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Abstract. In this survey paper, we describe several methods for constructing

elliptic curves with a given torsion group and high rank over the rationals and

quadratic fields. We also discuss potential applications of such curves in the
elliptic curve factorization method and their role in the construction of rational

Diophantine sextuples.

1. Introduction

Let K be a field. An elliptic curve over K is a nonsingular projective cubic curve
over K with at least one K-rational point. Each such curve can be transformed by
birational transformations to the equation of the form

(1) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

which is called the Weierstrass form. If char(K) ̸= 2, 3, then the equation (1) can
be transformed to the form

(2) y2 = x3 + ax+ b,

which is called the short Weierstrass form. Now the nonsingularity means that the
cubic polynomial f(x) = x3+ax+ b has no multiple roots (in algebraic closure K),
or equivalently that the discriminant ∆ = −4a3 − 27b2 is non-zero. The set E(K)
of K-rational points on an elliptic curve over K (affine points [x, y] satisfying (1)
along with the point at infinity) forms an Abelian group with the law of addition
defined by the secant and tangent method.

Let E be an elliptic curve over Q. By the Mordell-Weil theorem, the group
E(Q) of rationals points on E is a finitely generated Abelian group. Hence, it is
the product of the torsion group and r ≥ 0 copies of the infinite cyclic group:

E(Q) ∼= E(Q)tors × Zr.

The subgroup E(Q)tors of E(Q), which consists of all points of finite order, is called
the torsion group of E, and the non-negative integer r is called the rank of E, and
it is denoted by rank(E) (or, more precisely, by rank(E(Q))). Natural questions
arise: which are possible values of E(Q)tors and rank(E), and, more ambitiously,
which combinations of E(Q)tors and rank(E) are possible.

In 1978, Mazur [44] proved that there are precisely 15 possible torsion groups
for elliptic curves over Q:

Z/kZ, for k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12,

Z/2Z× Z/kZ, for k = 2, 4, 6, 8.
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On the other hand, it is not known which values of rank r are possible for elliptic
curves over Q. It has been conjectured that there exist elliptic curves of arbitrarily
high rank, even for each of the torsion groups in Mazur’s theorem. However, there
are also recent heuristic arguments that suggest the boundedness of the rank of
elliptic curves. According to this heuristic, only a finite number of curves would
have rank higher than 21 (see [53]). The current record is an example of an elliptic
curve over Q with rank ≥ 28, found by Elkies in 2006 ([31]).

Finding elliptic curves with positive rank and large torsion is not just a curiosity.
Elliptic curves with large torsion and positive rank over the rationals have long been
used for factorization, starting with Montgomery [48] and Atkin and Morain [4].
Also, examining elliptic curves with large torsion over number fields of small degrees
has some additional benefits (see [7, 8, 25, 49]).

In this paper, we will describe several methods for constructing elliptic curves
with a given torsion group and high rank over Q(t) and Q. After describing general
ideas in Section 4, in Sections 5 and 6, we will describe some connections between
elliptic curves and rational Diophantine m-tuples, i.e. sets of m non-zero rational
such that the product of any two of them is one less than a perfect square. In
Section 7, we will see how elliptic curves induced by rational Diophantine triples
can be used to construct curves with record ranks for certain torsion groups. We
will also, in Section 2, give some information on torsion groups and ranks for elliptic
curves over quadratic fields. In Section 3, we will discuss the potential advantages
of using curves with large torsion in the elliptic curve factorization method.

2. Elliptic curves over quadratic fields

Let E be an elliptic curve over a quadratic field E(K). Kenku and Momose [42]
and Kamienny [40] proved that the torsion group of E(K) is isomorphic to one of
the following 26 groups:

Z/kZ, 1 ≤ k ≤ 18, k ̸= 17,

Z/2Z× Z/2kZ, 1 ≤ k ≤ 6,

Z/3Z× Z/3kZ, k = 1, 2, (only if K = Q(
√
−3)),

Z/4Z× Z/4Z, (only if K = Q(i)).

Note that if the torsion group over a number field K contains Z/kZ× Z/kZ, then
the k-th roots of unity lie in K.

In 2014, Bosman, Bruin, Dujella and Najman [7] proved several results concern-
ing torsion groups and ranks of elliptic curves over number fields with small degrees.
In particular, they proved that there exist elliptic curves over quadratic fields with
positive rank and torsion Z/15Z (rank ≥ 1 over Q(

√
345), Z/18Z (rank ≥ 2 over

Q(
√
26521), Z/2Z × Z/10Z (rank ≥ 4 over Q(

√
55325286553) and Z/2Z × Z/12Z

(rank ≥ 4 over Q(
√
2947271015)).

