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Abstract. We study a question of Erdős and Graham on prod-
ucts of three factorials being a square.

1. Introduction

For any integer n > 1 denote by P (n) and Q(n) the greatest prime
factor and the square free part of n and put P (1) = Q(1) = 1. For any
prime p, let ordp(n) denote the largest power of p dividing n. For any
set A of positive integers let

m(A) =
∏
a∈A

a!

and M(A) denote the largest integer in A. In 1975, Erdős and Selfridge
[7] proved a remarkable result that a product of two or more consecutive
positive integers is never a square or a higher power. Continuing this
line of investigation, Erdős and Graham [9] asked if a product of two
or more disjoint blocks of consecutive integers can be a square or a
higher power. It was noted by Ulas [15] that if all the blocks are of
length exactly 4 and if the number of such blocks is large enough,
then the product takes on square values infinitely often. In subsequent
papers Bauer and Bennett [1] and Bennett and Luijk [2] gave further
possibilities when such a product is a square infinitely often. In this
paper, we consider a product of factorials being a square i.e., we search
for positive rational integral solutions to the Diophantine equation

(1)
t∏

k=1

ak! = y2

with a1 ≥ a2 ≥ · · · ≥ at > 1 and y > 1. By canceling out an even
number of equal factorials on the left hand side, we may assume that

a1 > a2 > · · · > at > 1.
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In [8], the above equation was studied when a1 is given and t is minimal
such that (1) has a solution. It was shown in [8] that the set of possible
values of the left hand side of (1) is sparse. Hence it may very well be
that (1) has no or very few solutions. Define F0 = ∅ and for k ≥ 1, let

Fk = {n : there exists some set A with |A| ≤ k,

M(A) = n and m(A) is a square}

and

Dk = Fk \ Fk−1.

Suppose the equation has a solution a1, · · · , at then a1 ∈ Ft. Thus in
order to study the equation (1) Erdős and Graham investigated the
sets Fk and Dk.

1.1. Properties of the sets Fk and Dk. (i) No prime belongs to any
Fk.

(ii) D1 = F1 = {1} since n! for n ≥ 2 is never a square.
(iii) Let A = {a2, a2−1} with a > 1. Then t = 2, a1 = a2, a2 = a1−1

and m(A) is a square. Hence a2 ∈ F2. By [7], it follows that D2 =
{a2, a > 1}.

(iv) Let a > 1, b > 1 and A = {a2Q(b!), a2Q(b!) − 1, b}. Then t =
3, a1 = a2Q(b!), a2 = a1 − 1, a3 = b and m(A) is a square. Hence
a2Q(b!) ∈ D3.

(v) Let x, y be solutions of the Pell’s equation

ux2 − vy2 = 1

where uv = Q(a!) for some a > 1 and gcd(u, v) = 1. Let A =
{ux2, vy2 − 1, a}. Then t = 3, a1 = ux2, a2 = a1 − 2, a3 = a and m(A)
is a square. Hence ux2 ∈ D3 when u is not a square. This example
is slightly different from the one given in [7] where uv is taken to be
equal to a!.

Erdős and Graham predict that there are perhaps only finitely many
elements of D3 apart from the two classes of integers given in (iv) and
(v). This problem is still open. On the other hand, they showed that
D3 is sparse by proving

D3(X) = o(X)

whereD3(X) denotes the number of elements ofD3 which do not exceed
X. The above result was improved by Saradha and Shorey [14] to

D3(X) = O

(
X log3 X

logX log2X

)
.
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Their work depends on an application of Jutila’s result on exponential
sums and known estimates for the Dickman’s function which counts
integers with small prime factors.

1.2. About D3. In the two classes of examples in (iv) and (v) we have
a2 ≥ a1 − 2. There are examples where a2 = a1 − 3. For instance,

(2) 10!7!6!; 50!47!3!; 50!47!4!

are all squares. Erdős and Graham asked if there are other examples.
i.e., does the equation

(3) a1!(a1 − 3)!a3! = y2

have any other solution apart from the three examples given above?
We prove

Theorem 1.1. Let a3 ≤ 100. Then all the solutions of (3) are given
by

(a1, a3) ∈ {(10, 6), (50, 3), (50, 4), (324, 26), (352, 13), (442, 18), (2738, 26)}.

