Integer and rational variants of a problem of Diophantus and Euler

Andrej Dujella

Department of Mathematics
University of Zagreb, Croatia
e-mail: duje@math.hr
URL: http://web.math.hr/~duje/
Diophantus: Find numbers such that the product of any two of them increased by the sum of these two gives a square.

\[
\{4, 9, 28\} \quad \text{and} \quad \left\{ \frac{3}{10}, \frac{7}{10}, \frac{21}{5} \right\}
\]

\[
4 \cdot 9 + 4 + 9 = 7^2, \quad 4 \cdot 28 + 4 + 28 = 12^2, \quad 9 \cdot 28 + 9 + 28 = 17^2
\]

Euler: \(\left\{ \frac{5}{2}, \frac{9}{56}, \frac{9}{224}, \frac{65}{224} \right\} \)

Such sets are called *Eulerian tuples*.

Questions: Is there any Eulerian

1. *quintuple* consisting of *rationals*?

2. *quintuple* consisting of *positive rationals*?

3. *quadruple* consisting of *integers*?

4. *quadruple* consisting of *positive integers*?
Answers:

1. **YES** (D. 1999)
 \[
 \left\{-\frac{27}{40}, \frac{17}{8}, \frac{27}{10}, 9, \frac{493}{40}\right\}
 \]

2. **YES** (D. 2002)

 based on the fact that there are infinitely many rational points on the curve
 \[y^2 = -(x^2 - x - 3)(x^2 + 2x - 12)\].

4. **NO** (D. & C. Fuchs 2005)

 - connection with *Diophantine* \(m\)-tuples: If \(\{a_1, \ldots, a_m\}\) is an Eulerian \(m\)-tuple, then \(\{a_1 + 1, \ldots, a_m + 1\}\) is a \(D(-1)\)-\(m\)-tuple, i.e. \((a_i + 1)(a_j + 1) - 1 = a_ia_j + a_i + a_j\) is a perfect square.
3. - There is no Eulerian quintuple consisting of integers [D. & C. Fuchs (2005)].

- If there is an Eulerian quadruple consisting of integers, then it necessarily contains 0 or -2 [D. & C. Fuchs (2005)].

- There exist at most finitely many Eulerian quadruples consisting of integers. If \{a, b, c, d\} is an Eulerian quadruple, then $\max\{|a|, |b|, |c|, |d|\} < 10^{10^{23}}$ [D. & A. Filipin & C. Fuchs (2007)].
Construction of an infinite family of Eulerian quintuples consisting of positive rationals

Equivalent problem: Find rational $D(-1)$-quintuples with elements > 1.

Idea: Interpret the Eulerian quintuple
$$\left\{ -\frac{27}{40}, \frac{17}{8}, \frac{27}{10}, 9, \frac{493}{40} \right\}$$
as a point on an elliptic curve.

This Eulerian quintuple corresponds to the $D(-1600)$-quintuple
$$\{13, 125, 148, 400, 533\}.$$ \hspace{1cm} (1)

Simple fact: If $B \cdot C + n = k^2$, then $\{B, C, B + C \pm 2k\}$ are $D(n)$-triples.
Quintuple (1) has the form

\[\{A, B, C, D, z^2\}, \quad (2) \]

where \(A = B + C - 2k, \) \(D = B + C + 2k. \) If \(A = a^2 - \alpha, \) \(B = b^2 - \alpha, \) \(C = c^2 - \alpha, \) \(D = d^2 - \alpha, \) then (2) will be a \(D(\alpha z^2) \)-quintuples iff

\[
(b^2 - \alpha)(c^2 - \alpha) + \alpha x^2 = k^2, \\
(a^2 - \alpha)(d^2 - \alpha) + \alpha x^2 = y^2.
\]

Parametric solution: the set

\[
\left\{ \frac{1}{3}(x^2 + 6x - 18)(-x^2 + 2x + 2), \right. \\
\frac{1}{3}x^2(x + 5)(-x + 3), (x - 2)(5x + 6), \\
\left. \frac{1}{3}(x^2 + 4x - 6)(-x^2 + 4x + 6), 4x^2 \right\}
\]

is a \(D\left(\frac{16}{9}x^2(x^2-x-3)(x^2+2x-12)\right) \)-quintuple.

\(x = \frac{5}{2} \quad \longrightarrow \quad (1). \)
Consider the quartic curve

\[Q : \quad y^2 = -(x^2 - x - 3)(x^2 + 2x - 12), \]

with a rational point \((\frac{5}{2}, \frac{3}{4})\).

