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Abstract. In this paper, we prove that there does not exist a set of
four positive integers with the property that the product of any two of
its distinct elements plus their sum is a perfect square. This settles an
old problem investigated by Diophantus and Euler.

1. Introduction

Let n be an integer. A set of m positive integers is called a Diophantine
m-tuple with the property D(n) or simply D(n)-m-tuple, if the product
of any two of them increased by n is a perfect square. For the case n = 1
this problem was first studied by Diophantus and he found a set of four
positive rationals with the above property: { 1

16 , 33
16 , 17

4 , 105
16 }. The first

D(1)-quadruple however, the set {1, 3, 8, 120}, was found by Fermat. Euler
was able to add the fifth positive rational, 777480

8288641 , to the Fermat’s set (see
[4] and [16]). Gibbs [15] found examples of sets of six positive rationals with
the property of Diophantus. The folklore conjecture is that there does not
exist a D(1)-quintuple. In 1969, Baker and Davenport [1] proved that the
Fermat’s set cannot be extended to a D(1)-quintuple. Recently, the first
author proved that there does not exist a D(1)-sextuple and there are only
finitely many D(1)-quintuples (see [11]).

In the case n = −1, the conjecture is that there does not exist a D(−1)-
quadruple (see [6]). It is known that some particular D(−1)-triples cannot
be extended to D(−1)-quadruples, namely this was verified for the triples
{1, 2, 5} (by Brown in [3], see also [23, 19, 22, 20]), {1, 5, 10} (by Mohanty
and Ramasamy in [21]), {1, 2, 145}, {1, 2, 4901}, {1, 5, 65}, {1, 5, 20737},
{1, 10, 17}, {1, 26, 37} (by Kedlaya [19]) and {17, 26, 85} (again by Brown in
[3]). Moreover, Brown proved that the following infinite families of D(−1)-
triples cannot be extended to quadruples:

{x2 + 1, (x + 1)2 + 1, (2x + 1)2 + 4}, if x 6≡ 0 (mod 4),
{2, 2x2 + 2x + 1, 2x2 + 6x + 5}, if x ≡ 1 (mod 4).
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‡The second author was supported by the Austrian Science Foundation FWF, grant
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The first author proved the conjecture in [7] for all triples of the form
{1, 2, c}.

Let us mention that from [10, Theorem 4] it follows that there does
not exist a D(−1)-33-tuple. This is the best known upper bound for this
problem at present.

The n = −1 case is closely connected with an old problem of Diophantus
and Euler. Namely, Diophantus studied the problem of finding numbers such
that the product of any two increased by the sum of these two gives a square.
He found two triples {4, 9, 28} and { 3

10 , 21
5 , 7

10} satisfying this property. Euler
found a quadruple {5

2 , 9
56 , 9

224 , 65
224} and asked if there is an integer solution

of this problem (see [5], [4] and [16]). In [9] an infinite family of rational
quintuples with the same property was given. Since

xy + x + y = (x + 1)(y + 1)− 1,

we see that the problem of finding integer m-tuples with the property that
for any two distinct elements the product plus their sum is a perfect square
is equivalent to finding D(−1)-m-tuples.

A polynomial variant of the above problems was first studied by Jones
[17], [18], and it was for the case n = 1. Recently, polynomial variants
were also studied by the authors. They were able to completely prove the
polynomial variants of both conjectures for n = 1 (here even a stronger
version of the quintuple conjecture was proved since the question of finding
polynomial quintuples was answered with the result in [11]) in [13] and also
for the case n = −1 in [12].

In this paper we completely solve the problem investigated by Diophantus
and Euler, namely we prove the following result:

Theorem 1a. There does not exist a set of four positive integers with the
property that the product of any two if its distinct elements plus their sum
is a perfect square.

By the above correspondence this implies the following equivalent result
on D(−1)-m-tuples.

Theorem 1b. There does not exist a D(−1)-quadruple {a, b, c, d} with
2 ≤ a < b < c < d.

In the proof of the above Theorem we first show that if {a, b, c, d} is a
D(−1)-quadruple with minimal d, then {1, a, b, c} is also a D(−1)-quadruple.
This idea was introduced for polynomials already in [12] when we proved
the conjecture for polynomials with integral coefficients.
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We have the following corollaries, which immediately follow from the
above theorems.

Corollary 1. There does not exist a D(−1)-quintuple.