Together with previous results of Rabarison [54], this implies that there exist
curves with positive rank for all 26 possible torsion groups over quadratic fields.
After the results of Aguirre, Dujella, Jukić Bokun and Peral [1], Najman [51] and
Voznyy [59] (see also [37]), we know that for each of 26 possible torsion groups,
there exists an elliptic curve over some quadratic field with this torsion group and
with rank ≥ 2.
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In the case of the 15 possible torsion groups of elliptic curves over Q (and other
torsion groups which admit a model with rational coefficients), we consider curves
with rational coefficients. In order to determine their rank over a quadratic field
Q(

√
d) we can use the formula

rank(E(Q(
√
d)) = rank(E(Q)) + rank(E(d)(Q)),

where E(d) denotes the d-quadratic twist of E (the d-quadratic twist of y2 = x3 +
ax + b is y2 = x3 + d2ax + d3b). Thus, in these cases, we may apply methods for
finding high-rank curves over Q, which will be described in Section 4.

3. Applications of elliptic curves in factorization

It is well-known that elliptic curves have applications in public-key cryptography
and also in factorization of large integers and primality proving. The main idea
is to replace the group F∗

p with (fixed) order p − 1, by a group E(Fp) with more
flexible order. Namely, by Hasse’s theorem we have

p+ 1− 2
√
p < |E(Fp)| < p+ 1 + 2

√
p.

In 1974, Pollard proposed the so-called Pollard’s p−1 factorization method. Let
n be a composite integer with an unknown prime factor p. For any multiple m of
p − 1 we have am ≡ 1 (mod p), and thus p | gcd(am − 1, n). If p − 1 is smooth
(divisible only by small primes), then we can guess a multiple of p − 1 by taking
m = lcm(1, 2, ..., B) for a suitable number B.

In 1985, Lenstra [43] proposed the Elliptic curve factorization method (ECM),
in which the group F∗

p is replaced by a group E(Fp), for a suitable chosen elliptic
curve E. In ECM, one hopes the chosen elliptic curve will have smooth order over
a prime field.

It is now a classical method to use for that purpose elliptic curve E with large
torsion group over Q (and fixed point of infinite order), as the torsion group injects
into E(Fp) for all primes p of good reduction. This in turn makes the order of
E(Fp) more likely to be smooth.

Nice explicit examples of factorization of large numbers (Cunningham numbers)
by using elliptic curves over number fields of small degrees have been provided by
Brier and Clavier [8]. They used elliptic curves over cyclotomic fields with torsion
groups Z/3Z× Z/6Z and Z/4Z× Z/4Z. E.g. they found a factor

5546025484206613872527377154544456740766039233

of 21048 + 1 and a factor

1581214773543289355763694808184205062516817

of 2972 + 1.
We say that an integer m is n-smooth, for some fixed value n, if all the prime

divisors of m are ≤ n. For the elliptic curve factoring method, one wants to choose
elliptic curve E such that the order E(Fp) is smooth. Standard heuristics say that
larger torsion group of E(Q) implies a greater probability that |E(Fp)| is smooth.

However, this is not necessarily so straightforward, as a curve with smaller
E(Q)tors can have much larger torsion over fields of small degree, giving altogether
a greater probability of |E(Fp)| to be smooth. We give an example of this phenom-
enon.
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Example 3.1. (Bosman, Bruin, Dujella and Najman [7])
Using the construction by Jeon, Kim and Lee [39], we take a rational curve with

torsion Z/6Z × Z/6Z over the field K = Q(
√
−3,

√
217) and torsion Z/6Z over Q.

The curve is:

E1 : y2 = x3 − 17811145/19683x− 81827811574/14348907.

Now take

E2 : y2 = x3 − 25081083x+ 44503996374.

The torsion of E2(Q) is isomorphic to Z/7Z, implying that by standard heuristics
(examining only the rational torsion), |E2(Fp)| should be more often smooth than
|E1(Fp)|. Note that both curves have rank 1 over Q, so the rank should not play a
role.

We examine how often |Ei(Fp)|, i = 1, 2, are 100-smooth and 200-smooth, where
pn, the n-th prime number, runs through the first 10000 and 100000 primes, exclud-
ing the first ten primes (to get rid of the primes of bad reduction). For comparison,
we also take the elliptic curve

E3 : y2 = x3 + 3,

with a trivial torsion group and rank 1.