By substitutions

\[
\begin{align*}
 x &= \frac{63s + 10t + 2619}{18s + 4t + 2403}, \\
 y &= \frac{24s^3 - 6777s^2 - 12t^2 - 34749t + 54898479}{(18s + 4t + 2403)^2},
\end{align*}
\]

\(Q\) is birationally equivalent to the elliptic curve

\[E : \quad t^2 = s^3 - 18981s - 1001700 \]
\[= (s - 159)(s + 75)(s + 84). \]

\[E(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \]
\[E(\mathbb{Q})_{\text{tors}} = \{O, T_1, T_2, T_3\}, \]
\[T_1 = (159, 0), \quad T_2 = (-75, 0), \quad T_3 = (-84, 0) \}
\[\text{rank } E(\mathbb{Q}) = 1, \]
\[E(\mathbb{Q})/E(\mathbb{Q})_{\text{tors}} = \langle P \rangle, \quad P = (2103, -96228). \]
5 additional conditions:

\[
\frac{(x^2+6x-18)(-x^2+2x+2)}{4xy} > 1, \\
x(x+5)(-x+3) > 1, \quad \frac{3(x-2)(5x+6)}{4xy} > 1, \\
\frac{(x^2+4x-6)(-x^2+4x+6)}{4xy} > 1, \quad \frac{3x}{y} > 1
\]

Solutions:

\[
x \in \langle 2.303, 2.306 \rangle \cup \langle 2.602, 2.605 \rangle, \quad y > 0,
\]

\[
x \in \langle -4.605, -4.482 \rangle \cup \langle -1.338, -1.303 \rangle, \quad y < 0.
\]

In terms of elliptic curve \(E\):

\[
x \in \langle -79.22, -76.85 \rangle \cup \langle 458.64, 937.54 \rangle, \quad t > 0,
\]

\[
x \in \langle -82.09, -79.69 \rangle \cup \langle 232.03, 348.77 \rangle, \quad t < 0.
\]
Which points of the form mP, $T_1 + mP$, $T_2 + mP$, $T_3 + mP$ satisfy these inequalities?

parametrization by Weierstrass function \wp:
$s = \wp(z)$, $t = \frac{1}{2}\wp'(z)$

For points mP the condition becomes:

$$\{m \cdot 0.2145\ldots\} \in \langle 0.5362, 0.6782 \rangle.$$

α irrational \Rightarrow fractional parts $\{m \cdot \alpha\}$ are dense in $\langle 0, 1 \rangle$

\Rightarrow infinitely many rational Eulerian quintuples with positive elements

E.g. $m = -2, -3, -11, 12, -16, 17, -25, 26, \ldots$
<table>
<thead>
<tr>
<th>point on E</th>
<th>Eulerian quintuple</th>
</tr>
</thead>
</table>
| $-2P$ | \[
\left\{ \frac{12253738824071768160902809331272805381}{13356284738726537361337339615814680856}, \right. \\
\left. \frac{40228062558134597846809398333}{2027377666049252712575626072}, \right. \\
\left. \frac{90410203607675775632231738735}{2640165528414654368852526998}, \right. \\
\left. \frac{1459249660815833141719920182753327588589}{13356284738726537361337339615814680856}, \right. \\
\left. \frac{16463478877068761615}{200378051669604563} \right\}
\]
| $T_3 - 2P$ | \[
\left\{ \frac{24384004810826647895250908584025016017}{1226018751971657626989240363062470220}, \right. \\
\left. \frac{11174534572531880776077845373}{1225575724730803312553801852}, \right. \\
\left. \frac{200408761263308135110463918}{200450485329612350005456055}, \right. \\
\left. \frac{2876707800134532926186517692138532777}{1226018751971657626989240363062470220}, \right. \\
\left. \frac{1329253988561517422}{200378051669604563} \right\}
\]
Theorem: (D. & Fuchs (2005)) There does not exist a $D(-1)$-quadruple $\{a, b, c, d\}$ with $2 \leq a < b < c < d$.

Corollaries:

- There does not exist an Eulerian quadruple consisting of positive integers.
- There does not exist a $D(-1)$-quintuple.
- If $\{a, b, c, d\}$ is a $D(-1)$-quadruple with $0 < a < b < c < d$, then $a = 1$ and $b \geq 5$.
- If Q is an Eulerian quadruple consisting of integers, then $0 \in Q$ if $-2 \in Q$.
Previous results - the following $D(-1)$-triples cannot be extended to $D(-1)$-quadruples:

- Mohanty & Ramasamy (1984): $\{1, 5, 10\}$

- Brown (1985): $\{1, 2, 5\}$, $\{17, 26, 37\}$

- Kedlaya (1998): $\{1, 2, 145\}$, $\{1, 2, 4901\}$, $\{1, 5, 65\}$, $\{1, 5, 20737\}$, $\{1, 10, 17\}$, $\{1, 26, 37\}$

- Dujella (1998): $\{1, 2, c\}$

- Filipin (2005): $\{1, 5, c\}$, $\{1, 10, c\}$

- Fujita (2006): $\{1, 17, c\}$, $\{1, 26, c\}$, $\{1, 37, c\}$, $\{1, 50, c\}$
Theorem: (D. & Filipin & Fuchs (2007)) Let \(\{1, b, c\} \) be a \(D(-1) \)-triple. Then:

(i) If \(c > b^9 \), then there does not exist an extension to a \(D(-1) \)-quadruple \(\{1, b, c, d\} \) such that \(d > c \).

(ii) If \(11b^6 \leq c \leq b^9 \), then there does not exist an extension to a \(D(-1) \)-quadruple.