Moreover, we can state the following restrictions for D(−1)-quadruples:

Corollary 2. If {a, b, c, d} is a D(−1)-quadruple with 0 < a < b < c < d,
then a = 1 and b ≥ 5.

It seems that the case a = 1 is more involved and much harder. It can
be compared with the strong version of the quintuple conjecture for n = 1,
which says that every D(1)-triple can be extended to a D(1)-quadruple in
an essentially unique way.

We also want to remark that for general n, it was proven by the first
author in [6] that if n 6≡ 2 (mod 4) and n /∈ S = {−4,−3,−1, 3, 5, 12, 20},
then there exists at least one Diophantine quadruple with the property
D(n). The conjecture is that for n ∈ S there does not exist a Diophantine
quadruple with the property D(n). This paper gives support to this
conjecture for the case n = −1.

The strategy of the paper follows the same line as the proofs of almost all
other recent results on non-extendability of D(n)-m-tuples (especially we
will follow the line of [11]). In Section 1 we reduce the problem of finding d
which extends {a, b, c} to a D(−1)-quadruple to a system of simultaneous
Pellian equations, which leads to the consideration of intersections of linear
recurring sequences. Afterwards we apply congruence relations to show
that these sequences cannot have intersections for small indices (in Section
2 we prove that the indices are easily related and in Section 3 we consider
the small cases), which leads to a “gap principles”, which say that in such
a triple there must be a certain gap between b and c (Section 3). Using this
gap principle and a theorem about simultaneous approximations of square
roots which are close to 1 due to Bennett, we obtain in Section 4 an upper
bound for d. Comparing this upper bound with lower bounds obtained by
congruence methods we show that such an extension does not exist, which
is done on Section 5.

The new ideas in this paper are the following: we explore the assumption
that the quadruple {a, b, c, d} is minimal and we consider the associated
quadruple {1, a, b, c} first (observe that we assume that a ≥ 2), which exists
as mentioned above (and this idea comes from the much easier polynomial
case handled in our paper [12]). Here we show that we have an excellent “gap
principle”, namely c > 40000b9. Now this gap is good enough to apply Ben-
nett’s theorem and it is also good enough to apply the congruence method
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introduced in [14]. Here we need to have control on the fundamental solu-
tions of the Pellian equations under consideration. We get upper bounds for
them, which are better than in general, again from the fact that {1, a, b, c}
is also a D(−1)-quadruple.

2. Reduction to intersections of recursive sequences

Let {a, b, c}, where 2 ≤ a < b < c, be a D(−1)-triple and let r, s, t be
positive integers defined by

ab− 1 = r2, ac− 1 = s2, bc− 1 = t2.

In this paper, the symbols r, s, t will always have this meaning. Assume
that there exists a positive integer d > c such that {a, b, c, d} is a D(−1)-
quadruple. We have

(1) ad− 1 = x2, bd− 1 = y2, cd− 1 = z2,

with integers x, y, z. Eliminating d from (1) we obtain the following system
of Pellian equations

(2) az2 − cx2 = c− a,

(3) bz2 − cy2 = c− b.

We will describe the sets of solutions of equations (2) and (3) in the following
lemma.
Lemma 1. If (z, x) and (z, y), with positive integers x, y, z, are solutions of
(2) and (3) respectively, then there exist integers z0, x0 and z1, y1 with

(i) (z0, x0) and (z1, y1) are solutions of (2) and (3) respectively,
(ii) the following inequalities are satisfied:

(4) 0 ≤ |x0| < s,

(5) 0 < z0 < c,

(6) 0 ≤ |y1| < t,

(7) 0 < z1 < c,

and there exist integers m,n ≥ 0 such that

(8) z
√

a + x
√

c = (z0

√
a + x0

√
c)(s +

√
ac)2m,

(9) z
√

b + y
√

c = (z1

√
b + y1

√
c)(t +

√
bc)2n.

Proof. The proof runs along the same line as the proof of [8, Lemma 1].
A polynomial version of this lemma was proved in [12, Lemma 1]. �

The solutions z arising, for given (z0, x0), from formula (8) for varying
m ≥ 0 form a binary recurrent sequence (vm)m≥0 whose initial terms are
found by solving equation (8) for z when m = 0 and 1, and whose char-
acteristic equation has the roots (s +

√
ab)2 and (s −

√
ab)2. Therefore, we
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conclude that z = vm for some (z0, x0) with the above properties and integer
m ≥ 0, where

(10) v0 = z0, v1 = (2ac− 1)z0 + 2scx0, vm+2 = (4ac− 2)vm+1 − vm.