10 < n < 10010 10 < n < 100010

#100-sm. |E1(Fpn)| 4843 22872
#100-sm. |E2(Fpn)| 4302 20379
#100-sm. |E3(Fpn)| 2851 12344
#200-sm. |E1(Fpn)| 6216 35036
#200-sm. |E2(Fpn)| 5690 32000
#200-sm. |E3(Fpn)| 4134 21221

We see that, contrary to what one would expect if examining only the rational
torsion, E1 is consistently more likely to be smooth than E2. To explain this, let
us examine the behavior of the torsion of E1(K) and E2(K) as K varies through all
quadratic fields. The torsion of E2(K) will always be Z/7Z, while E1(Q(

√
−3))tors

≃ Z/3Z×Z/6Z and E1(Q(
√
217))tors ≃ Z/2Z×Z/6Z. One-fourth of the primes will

split in Q(
√
−3) and not in Q(

√
217), one-fourth vice versa, one-fourth will split in

neither field, and one-fourth will split in both fields (and thus splitting completely

in Q(
√
−3,

√
217)). This implies that we know that |E1(Fp)| is divisible by 6, 12,

18 and 36, each for one-fourth of the primes, while all we can say for |E2(Fp)| is
that it is divisible by 7. We also see that |E3(Fp)| is much less likely to be smooth
than both E1 and E2.

4. Construction of high-rank elliptic curves

The general method for finding a curve with large rank consists of the following
three phases:

• Construction of a family: We generate a parametric family of elliptic curves
over Q that contains curves with relatively high rank (i.e. an elliptic curve
over Q(t) with large generic rank). According to Silverman’s specialization
theorem [55, Chapter 3.11], for all except finitely many rational numbers
t0, the rank over Q of the curve, which is obtained by specializing t = t0,
will be greater than or equal to the generic rank. Let us mention that for
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curves with at least one point of order 2 over Q(t), the algorithm by Gusić
and Tadić [35, 36] enables finding corresponding injective specializations
t = t0 and calculating the generic rank. Methods used for construction of
such families of curves include Mestre’s polynomial method [47] (based on
“square rooting with a remainder”, i.e. writting a monic polynomial p(x) of
even degree in the form q2(x)− r(x), where the degree of r is the smallest
possible), Elkies’ method [30] which uses tools from arithmetic geometry
(we will apply it in Section 7.4) and elliptic curves induced by Diophantine
triples [2, 13, 16, 24, 26, 27, 28] (we will provide more details on this method
and its background in next sections).

• Sieve: We want to choose the best candidates for higher rank in the con-
sidered family of curves. For that purpose, for curves in the family (with
not too huge coefficients), we calculate some data which gives us certain
information about the rank (perhaps under the assumption that certain
widely accepted conjectures hold, like Birch and Swinnerton-Dyer conjec-
ture). Here, it is important that those imprecise information about the rank
can be calculated much faster than the rank itself. Thus, instead of using
the Birch and Swinnerton-Dyer conjecture directly, we use certain related
quantities which are more suitable for computation, like Mestre’s condi-
tional upper bound [46] (which assumes BSD and GRH) and the so-called
Mestre-Nagao sums [45, 50], e.g. the sum

s(N) =
∑

p≤N, p prime

|E(Fp)|+ 1− p

|E(Fp)|
log(p)

(see [32] for some optimizations and [41] for using deep convolutional neural
networks in this context and comparison of several similar sums). Based on
this information, we choose (“sieve”) a small subset of the best candidates
for the large rank in the considered family.

• Calculating the rank: For all curves from the (small) set of the best candi-
dates, we try to calculate the rank exactly or at least to find a good lower
bound for the rank to confirm that the curve indeed has large rank. For
that purpose, we can use Cremona’s program mwrank [10] (very good for
curves with rational points of order 2), MordellWeilShaInformation in
Magma [6] or ellrank in PARI/GP [52].

5. Diophantine m-tuples

As we mentioned in the previous section, Diophantinem-tuples, and in particular
Diophantine triples, can be used in the construction of elliptic curves with high
rank. Therefore, we will give a brief overview of the main definitions, problems and
results about them. More information on this subject can be found e.g. in [17] and
[18, Sections 14.6 and 16.7].

The Greek mathematician Diophantus of Alexandria first studied the problem
of finding four numbers such that the product of any two of them, increased by 1,
is a perfect square. He found a set of four positive rationals with this property:{

1

16
,
33

16
,
17

4
,
105

16

}
.
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The first set of four positive integers with the same property, {1, 3, 8, 120}, was
found by Fermat.

The above examples motivate the following definition.

Definition 5.1. A set {a1, a2, . . . , am} of m non-zero integers (rationals) is called a
(rational) Diophantine m-tuple if ai ·aj+1 is a perfect square for all 1 ≤ i < j ≤ m.

It is natural to ask how large these sets, i.e. integer or rational Diophantine
tuples, can be. This question was recently completely solved in the integer case.
Euler proved that there exist infinitely many integer Diophantine quadruples. E.g.
{k − 1, k + 1, 4k, 16k3 − 4k} is a Diophantine quadruple for k ≥ 2. More generally,
if a, b and r are positive integers such that ab+1 = r2, then {a, b, a+ b+2r, 4r(a+
r)(b + r)} is a Diophantine quadruple. The first important result concerning the
problem of (non)existence of Diophantine quintuples was proved in 1969 by Baker
and Davenport. Using Baker’s theory on linear forms in logarithms of algebraic
numbers and a reduction method based on continued fractions, they proved that if
d is a positive integer such that {1, 3, 8, d} forms a Diophantine quadruple, then d
has to be 120 (this problem was raised by Denton [11], Gardner [33] and van Lint
[58]). Their result implies that Fermat’s set {1, 3, 8, 120} cannot be extended to a
Diophantine quintuple. In 2004, Dujella [15] proved that a Diophantine sextuple
does not exist and that there are only finitely many Diophantine quintuples. Finally,
in 2019, He, Togbé and Ziegler [38] proved that there does not exist a Diophantine
quintuple.

