Diophantine m-tuples and generalizations

Andrej Dujella

Department of Mathematics
University of Zagreb, Croatia
e-mail: duje@math.hr
URL: http://web.math.pmf.unizg.hr/~duje/
Diophantus: Find four numbers such that the product of any two of them, increased by 1, is a perfect square:

\[\left\{ \frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16} \right\} \]

Fermat: \(\{1, 3, 8, 120\} \)

\[
\begin{align*}
1 \cdot 3 + 1 &= 2^2, \\
3 \cdot 8 + 1 &= 5^2, \\
1 \cdot 8 + 1 &= 3^2, \\
3 \cdot 120 + 1 &= 19^2, \\
1 \cdot 120 + 1 &= 11^2, \\
8 \cdot 120 + 1 &= 31^2.
\end{align*}
\]
Euler: \(\{1, 3, 8, 120, \frac{777480}{8288641}\}\)

\[ab + 1 = r^2 \mapsto \{a, b, a + b + 2r, 4r(a + r)(b + r)\}\]

Gibbs (1999): \(\left\{ \frac{11}{192}, \frac{35}{192}, \frac{155}{27}, \frac{512}{27}, \frac{1235}{48}, \frac{180873}{16} \right\}\)

Dujella (2009): \(\left\{ \frac{27}{35}, -\frac{35}{36}, -\frac{352}{315}, \frac{1007}{1260}, -\frac{5600}{4489}, \frac{72765}{106276} \right\}\)
Definition: A set \(\{a_1, a_2, \ldots, a_m\} \) of \(m \) non-zero integers (rationals) is called a (rational) Diophantine \(m \)-tuple if \(a_i \cdot a_j + 1 \) is a perfect square for all \(1 \leq i < j \leq n \).

Question: How large such sets can be?

Conjecture 1: There does not exist a Diophantine quintuple.

Baker & Davenport (1969):
\{1, 3, 8, d\} \Rightarrow d = 120
(problem raised by Gardner (1967), van Lint (1968))
Arkin, Hoggatt & Strauss (1978): Let
\[ab + 1 = r^2, \quad ac + 1 = s^2, \quad bc + 1 = t^2 \]
and define
\[d_{+, -} = a + b + c + 2abc \pm 2rst. \]
Then \(\{a, b, c, d_{+, -}\} \) is a Diophantine quadruple (if \(d_- \neq 0 \)).

Conjecture 2: If \(\{a, b, c, d\} \) is a Diophantine quadruple, then \(d = d_+ \) or \(d = d_- \), i.e. all Diophantine quadruples satisfy
\[(a - b - c + d)^2 = 4(ad + 1)(bc + 1). \]
Such quadruples are called regular.
D. & Fuchs (2004): All Diophantine quadruples in \(\mathbb{Z}[X] \) are regular.

D. & Jurasić (2010): In \(\mathbb{Q}(\sqrt{-3})[X] \), the Diophantine quadruple

\[
\left\{ \frac{\sqrt{-3}}{2}, -\frac{2\sqrt{-3}}{3}(X^2 - 1), \frac{-3 + \sqrt{-3}}{3}X^2 + \frac{2\sqrt{-3}}{3}, \frac{3 + \sqrt{-3}}{3}X^2 + \frac{2\sqrt{-3}}{3} \right\}
\]

is not regular.
D. (1997): \(\{k - 1, k + 1, 4k, d\} \Rightarrow d = 16k^3 - 4k \)

D. & Pethő (1998): \(\{1, 3\} \) cannot be extended to a Diophantine quintuple

Fujita (2008): \(\{k - 1, k + 1\} \) cannot be extended to a Diophantine quintuple

Bugeaud, D. & Mignotte (2007):
\(\{k - 1, k + 1, 16k^3 - 4k, d\} \Rightarrow \\
d = 4k \text{ or } d = 64k^5 - 48k^3 + 8k \)
D. (2004): There does not exist a Diophantine sextuple. There are only finitely many Diophantine quintuples.

\[\max\{a, b, c, d, e\} < 10^{10^{26}} \]

Fujita (2009): If \(\{a, b, c, d, e\} \), with \(a < b < c < d < e \), is a Diophantine quintuple, then \(\{a, b, c, d\} \) is a regular Diophantine quadruple.
Extending the Diophantine triple \(\{a, b, c\} \), \(a < b < c \), to a Diophantine quadruple \(\{a, b, c, d\} \):

\[
ad + 1 = x^2, \quad bd + 1 = y^2, \quad cd + 1 = z^2.
\]

System of simultaneous Pellian equations:

\[
cx^2 - az^2 = c - a, \quad cy^2 - bz^2 = c - b.
\]

Binary recursive sequences:
finitely many equations of the form \(v_m = w_n \).

