up) is a graph G = (X, U), where X=X, x ... X
X X, and U is defined in the following way: Vertices (x1, %25 ..., Xu)»
(¥15 V25 ...> o) € X are adjacent in G iff exactly p of n pairs (x;, v,) i =
= 1, ..., n) are adjacent in the corresponding graphs G;, and x; = y;
for remaining pairs.

If p =1 one obtains the sum G, + G, + ... + G, of graphs,
and if p = n one obtains the Descartes product G, X G, X ... X G,.

THEOREM 23. If G, Gy, ..., G, are infinite graphs without
isolated wertices, then their p-sum (1 < p <#n) is always a graph of
nfinite type.

Proof. In the vertex set X consider the subset

Y = {(x1, 25 --.s %) | %, € X}
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Let (x5, %2, ..., x,) and (x;, %3, ...,¥,) be any two vertices from Y
and let z; be a vertex in X, adjacent to x;( = 1, ..., p). Then the
vertices

(15 s Xps Xpa1s e-es Xp)

(zl, 3 8py Xpyr1s ooy x")

are adjacent and the vertices

(xu s Xpy Xptgs ~~-:yn)

(21, vee3 Bps xp+1, ceny x,,)

are non-adjacent. We conclude that no two vertices in Y are equiva-
lent, since they do not have the same neighbours in G. Hence, the
vertices of Y belong to distinct equivalence classes of G. Since Y
is an infinite set, there is an infinite number of equivalence classes,
or G is of infinite type.

COROLLARY. The sum G, + G, + ... + G, of infinite graphs
Gy, Gy, ...y G, withour isolated wvertices is always a graph of infinite
type.

THEOREM 2.4. The Descartes product G, X G, X ... X G,
of infinite graphs Gy, G,, ..., G, without isolated wvertices is of finite
type iff the graphs Gy, Ga, ..., G, are of finite type. Furthermore, if
G, is of finite type k; (1 =1, ...,n), then Gy X G, X ... X G, is of
finite type ky - ky - ... - k.

Proof. Sufficiency. Let G, be of finite type &, i. e. G, = g; (X}, X},...
XD G =1, n).

The vertex set X of G; X G, X ... x G, can be partitioned into
ky - ky - ... - k, mutually disjoint subsets

Y.

TR

=X}, XX}, . xXX{ G =1 .,k nh,=1 L k). (2

First we prove that each set (2) contains only equivalent vertices,

Let (x5, %25 o0 %)y (V15 V25 oes¥n) € Yy ooy Then the ver-
tices (xy, %25 ..., %,) and (yi,¥2 ..., ¥s) are not adjacent, since no
pair of vertices (x;,y;) is adjacent in G, (=1, ...,n). If a vertex
(215 225 .. 22) is adjacent to (x;, Xa, ..., X,), then it is adjacent to
(¥1> Y25 ---» ¥n) too (because the vertices x; and y;, x, and y,, ..., X,
and y, have the same neighbours in G, G,, ..., G,, respectively).
Thus, (x1, X2, -..» %,) and (¥, ¥2s ..., ¥.) are not adjacent and have
the same neighbours in G; X G, X ... X G,. We conclude that Y, ...,
contains equivalent vertices only.
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Next we prove that if (xy, %5, ...,%,) and (yi, ¥, ..., ¥,) are
equivalent in Gy X G, X ... X G, then x, and y;, x, and ¥, ..., X,
and y, are equivalent in Gy, G, ..., G,, respectively.

Let 2; be adjacent to x; in G;. Then x; and y;{(f=1, ..., n) are not
adjacent in G;, respectively. Indeed, if, for instance, vertices x, and y,
are adjacent in G, then (yy, 23, ..., 2,) is adjacent to(xj, x5, ..., X,)
and not adjacent 10 (y4, ¥2, ..., ¥»), Which is impossible. Since (2, 25, ...
...»2p) is adjacent to (x, X2, ..., %) In Gy X G, X ... X G, it is adjacent
0 W15 .- ¥m) i Gy X G, X ... X G,. Hencg, it follows that the ver-
tices z; and y;, 2, and y,, ..., g, and y, are adjacent in Gy, G, ..., G,
respectively. So we have proved that x; and y; ({ = 1, ..., n) are not
adjacent and they have the same neighbours in G;; thus x; and j;
are equivalent in G,.

Finally, we conclude that any two vertices from distinct sets (2)
are not equivalent, whence the sets (2) must be characteristic sets
of the graph G; X G, ... X G,. This means that G; X G, X ... X G,
is of finite type &k, and R =Fk; - B, - ... - kp.

Necessity. Let at least one of the graphs G,, G,, ..., G, be of
infinite type. Similarly to the previous proof, one can prove that the
Descartes product of the characteristic subsets of Gy, G, ..., G,
forms the characteristic subsets of the graph G, X G, X ... X G,.
Since this set is infinite, we conclude that G; X G, X ... X G, is a
graph of infinite type.

Hence, if G; X G, X ... X G, is a graph of finite type, then the
graphs Gy, Gs, ..., G, must be of finite type, too.

Remark. Theorem 2.4, for the Descartes product of two infinite
graphs, was proved by A. TorgaSev [6].

Example 2.2. Let G; = Ky, u, and G, = Ky, 5,. Then G; X G,
is a disconnected graph with connected components Ky, x50 x 8,

and Ky, xn, maxn,- 1f its vertex set is X = {x;, x5, ...}, then its
spectrum is

0 (G X G3) = 0 (Kayxny,maxng) YO Ky xnpargxng) =

| R 1
={0, :{:aTVAlAZ’ :{:a—{VAsA4}:

where 4, = 3 a¥, Ad,= 3 a¥ A;= S a?,
xje M3 xNy X € M2X N> xje My XN2
dy= 3 a? (see [2] and [4]).

x1e M2x Ny
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SPEKTRI NEKIH OPERACIJA SA BESKONACNIM GRAFOVIMA
M. Perrovié, Kragujevac

Sadrzaj

U ¢&lanku se posmatraju neke binarne i n-arne operacije sa bes-
kona¢nim grafovima i ispituje konacnost spektra tako dobijenih gra-
fova (jaki i leksikografski proizvod i p-suma grafova). Nekim teorema-
ma se utvrduje da je spektar grafova tako dobijenih uvek beskonacan
a druge teoreme daju potrebne i dovoljne uslove za konalnost spektra
tih grafova.