5.1. Rational Diophantine m-tuples. Unlike the integer case, there is no known
upper bound for the size of rational Diophantine tuples. Here Euler also made im-
portant contribution by proving that there are infinitely many rational Diophantine
quintuples. More precisely, he proved that any pair {a, b} such that ab+1 = r2 can
be extended to a quintuple. E.g. Fermat’s quadruple can be extended to a rational
Diophantine quintuple {1, 3, 8, 120, 777480

8288641}. Much later, in 2019, Stoll [56] proved
that this extension is unique.

In 1979, Arkin, Hoggatt and Strauss [3] generalized Euler’s result by showing
that any rational Diophantine triple {a, b, c} can be extended to a quintuple, while
in 1997, Dujella [12] proved that any rational Diophantine quadruple {a, b, c, d},
such that abcd ̸= 1, can be extended to a quintuple (in two different ways, un-
less the quadruple is “regular” (such as in the Euler and Arkin-Hoggatt-Strauss
constructions), in which case one of the extensions is the trivial extension by 0).
Let us mention that if abcd = 1, then ab, ac, ad, bc, bd, cd are all perfect squares
(see [22]), and {a, b, c, d} can be extended to a rational Diophantine quintuple by

e = (a+b−c−d)2−4(ab+1)(cd+1)
4d(ab+1)(ac+1)(bc+1) .

We may ask if {a, b, c, d, e} and {a, b, c, d, f} are two extensions from [12] and
ef ̸= 0, is it possible that ef +1 is a perfect square? If the answer to this question
is affirmative, it will provide examples of rational Diophantine sextuples. The
rationals e and f are given by the following expressions:

e, f =
(a+ b+ c+ d)(abcd+ 1) + 2abc+ 2abd+ 2acd+ 2bcd± 2

√
D

(abcd− 1)2
,

where

D = (ab+ 1)(ac+ 1)(ad+ 1)(bc+ 1)(bd+ 1)(cd+ 1).
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By following this idea, in 1999, Gibbs [34] found the first rational Diophantine
sextuple {

5

36
,
5

4
,
32

9
,
189

4
,
665

1521
,
3213

676

}
,

while in 2016, Dujella, Kazalicki, Mikić and Szikszai [20] proved that there exist
infinitely many rational Diophantine sextuples. Moreover, they proved that there
are infinitely many rational Diophantine sextuples with positive elements, and also
with any combination of signs.

6. Elliptic curves induced by Diophantine triples

Let {a, b, c} be a rational Diophantine triple. To extend this triple to a quadruple,
we consider the system

(3) ax+ 1 = 2, bx+ 1 = 2, cx+ 1 = 2.

It is natural to assign the elliptic curve

(4) E : y2 = (ax+ 1)(bx+ 1)(cx+ 1)

to the system (3). We say that E is induced by the triple {a, b, c}.
There are three rational points on E of order 2, namely

A = [−1/a, 0] , B = [−1/b, 0] , C = [−1/c, 0]

and also two other obvious rational points

P = [0, 1], S = [1/abc,
√
(ab+ 1)(ac+ 1)(bc+ 1)/abc].

The x-coordinate of a point T ∈ E(Q) satisfies (3) if and only if T − P ∈ 2E(Q).
It holds that S ∈ 2E(Q). Indeed, if ab + 1 = r2, ac + 1 = s2, bc + 1 = t2, then
S = [2]V , where

V =

[
rs+ rt+ st+ 1

abc
,
(r + s)(r + t)(s+ t)

abc

]
.

This implies that if x(T ) satisfies system (3), then also the numbers x(T±S) satisfy
the system. Now the above-mentioned result from [12] can be reformulated in this
form: x(T )x(T ± S) + 1 is always a perfect square ([14]). With x(T ) = d, the
numbers x(T ± S) are exactly e and f given above.

To describe the construction of infinite families of rational Diophantine sextuples
from [20], we need the following generalization of this result.

Proposition 6.1. Let Q, T and [0, α] be three rational points on an elliptic curve
E over Q given by the equation y2 = f(x), where f is a monic polynomial of degree
3. Assume that O ̸∈ {Q,T,Q+ T}. Then

x(Q)x(T )x(Q+ T ) + α2

is a perfect square.