Note that (3) can be re-written as

(4) a1(a1 − 1)(a1 − 2)a3! = y2

The left hand side of (4) is a product of two non-overlapping blocks,
one of length 3 and the length of the other is not fixed. These cases
are not covered in [1] and [2]. For x ∈ R, by ⌈x⌉ we denote the ceiling
function of x, i.e. the smallest integer not less than x. We show

Theorem 1.2. Let h = π(a3)− π(a3/2). Then
(a) a1 > (a3/2)

⌈h/3⌉.
(b) No term N ∈ {a1, a1 − 1, a1 − 2} is of the form αN1 where

N1 = P θ1
1 · · ·P θs

s > 1 with Pi’s primes, θi odd, Ω(N1) ≤ ⌈h/3⌉ and

α ≤ a
⌈h/3⌉−Ω(N1)
3

2⌈k/3⌉
− 2

a
Ω(N1)
3

, where Ω(N1) denotes the number of prime

factors of N1 counted with multiplicity.
(c) No term N is of the form αN1 where N1 = P1, P

3
1 , P1P2, P1P2P3

and α ≤ 64393, 6, 637, 6, respectively, except when

(a1, a3) ∈ {(10, 6), (50, 3), (50, 4), (324, 26), (352, 13), (442, 18), (2738, 26)}.

2. Proof of Theorem 1.1

Equation (3) can be re-written as

(5) a1(a1 − 1)(a1 − 2) = Q(a3!)Y
2.
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Putting a1 − 1 = X ′ and multiplying by (Q(a3!))
3 the equation is

transformed to the elliptic equation

(6) X(X2 − b2) = Y 2

where X = Q(a3!)X
′, Y = (Q(a3!))

2Y ′ and b = Q(a3!). Actually, (6)
is the so called congruent number elliptic curve. For a3 ≤ 53, a3 ̸∈
{32, 38, 40, 47, 51}, we were able to find all integral points (X, Y ) on
the elliptic curve (6) by using the function IntegralPoints in Magma
[3]. However, we are interested only in those integer points for which X
is divisible by b. The integer points satisfying this additional condition
give exactly the solutions given in Theorem 1.1.

For the remaining values of a3 we were not able to find all integral
points on (6), mainly because we were unable to find the generators of
the Mordell-Weil group of the curve (6). Therefore, in these cases we
take a different approach by transforming our problem into a family of
systems of Pellian equations. Since, gcd(a1, a1 − 1) = gcd(a1 − 1, a2 −
1) = 1 and gcd(a1, a1 − 2) ∈ {1, 2}, from (5) we get:

a1 = b1x
2, a1 − 1 = b2y

2, a1 − 2 = b3z
2,

or

a1 = 2b1x
2, a1 − 1 = b2y

2, a1 − 2 = 2b3z
2,

where b1b2b3 = b. These relations induce the system of Pellian equa-
tions

b1x
2 − b2y

2 = 1, b1x
2 − b3z

2 = 2, b2y
2 − b3z

2 = 1,

and

2b1x
2 − b2y

2 = 1, b1x
2 − b3z

2 = 1, b2y
2 − 2b3z

2 = 1,

respectively.
The number of such systems can be very large (3ω(b), where ω(b)

denotes the number of prime factors of b). However, we expect that
most of them have no solutions. We will follow an approach from
[5, 6]. So we start by eliminating those systems which are not locally
solvable. Indeed, almost all system can be shown to be non-solvable by
considering solvability modulo 8 and modulo p for primes p dividing b
(the solvability conditions can be written in terms of Legendre symbols,

e.g. for the first system we have
(

−b2
p1

)
= 1 and

(
−2b3
p1

)
= 1 for all

primes p1 dividing b1, and similar conditions for primes dividing b2 and
b3). For each value of a3 in the considered range, there remains only a
few locally solvable systems. Note that we always have the system

(7) 2x2 − y2 = 1, x2 − b3z
2 = 1, y2 − 2b3z

2 = 1,



PRODUCTS OF THREE FACTORIALS 5

in which each particular equation is certainly solvable in positive inte-
gers. However, from the system (7) we get y2+1 = 2x2, y2−1 = 2b3z

2

and hence

(8) y4 − b3(2xz)
2 = 1.