Linear forms in three logarithms:

\[
v_m \approx \alpha \beta^m, \quad w_n \approx \gamma \delta^n \Rightarrow \\
\log \beta - n \log \delta + \log \frac{\alpha}{\gamma} \approx 0
\]

Baker’s theory gives upper bounds for \(m, n \) (logarithmic functions in \(c \)).
Simultaneous Diophantine approximations:

\(\frac{x}{z} \) and \(\frac{y}{z} \) are good rational approximations to \(\sqrt{\frac{a}{c}} \) and \(\sqrt{\frac{b}{c}} \), resp.

\(\frac{bsx}{abz} \) and \(\frac{aty}{abz} \) are good rational approximations to \(\frac{s}{a} \sqrt{\frac{a}{c}} = \sqrt{1 + \frac{b}{abc}} \) and \(\frac{t}{b} \sqrt{\frac{b}{c}} = \sqrt{1 + \frac{a}{abc}} \), resp.

If \(c \) is large compared to \(b \) (say \(c > b^6 \)), then hypergeometric method gives (very good) upper bounds for \(x, y, z \).
Congruence method (D. & Pethő):
$v_m \equiv w_n \pmod{c^2}$
If m, n are small (compared with c), then \equiv can be replaced by $=$, and this (hopefully) leads to a contradiction (if $m, n > 2$).
Therefore, we obtain lower bounds for m, n (small powers of c, e.g. $c^{0.04}$).

Conclusion: Contradiction for large c.

If \(\{k - 1, k + 1, c\} \) is a Diophantine triple, then \(c = c_\nu \), where

\[
c_1 = 4k, \quad c_2 = 16k^3 - 4k, \quad c_3 = 64k^5 - 48k^3 + 8k, \ldots.
\]

For \(c_\nu, \nu \geq 3 \), gap is large enough for the application of results on simultaneous Diophantine approximations – Fujita (2008).

The case \(c_1 \) leads to simultaneous approximations to the numbers \(\sqrt{1 - \frac{1}{k}} \) and \(\sqrt{1 + \frac{1}{k}} \) (a result by Rickert (1993)) – D. (1997).
For c_2 – Bugeaud, D. & Mignotte (2007):

Improved congruence method:
Combination of congruences mod $4k(k - 1)$ and mod c_2^2 gives $m > 4.9k^{1.5}$ (if $m > 2$).

Recent results on linear forms in three logarithms:
by Matveev (2000): $k < 3.8 \cdot 10^{10}$;
by Mignotte (2007): $k < 5.4 \cdot 10^8$.

Baker-Davenport reduction method:
Starting with $m \leq 3.6 \cdot 10^{16}$, we obtain $m \leq 2$.
Bo He, Togbé, Filipin (2009,2012):

\[\{k, A^{2k} + 2A, (A + 1)^{2k} + 2(A + 1)\} \]

extends uniquely to a Diophantine quadruple if $1 \leq A \leq 22$ or $A \geq 51767$

(using linear forms in \textit{two} logarithms)
Let \(\{a, b, c\} \) be a Diophantine triple. Consider the elliptic curve

\[
E : \quad y^2 = (ax + 1)(bx + 1)(cx + 1).
\]

Rational points \(P = [0, 1], \; Q = [1/abc, rst/abc] \) satisfy \(x(P \mp Q) = d_{+,-} \).

Conjecture 3: All integer points on \(E \) are: \([0, \pm 1], \)
\([d_+, \pm(at + rs)(bs + rt)(cr + st)], \)
\([d_-, \pm(at - rs)(bs - rt)(cr - st)], \)
and also \([-1, 0]\) if \(1 \in \{a, b, c\}\).
D. (2000): Conjecture is true for elliptic curves

\[E_k : \quad y^2 = ((k - 1)x + 1)((k + 1)x + 1)(4kx + 1), \]
under assumption that \(\text{rank } E_k(\mathbb{Q}) = 1 \) (also for two subfamilies of rank 2 and one subfamily of rank 3). Furthermore, it is true for all \(k, 2 \leq k \leq 1000 \) (extended to \(k \leq 5000 \) by Najman (2010)).