Proof. Consider the curve

y2 = f(x)− (x− x(Q))(x− x(T ))(x− x(Q+ T )).

It is a conic (a curve of the degree 2) which contains three collinear points Q, T ,
−(Q+ T ), so it has to be a union of two rational lines, i.e. we have

y2 = (βx+ γ)2.
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Inserting here x = 0, we get

x(Q)x(T )x(Q+ T ) + α2 = γ2.

□

The transformation x 7→ x/abc, y 7→ y/abc, applied to E leads to

E′ : y2 = (x+ ab)(x+ ac)(x+ bc).

The points P and S become P ′ = [0, abc] and S′ = [1, rst], respectively. If we apply
Proposition 6.1 with Q = ±S′, since x(S′) = 1, we get a simple proof of the fact
that x(T )x(T±S)+1 is a perfect square (after dividing x(T ′)x(T ′±S′)+a2b2c2 = 2

by a2b2c2).
Now we have a general construction which produces two rational Diophantine

quintuples with four common elements. So, the union of these two quintuples,

{a, b, c, x(T − S), x(T ), x(T + S)},

is “almost” a rational Diophantine sextuple. Assuming that T, T ± S ̸∈ {O,±P},
the only missing condition is

x(T − S) · x(T + S) + 1 = 2.

To construct examples satisfying this last condition, we will use Proposition 6.1
with Q = [2]S′. To get the desired conclusion, we need the condition x([2]S′) = 1
to be satisfied. This leads to [2]S′ = −S′, i.e. [3]S′ = O. In that case, curve E
would have torsion group Z/2Z× Z/6Z.

By direct computation, we can write this condition explicitly, as in the following
lemma.

Lemma 6.2. For the point S′ = [1, rst] on E′ it holds [3]S′ = O if and only if

3 + 4(ab+ ac+ bc) + 6abc(a+ b+ c) + 12(abc)2

− (abc)2(a2 + b2 + c2 − 2ab− 2ac− 2bc) = 0.(5)

By writing (5) in terms of elementary symmetric polynomials, we find the fol-
lowing family of rational Diophantine triples satisfying the condition of Lemma
6.2:

a =
18t(t− 1)(t+ 1)

(t2 − 6t+ 1)(t2 + 6t+ 1)
,

b =
(t− 1)(t2 + 6t+ 1)2

6t(t+ 1)(t2 − 6t+ 1)
,

c =
(t+ 1)(t2 − 6t+ 1)2

6t(t− 1)(t2 + 6t+ 1)
.

Consider now the elliptic curve over Q(t) induced by the triple {a, b, c}. It has pos-
itive rank, since the point P = [0, 1] is of infinite order. Thus, the above-described
construction produces infinitely many rational Diophantine sextuples containing the
triple {a, b, c}. One such sextuple {a, b, c, d, e, f} is obtained by taking x-coordinates
of points [3]P , [3]P + S, [3]P − S.

We get d = d1/d2, e = e1/e2, f = f1/f2, where
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d1 = 6(t+ 1)(t− 1)(t2 + 6t+ 1)(t2 − 6t+ 1)

× (8t6 + 27t5 + 24t4 − 54t3 + 24t2 + 27t+ 8)

× (8t6 − 27t5 + 24t4 + 54t3 + 24t2 − 27t+ 8)

× (t8 + 22t6 − 174t4 + 22t2 + 1),

d2 = t(37t12 − 885t10 + 9735t8 − 13678t6 + 9735t4 − 885t2 + 37)2,

e1 = −2t(4t6 − 111t4 + 18t2 + 25)

× (3t7 + 14t6 − 42t5 + 30t4 + 51t3 + 18t2 − 12t+ 2)

× (3t7 − 14t6 − 42t5 − 30t4 + 51t3 − 18t2 − 12t− 2)

× (t2 + 3t− 2)(t2 − 3t− 2)(2t2 + 3t− 1)

× (2t2 − 3t− 1)(t2 + 7)(7t2 + 1),

e2 = 3(t+ 1)(t2 − 6t+ 1)(t− 1)(t2 + 6t+ 1)

× (16t14 + 141t12 − 1500t10 + 7586t8 − 2724t6 + 165t4 + 424t2 − 12)2,

f1 = 2t(25t6 + 18t4 − 111t2 + 4)

× (2t7 − 12t6 + 18t5 + 51t4 + 30t3 − 42t2 + 14t+ 3)

× (2t7 + 12t6 + 18t5 − 51t4 + 30t3 + 42t2 + 14t− 3)

× (2t2 + 3t− 1)(2t2 − 3t− 1)(t2 − 3t− 2)

× (t2 + 3t− 2)(t2 + 7)(7t2 + 1),

f2 = 3(t+ 1)(t2 − 6t+ 1)(t− 1)(t2 + 6t+ 1)

× (12t14 − 424t12 − 165t10 + 2724t8 − 7586t6 + 1500t4 − 141t2 − 16)2.