Now we can apply a result due to Cohn [4] which says that the only
possible solutions of the equation X4−DY 2 = 1 in positive integers are
given by X2 = u0 and X2 = 2u2

0−1, where u0+v0
√
D is the fundamen-

tal solution of Pell’s equation u2 −Dv2 = 1. For a3 ≤ 88, we were able
to compute the fundamental solution by using the function quadunit

in Pari [12]. For 89 ≤ a3 ≤ 100, the fundamental units become too
large to be computed by standard methods, as they grow exponentially
in the size of the discriminant of the quadratic field. Because of this, we
used compact representations of fundamental units and the algorithm
for modular arithmetic on such representations described in [11].

We find that for a3 ≤ 100 the equation (8) has a solution in positive
integers only for a3 = 3, 4, 18, and these cases were already handled by
elliptic curve approach.

The remaining Pellian equations, not eliminated by the previously
explained methods, have the shape αx2 − βy2 = 1 or 2, where α > 1,
β > 0. The criteria for solvability of such equations was given by
Grelak and Grytczuk [10] in terms of the fundamental solution (u0, v0)
of the equation u2 − αβv2 = 1. For the equation αx2 − βy2 = 1, the
criterion is that 2α|(u0 + 1) and 2β|(u0 − 1), while for αx2 − βy2 = 2,
α|(u0 + 1) and β|(u0 − 1).

After an application of these criteria, only three systems remain un-
solved. We list them explicitly. Each of them can be solved by using
some divisibility properties of the corresponding fundamental units.

For a3 = 32, we have to consider the system

x2 − 1964315y2 = 1, x2 − 34z2 = 2.

The second equation clearly implies that 3|x. Since the fundamental
solution (x0, y0) of the first equation has the property 3|y0, we conclude
that also 3|y. But it is clear that there is no solution of the first equation
such that both x and y are divisible by 3.

For a3 = 54, the remaining system is

63017x2 − y2 = 1, 63017x2 − 39407479z2 = 2.

From the fundamental solution of the first equation we get that 37|x.
But this contradicts the second equation since also 37|39407479.

For a3 = 84, the remaining system is

163373405489x2 − 17755y2 = 1, 17755y2 − 16077666z2 = 1.
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Now we get contradiction since 7|163373405489, while from the funda-
mental solution of the second equation it follows that also 7|y. �

3. Proof of Theorem 1.2

We make the following observations:
Let S = {a1, a1 − 1, a1 − 2}.
1) None of the elements of S is a prime since a1 − 3 = a2 > a3.
2) The gcd of any two of the elements of S is either 1 or 2.
3) a3 ≥ 101 by Theorem 1.1. Then k ≥ 11. This can be checked for

a3 ≥ 250 by estimates for π(X) (see [13]) and for 101 ≤ a3 < 250 by
the exact values of π(X).
Proof of (a).

All the primes dividing a3! to an odd power must divide the terms
in S. This is true in particular for the primes in the range (a3/2, a3].
Since there are k primes in (a3/2, a3], there is a term N ∈ S which is
divisible by at least ⌈h/3⌉ primes. Thus

(9) a1 ≥ N > (a3/2)
⌈h/3⌉.

Proof of (b).
Suppose a term N ∈ S satisfies the given conditions of (b). By (4),

each of the primes occurring in N is ≤ a3, so we get

a1 ≤ N + 2 ≤ (a3/2)
⌈h/3⌉.

This is a contradiction to (9), proving (b).
Proof of (c).

By Theorem 1.1 we may assume that a3 ≥ 101. Then h ≥ 11. It
follows by (9) that a1 > a43/16. By (b), there is no term N ∈ S of the

form αN1 with N1 ∈ S1 = {P1, P
3
1 , P1P2, P1P2P3} and α ≤ a

4−Ω(N1)
3

16
−

2

a
Ω(N1)
3

. Since a3 ≥ 101, it follows that there is no term N = αN1 with

N1 ∈ S1 and α ≤ 1014−Ω(N1)

16
− 2

101Ω(N1)
. Thus we get α ≤ 64393, 6, 637, 6

according as N1 = P1, P
3
1 , P1P2, P1P2P3, respectively. This proves (c).

�
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