The condition \(\text{rank } E_k(\mathbb{Q}) = 1 \) is not unrealistic since \(\text{rank } E(\mathbb{Q}(k)) = 1 \).
D. & Pethő (2000): Conjecture is true for elliptic curves

\[E'_k : \quad y^2 = (x + 1)(3x + 1)(c_kx + 1), \]

where \(\{1, 3, c_k\} \) is a Diophantine triple, i.e.

\[c_k = \frac{1}{6} \left((2 + \sqrt{3})(7 + 4\sqrt{3})^k + (2 - \sqrt{3})(7 - 4\sqrt{3})^k - 4 \right), \]

under assumption that rank \(E'_k(\mathbb{Q}) = 2 \). Furthermore, it is true for all \(k, 1 \leq k \leq 40 \), with possible exceptions \(k = 23 \) and \(k = 37 \) (extended by Jacobson & Williams (2002) to \(k \leq 100 \), with the possible exception of \(k = 37 \), for which the result holds under the Extended Riemann Hypothesis).

Definition: Let n be an integer. A set of m positive integers is called a *Diophantine m-tuple with the property $D(n)$* or simply *$D(n)$-m-tuple* (or P_n-set of size m), if the product of any two of them, increased by n, is a perfect square.

$$M_n = \sup\{\#D : D \text{ is a } D(n)\text{-tuple}\}$$

Conjecture 4: There exist a constant C such that $M_n < C$ for all non-zero integers n. In particular, there does not exist a rational C-tuple.
D. (2004): $4 \leq M_1 \leq 5$
(implies directly $4 \leq M_4 \leq 7$)

Filipin (2008): $4 \leq M_4 \leq 5$

D. (2004): $M_n \leq 31$ if $|n| \leq 400$
$M_n < 15.476 \cdot \log |n|$ if $|n| > 400$

D. & Luca (2005): $M_p < 2^{146}$ if p is a prime
If \(n \equiv 2 \pmod{4} \), then \(M_n = 3 \).

D. (1993): If \(n \not\equiv 2 \pmod{4} \) and \(n \not\in S_1 = \{-4, -3, -1, 3, 5, 8, 12, 20\} \), then \(M_n \geq 4 \).

Conjecture 5: If \(n \in S_1 \), then \(M_n = 3 \).

D. & Fuchs (2005): \(3 \leq M_{-1} \leq 4 \)
Remark: $n \equiv 2 \pmod{4}$ if and only if n is not representable as a difference of the squares of two integers.

D. (1997), Franušić (2004, 2008): Analogous results: strong connection between the existence of $D(n)$-quadruples and the representability as a difference of two squares also hold for integers in some quadratic fields.
D., Filipin & Fuchs (2007):
There are only finitely many $D(-1)$-quadruples.
If $\{a, b, c, d\}$ is a $D(-1)$-quadruple, then
$\max\{a, b, c, d\} < 10^{10^{23}}$.

Conjecture 6: If n is not a perfect square, then there exist only finitely many $D(n)$-quadruples.

Euler: There exist infinitely many $D(1)$-quadruples, and therefore infinitely many $D(k^2)$-quadruples.

DFF implies that the conjecture is true for $n = -1$ and $n = -4$ (note that all elements of a $D(-4)$-quadruple are even).
D. (2000): For any rational q there exist infinitely many rational $D(q)$-quadruples.

Question: For which rationals q there exist infinitely many rational $D(q)$-quintuples.

We may restrict our attention to square-free integers q, since by multiplying all elements of a $D(q)$-m-tuple by r we get a $D(qr^2)$-m-tuple.

Euler: $q = 1$

D. (2000): $q = -3$
\[
\left\{ \frac{5}{4}, \frac{12}{5}, \frac{133}{5}, \frac{73}{20}, \frac{217}{20} \right\}
\]

D. (2002): $q = -1$
\[
\left\{ \frac{10}{8}, \frac{25}{10}, \frac{37}{40}, \frac{13}{40}, \frac{533}{40} \right\}
\]

D. & Fuchs (2012): For infinitely many square-free integers q for which the elliptic curve
\[
qy^2 = x^3 + 86x^2 + 825x
\]
has positive rank (conjecturally the set of all such square-free integers has density $\geq 1/2$).
\(a_i \cdot a_j + 1 = k\text{-th power} \) \(k \geq 3 \) fixed

Such a set is called a \textit{k-th power Diophantine m-tuple}.