7. High rank curves with given torsion group

Let {a, b, c} be a (rational) Diophantine triple and E the elliptic curve

y2 = (ax+ 1)(bx+ 1)(cx+ 1)

induced by this triple. By Mazur’s theorem, we know that E(Q)tors = Z/2Z ×
Z/2mZ with m = 1, 2, 3, 4. It is known (see [23]) that if a, b, c are positive integers,
then the cases m = 2 and m = 4 are not possible. On the other hand, if we allow
a, b, c to be rationals, then all possibilities m = 1, 2, 3, 4 can occur.

Parametric formulas for the rational Diophantine sextuples {a, b, c, d, e, f} can
be used to obtain an elliptic curve over Q(t) with reasonably high rank. Consider
the curve

E : y2 = (dx+ 1)(ex+ 1)(fx+ 1).

It has three obvious points of order two but also points with x-coordinates

0,
1

def
, a, b, c.

It can be checked (by suitable specialization) that these five points are independent
points of infinite order on the curve E over Q(t). Therefore, we get that the rank
of E over Q(t) is ≥ 5 (torsion group is Z/2Z× Z/2Z).

This result was improved in 2020 by Dujella and Peral [28], and curves with
torsion Z/2Z×Z/2Z and rank 6 over Q(t) and rank 12 over Q induced by rational
Diophantine triples were constructed.
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7.1. Torsion group Z/2Z×Z/6Z. For rational Diophantine triples {a, b, c} satis-
fying condition (5), the induced elliptic curve has torsion group Z/2Z×Z/6Z, since
it contains the point S of order 3. Our parametric family of triples {a, b, c} gives a
curve over Q(t) with generic rank 1.

Within this family of curves, it is possible to find subfamilies of generic rank
2 and particular examples with rank 6, e.g. the curve induced by the rational
Diophantine triple{

7567037280

7833785281
,
4161669360289

569762123040
,
1359453258559

948852707040

}
,

which both tie the current records of ranks for curves with torsion Z/2Z × Z/6Z
(see [27]).

7.2. Torsion group Z/2Z×Z/4Z. Elliptic curves with the torsion subgroup Z/2Z×
Z/4Z have an equation of the form

y2 = x(x+ x2
1)(x+ x2

2), x1, x2 ∈ Q.

The point [x1x2, x1x2(x1 + x2)] is a rational point on the curve of order 4.
An elliptic curve induced by triple {a, b, c} can be written in the form

y2 = x(x+ ac− ab)(x+ bc− ab).

By comparing these two equations, we get conditions that ac− ab and bc− ab are
perfect squares. We may expect that this curve has positive rank, since it also
contains the point [ab, abc].

A convenient way to fulfill these two conditions is to choose a and b such that
ab = −1. Then ac− ab = ac+ 1 = s2 and bc− ab = bc+ 1 = t2. It remains to find
a and c such that {a,−1/a, c} is a Diophantine triple. A parametric solution is

a =
ατ + 1

τ − α
, c =

4ατ

(ατ + 1)(τ − α)
.

Additional points of infinite order appear if

τ2 + α2 + 2 or α2τ2 + 2α2 + 1

are perfect squares. In this way, Dujella and Peral [26, 27] obtained curves with
torsion Z/2Z× Z/4Z and rank 4 over Q(t) (the Gusić-Tadić algorithm shows that
rank is exactly 4) and rank 9 over Q (both results are current records for ranks
with this torsion).

7.3. Torsion group Z/2Z × Z/8Z. An interesting fact is that any elliptic curve
over Q with torsion group Z/2Z× Z/8Z can be induced by a rational Diophantine
triple (see [9, 16]). Thus, all results on the rank of elliptic curves with the torsion
group Z/2Z×Z/8Z can be interpreted in terms of rational Diophantine triples. In
2007, Dujella [16] proved that for each 0 ≤ r ≤ 3, there exists a rational Diophantine
triple {a, b, c} such that the elliptic curve y2 = (ax + 1)(bx + 1)(cx + 1) has the
torsion group isomorphic to Z/2Z × Z/8Z and the rank equal to r. In particular,
the rational Diophantine triple{

408

145
, −145

408
, −145439

59160

}
induces the curve with torsion group Z/2Z×Z/8Z and rank 3, what is the current
record for this torsion group.
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7.4. Torsion group Z/4Z. We will sketch the recent construction, due to Dujella
and Peral, of an elliptic curve over Q(t) with torsion Z/4Z and rank 6 (see [29] for
details). Previously only rank 5 examples for such curves were known.

The starting point is the construction of Elkies [30], who notices that this torsion
group and rank 4 can be obtained for some elliptic K3 surfaces. The maximal rank
is obtained with the following type of reducible fibers for such a surface: four of
type I4, two of type I2 and four of type I1, so giving a contribution to the Néron-
Severi group of 4(4 − 1) + 2(2 − 1) = 14. Hence, the rank over this surface is at
most 20− 2− 14 = 4, so in this sense, the Elkies example is optimal.