Assume that \(\{1, b, c, d\} \) with \(1 < b < c < d \) is an extension to a \(D(-1) \)-quadruple.

(iii) If \(b^3 < c < 11b^6 \), then \(c < 10^{238} \), \(d < 10^{1023} \),

(iv) if \(b^{1.1} < c \leq b^3 \), then \(c < 10^{491} \), \(d < 10^{1023} \),

(v) if \(3b < c \leq b^{1.1} \), then \(c < 10^{94} \), \(d < 10^{1021} \),

(vi) if \(c = 1 + b + 2\sqrt{b - 1} \), then \(c < 10^{74} \), \(d < 10^{1021} \).
Corollaries:

- There are only finitely many $D(-1)$-quadruples.

- There are only finitely many Eulerian quadruples consisting of integers.

- If $\{a, b, c, d\}$ is a $D(-1)$-quadruple, then $\max\{a, b, c, d\} < 10^{1023}$.

- The number of $D(-1)$-quadruples is bounded by 10^{903}.

These are first nontrivial results (i.e. for integers $\not\equiv 2 \pmod{4}$) related to the following conjecture:

Conjecture: If n is not a perfect square, then there exist only finitely many $D(n)$-quadruples.

Since all elements of a $D(-4)$-quadruple are even, our result implies that the conjecture is valid for $n = -1$ and $n = -4$.
Let \(\{1, b, c\} \), where \(1 < b < c \), be a \(D(-1) \)-triple and let \(r, s, t \) be positive integers defined by

\[
\begin{align*}
b - 1 &= r^2, \\
c - 1 &= s^2, \\
bc - 1 &= t^2.
\end{align*}
\]

Assume that there exists a positive integer \(d > c \) such that \(\{1, b, c, d\} \) is a \(D(-1) \)-quadruple. We have

\[
\begin{align*}
d - 1 &= x^2, \\
bd - 1 &= y^2, \\
\cd - 1 &= z^2,
\end{align*}
\]

with integers \(x, y, z \). Eliminating \(d \), we obtain the following system of Pellian equations

\[
\begin{align*}
z^2 - cx^2 &= c - 1, \\
bfz^2 - cy^2 &= c - b.
\end{align*}
\]
The system of Pellian equations can be transformed to finitely many equations of the form \(z = v_m = w_n \), where the sequences \((v_m)\) and \((w_n)\) are given by

\[
\begin{align*}
v_0 &= z_0, \\
v_1 &= (2c - 1)z_0 + 2scx_0, \\
v_{m+2} &= (4c - 2)v_{m+1} - v_m, \\
w_0 &= z_1, \\
w_1 &= (2bc - 1)z_1 + 2tcy_1, \\
w_{m+2} &= (4bc - 2)w_{n+1} - w_n,
\end{align*}
\]

and fundamental solutions satisfy the following inequalities:

\[
|x_0| < s, \ 0 < z_0 < c, \ |y_1| < t, \ 0 < z_1 < c.
\]

Remark: If \(c \leq b^9 \), then \(z_0 = z_1 = s, \ x_0 = 0, \ y_1 = \pm r \).
Congruence relations:

\[
\begin{align*}
 v_m &\equiv (-1)^m z_0 \pmod{2c}, \\
 w_n &\equiv (-1)^n z_1 \pmod{2c}, \\
 v_m &\equiv (-1)^m (z_0 - 2acm^2 z_0 - 2csmx_0) \pmod{8c^2}, \\
 w_n &\equiv (-1)^n (z_1 - 2bcn^2 z_1 - 2ctny_1) \pmod{8c^2}.
\end{align*}
\]

congruence relations \(\Rightarrow\) lower bounds for non-trivial solutions

E.g.

If \(v_m = w_n\), \(n \neq 0, 1\) and \(c \geq 11b^6\), then \(n > \frac{1}{c^6}\).

If \(v_m = w_n\), \(n \neq 0, 1\), \(b^{1.1} \leq c < b^3\) and \(c > 10^{100}\), then \(n \geq c^{0.04}\).
Solutions of our system of Pellian equations induce very good rational approximations to the numbers $\theta_1 = \sqrt{1 + \frac{1-b}{N}}$ and $\theta_2 = \sqrt{1 + \frac{1}{N}}$:

$$\max \left\{ \left| \frac{\theta_1 - \frac{bsx}{ty}}{ \frac{bsx}{ty}} \right|, \left| \frac{\theta_2 - \frac{bz}{ty}}{ \frac{bz}{ty}} \right| \right\} < \frac{b - 1}{y^2}.$$

If $c \geq 11b^6$, then we can apply Bennett’s theorem (a modification due to Fujita) on simultaneous rational approximations of square roots which are close to 1.

For $c < 11b^6$, we transform the exponential equation $v_m = w_n$ into a logarithmic inequality and apply Baker’s theory of linear forms in logarithms of algebraic numbers (Matveev’s theorem).

Diophantine approximations \Rightarrow upper bounds for solutions

lower and upper bounds for solutions \Rightarrow contradiction (for sufficiently large c)