\{2,171,25326\} is a third power Diophantine triple

\{1352,8539880,9768370\} is a fourth power Diophantine triple

\(C(k) = \sup\{\#D : D \text{ is a } k\text{-th power D. tuple}\} \)

\textbf{Bugeaud & D. (2003):} \(C(3) \leq 7, \, C(4) \leq 5, \, C(k) \leq 4 \)

for \(5 \leq k \leq 176, \, C(k) \leq 3 \) for \(k \geq 177 \)
\[a_i \cdot a_j + 1 = \text{perfect power}\]

Such a set is called a Diophantine powerset.

\[D \subset \{1, 2, \ldots, N\}\] such that \(ab + 1\) is a perfect power for all \(a \neq b\) in \(D\).

Gyarmati, Sárközy & Stewart (2002):
\[
\#D \leq 340 \frac{(\log N)^2}{\log \log N}
\]

Stewart (2008): \[
\#D \ll (\log N)^{2/3}(\log \log N)^{1/3}
\]
Luca (2005): *abc-conjecture* implies that $\#D$ is bounded by an absolute constant.

D., Fuchs & Luca (2008):
In $\mathbb{Z}[X]$, $\#D < 8 \cdot 10^5$.

D. & Jurasić (2010):
In $\mathbb{K}[X]$, where \mathbb{K} is a field of characteristic 0, $\#D < 2 \cdot 10^7$.
Let $D_m(N) =$
\# $\{D \subseteq \{1, 2, \ldots, N\} : D \text{ is a Diophantine-}m\text{-tuple}\}.$

D. (2008): $D_2(N) = \frac{6}{\pi^2} N \log N + O(N);$
$ab + 1 = r^2 \Rightarrow r^2 \equiv 1 \text{ (mod } b)\]

$D_3(N) = \frac{3}{\pi^2} N \log N + O(N);$
almost all triples are of form $\{a, b, a + b + 2r\}$

$0.1608 \sqrt[3]{N} \log N < D_4(N) < 0.5354 \sqrt[3]{N} \log N$
Martin & Sitar (2010):

\[D_4(N) = C\sqrt{N} \log N + O(\sqrt[3]{N} (\log N)^{2/3} + \sqrt{\log N} (\log \log N)^{5/12}), \]

where \(C = \frac{2^{4/3}}{3 \Gamma\left(\frac{2}{3}\right)^3} \approx 0.338285 \)

almost all quadruples are on the form

\[\{a, b, a + b + 2r, 4r(a + r)(b + r)\}; \]

Erdős-Turán inequality - discrepancy between the number of elements of a sequence that lie in a particular interval modulo 1 and the expected number;

equidistribution of solutions of polynomial congruences

Fujita (2010): \(D_5(N) < 10^{276} \)

a fixed Diophantine triple \(\{a, b, c\} \) has at most 4 extensions to Diophantine quintuple \(\{a, b, c, d, e\} \) such that \(\max\{a, b, c\} < d < e \)
\[a_i \cdot a_j + n = \text{perfect power} \]

Bérczes, D., Hajdu & Luca (2011):
The size of such sets cannot be bounded by an absolute constant.

More precisely, let \(x \geq e^{e^e} \), and take
\[
K = \left\lfloor \left(\frac{\log \log x}{2 \log \log \log x} \right)^{1/3} \right\rfloor.
\]
Then there exists a set \(A_K = \{ a_1, \ldots, a_K \} \) with elements all in \([1, x]\), as well as an integer \(n_K \) also in \([1, x]\), such that
\[
a_i a_j + n_K = x_{ij}^{k_{ij}} \quad \text{for} \quad 1 \leq i < j \leq K
\]
with some integers \(x_{ij} \), where the exponents \(k_{ij} \) are the first \(\binom{K}{2} \) primes.

Assuming the abc-conjecture, the size of such sets can be bounded by a constant depending only on \(n \) (generalization of Luca (2005) for \(n = 1 \)).