The general curve with torsion Z/4Z is given by

Y 2 + aXY + abY = X3 + bX2,

where ab(a2 − 16b) ̸= 0. A torsion point of order 4 in this model is (0, 0). With a
simple change of variables, the surface can be written as

Y 2 = X3 + (a2 − 8b)X2 + 16b2X.

Elkies has shown that the rank 4 can be obtained for the following values of a and
b:

a = (8t− 1)(32t+ 7)

b = 8(t+ 1)(15t− 8)(31t− 7).

Inserting the values of a and b, we get the following K3 elliptic surface

E : Y 2 = X3 + (65536t4 − 17472t3 − 10176t2 + 18672t− 3535)X2

+ 1024(t+ 1)2(15t− 8)2(31t− 7)2X.

To increase the rank, we impose

−64(1 + t)2(−4 + 7t)(4 + 17t)

(1 + 4t)2

as the X-coordinate of a new point on E. This gives the condition −(−4+ 7t)(4 +
17t) = 2, which can be satisfied with

t =
4(−1 + u2)

(17 + 7u2)
.

The resulting curve has rank 5 over Q(u).
On the other hand, imposing

576(−4 + 7t)(−8 + 15t)2(−1324 + 5551t)

49(−39 + 28t)2

as the X-coordinate of a new point on E, leads to the condition (−4+7t)(−1324+
5551t) = 2, which can be satisfied with

t =
4(−331 + u2)

7(−793 + u2)
.

The corresponding curve also has rank 5 over Q(u).
But now we observe that both conditions

−(−4 + 7t)(4 + 17t) = 2

(−4 + 7t)(−1324 + 5551t) = 2,
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can be satisfied simultaneously since the factor (−4 + 7t) appear in both of them.
We satisfy both conditions with

t =
4
(
3r2 − 14r − 5390

) (
10r2 − 14r − 1617

)
7 (72r4 − 182r3 − 13279r2 + 98098r + 20917512)

.

By inserting this into E, we get the curve over Q(r) with rank 6 (that rank is
exactly 6 can be shown by the Gusić-Tadić algorithm [35, 36]).

8. Tables with current records

Let T be an admissible torsion group for an elliptic curve over the rationals.
Define

B(T ) = sup{rank (E(Q)) : E(Q)tors ∼= T}.
It follows from the results of Montgomery [48], Suyama [57] and Atkin and Morain
[4], motivated by finding suitable curves for the elliptic curve method of factoriza-
tion, that B(T ) ≥ 1 for all 15 possible torsion groups T . This result was improved
to B(T ) ≥ 2 by Womack in 2000 and to B(T ) ≥ 3 by Dujella in 2003, and this is
still the best general result valid for all torsion groups T . However, there are better
results for all torsion groups except for T = Z/2Z×Z/8Z. The current records for
all torsion groups are given in the following table (the details on the record curves
can be found at [19]). The records which correspond to elliptic curves induced by
rational Diophantine triples are indicated in bold.
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T B(T ) ≥ Author(s)

0 28 Elkies (2006)

Z/2Z 20 Elkies & Klagsbrun (2020)

Z/3Z 15 Elkies & Klagsbrun (2020)

Z/4Z 13 Elkies & Klagsbrun (2020)

Z/5Z 9 Klagsbrun (2020)

Z/6Z 9 Klagsbrun (2020), Voznyy (2020)

Z/7Z 6 Klagsbrun (2020)

Z/8Z 6 Elkies (2006), Dujella, MacLeod & Peral (2013),
Voznyy (2021)

Z/9Z 4 Fisher (2009), van Beek (2015), Dujella & Petričević (2021),
Dujella, Petričević & Rathbun (2022)

Z/10Z 4 Dujella (2005,2008), Elkies (2006), Fisher (2016)

Z/12Z 4 Fisher (2008)

Z/2Z × Z/2Z 15 Elkies (2009)

Z/2Z × Z/4Z 9 Dujella & Peral (2012,2019), Klagsbrun (2020)

Z/2Z × Z/6Z 6 Elkies (2006), Dujella, Peral & Tadić (2015),
Dujella & Peral (2020)

Z/2Z × Z/8Z 3 Connell (2000), Dujella (2000,2001,2006,2008),
Campbell & Goins (2003), Rathbun (2003,2006,2013,2022),
Flores, Jones, Rollick & Weigandt (2007), Fisher (2009),
AttarBashi, Rathbun & Voznyy (2022),
AttarBashi, Fisher, Rathbun & Voznyy (2022),
AttarBashi - Fisher - Voznyy (2022)

As we mentioned above, the first step in finding elliptic curves with large rank
is the construction of a parametric family of elliptic curves with the considered
property (e.g. with a given torsion group). Thus, it is of interest to study the
following quantity:

G(T ) = sup{rankE(Q(t)) : E(Q(t))tors ∼= T.}
The current records forG(T ) for all possible torsion groups are given in the following
table. Again, the records which correspond to elliptic curves induced by rational
Diophantine triples are indicated in bold.
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T G(T ) ≥ Author(s)

0 18 Elkies (2006)

Z/2Z 11 Elkies (2009), Dujella & Peral (2023)

Z/3Z 7 Elkies (2007), Eroshkin (2023)

Z/4Z 6 Dujella & Peral (2022)

Z/5Z 3 Lecacheux (2001), Eroshkin (2009), MacLeod (2014)

Z/6Z 3 Lecacheux (2001), Kihara (2006), Eroshkin (2008),
Woo (2008), Dujella & Peral (2012,2020),
MacLeod (2014,2015), Voznyy (2021)

Z/7Z 1 Kulesz (1998), Lecacheux (2003), Rabarison (2008),
Harrache (2009), MacLeod (2014)

Z/8Z 2 Dujella & Peral (2012), MacLeod (2013),
Dujella, Kazalicki & Peral (2021)

Z/9Z 0 Kubert (1976)

Z/10Z 0 Kubert (1976)

Z/12Z 0 Kubert (1976)

Z/2Z × Z/2Z 7 Elkies (2007)

Z/2Z × Z/4Z 4 Dujella & Peral (2012)

Z/2Z × Z/6Z 2 Dujella & Peral (2012,2015,2017), MacLeod (2013),
Dujella, Kazalicki & Peral (2021)

Z/2Z × Z/8Z 0 Kubert (1976)

We may note that for certain (large) torsion groups, we know just a seemingly
trivial bound G(T ) ≥ 0. The bound is not completely trivial since it implicitly
includes the result that there are infinitely many elliptic curves with that torsion
group. However, for the applications in factorization, we need curves with large
torsion and positive rank. Therefore, it makes sense to consider not just infinite
families parametrized by rational functions but also infinite families parametrized
by rational points of some elliptic curves with positive rank. Let us define

C(T ) = lim sup{rankE(Q) : E(Q)tors ∼= T}.
The current records for C(T ) for all possible torsion groups are given in the following
table. If the current record for C(T ) is strictly greater than the current record for
G(T ), it means that the current record for C(T ) comes from a parametrization by
rational points of some elliptic curves with positive rank.
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T C(T ) ≥ PPVW Author(s)

0 19 21 Elkies (2006.)

Z/2Z 11 13 Elkies (2007,2009), Dujella & Peral (2023)

Z/3Z 8 9 Eroshkin (2023)

Z/4Z 6 7 Elkies (2007), Dujella & Peral (2021,2022)

Z/5Z 4 5 Eroshkin (2009)

Z/6Z 5 5 Eroshkin (2009)

Z/7Z 2 3 Lecacheux (2003), Elkies (2006), Rabarison (2008),
Harrache (2009), Voznyy (2022)

Z/8Z 3 3 Dujella & Peral (2012),
Dujella, Kazalicki & Peral (2021)

Z/9Z 1 2 Atkin & Morain (1993), Kulesz (1998), Rabarison (2008),
Gasull, Manosa & Xarles (2010)

Z/10Z 1 2 Atkin & Morain (1993), Kulesz (1998),
Rabarison (2008)

Z/12Z 1 2 Suyama (1985), Kulesz (1998), Rabarison (2008),
Halbeisen, Hungerbühler, Voznyy & Zargar (2021)

Z/2Z × Z/2Z 8 9 Elkies (2007)

Z/2Z × Z/4Z 5 5 Eroshkin (2009)

Z/2Z × Z/6Z 3 3 Dujella & Peral (2013), Dujella, Kazalicki & Peral (2021)

Z/2Z × Z/8Z 1 2 Atkin & Morain (1993), Kulesz (1998),
Lecacheux (2002), Campbell & Goins (2003),
Rabarison (2008)

We indicated in bold the four cases where the known lower bound for C(T )
coincide with the heuristic upper bound due to Park, Poonen, Voight and Wood
[53]. These heuristic upper bounds are given in the column denoted by PPVW.
If the heuristic is correct, then these four results are the best possible. However,
in the recent paper by Dujella, Kazalicki and Peral [21], the families with (record)
rank 3 for torsion groups Z/8Z and Z/2Z×Z/6Z were examined. The experiments
suggest that in these families root numbers 1 and −1 (which conjecturally means
even and odd ranks) are equidistributed, which would imply that there are infinitely
many curves with rank ≥ 4 for these torsion groups. This might indicate that the
heuristic in [53] needs some adjustments, at least in the case of curves with torsion
groups Z/8Z and Z/2Z× Z/6Z.
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