In the same manner, from (9), we conclude that z = wn for some (z1, y1)
with the above properties and integer n ≥ 0, where

(11) w0 = z1, w1 = (2bc− 1)z1 + 2tcy1, wm+2 = (4bc− 2)wn+1 − wn.

Now the following congruence relations follow easily from (10) and (11)
by induction:

vm ≡ (−1)mz0 (mod 2c), wn ≡ (−1)nz1 (mod 2c).

From this relations it follows immediately (since z0 + z1 < 2c) that if the
equation vm = wn has a solution, then we must also have

z0 = z1.

Moreover, we can also conclude that m and n have the same parity, i.e.

(12) m ≡ n (mod 2).

Furthermore, important relations are obtained by considering the se-
quences (vm) and (wn) modulo c2. This method was first introduced by
Pethő and the first author in [14].
Lemma 2. We have

vm ≡ (−1)m(z0 − 2acm2z0 − 2csmx0) (mod 8c2),
wn ≡ (−1)n(z1 − 2bcn2z1 − 2ctny1) (mod 8c2).

Proof. The proof follows immediately by induction from (10) and (11),
respectively. �

From this lemma we can at once conclude that, if vm = wn then

(13) am2z0 + smx0 ≡ bn2z1 + tny1 (mod 4c).

The next important step is to show that to a D(−1)-quadruple {a, b, c, d}
with 2 ≤ a < b < c < d another D(−1)-quadruple can be associated. By
assuming that {a, b, c, d} has minimal d under all such D(−1)-quadruples,
we will conclude that {1, a, b, c} is also a D(−1)-quadruple.

First we need the following lemma, which is now easy to prove and which
will play a key role in the rest of the proof. A polynomial version of this
lemma was obtained in [12].
Lemma 3. Let {a, b, c, d} with 0 < a < b < c < d be a D(−1)-quadruple.
Then there exists a positive integer d0 with d0 < c such that ad0−1, bd0−1,
cd0 − 1 are perfect squares.
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Proof. We look for a positive integer d such that z2 = v2
m = w2

n = cd− 1.
Therefore, v2

m ≡ −1 (mod c). Hence, z2
0 ≡ −1 (mod c). Now, we define

d0 =
z2
0 + 1
c

.

It is easy to check that d0 < c and that ad0 − 1 = y2
1, bd0 − 1 = x2

0, which
implies that ad0 − 1, bd0 − 1, cd0 − 1 are perfect squares. �

Assume now that {a, b, c, d} with 2 ≤ a < b < c < d is a D(−1)-
quadruple with minimal d among all such quadruples. We may use Lemma
4 to construct d0. From the minimality of d, it follows that d0 = 1 must
hold and therefore {1, a, b, c} is also a D(−1)-quadruple.

This has another important implication on the size of the fundamental
solutions of (10) and (11) described in Lemma 1.
Lemma 4. Let the integers z0, z1, x0, y1 be as in Lemma 1. Then we have

z0 = z1 =
√

c− 1, |x0| =
√

a− 1, |y1| =
√

b− 1.

Proof. Since we have

1 = d0 =
z2
0 + 1
c

,

we immediately can conclude that

z0 = z1 =
√

c− 1.

Also, by x2
0 = ad0 − 1, y2

1 = ad0 − 1, we get |x0| =
√

a− 1, |y1| =
√

b− 1, as
claimed in the lemma. �

From the fact that {1, a, b, c} is again a D(−1)-quadruple we can conclude
that

a = α2 + 1, b = β2 + 1, c = γ2 + 1.

Moreover, to the D(−1)-triple {1, a, b} we can again associate a pair of
Pellian equations as above, which give all extensions to quadruple, as for ex-
ample c. Moreover, we can associate two linear recursive sequences (ṽm) and
(w̃n) to the triple, such that every solution ṽm = w̃n gives us an extension
of {1, a, b} to a D(−1)-quadruple. We have

(14) ṽ0 = z̃0, ṽ1 = (2b− 1)z̃0 + 2βbx̃0, ṽm+2 = (4b− 2)ṽm+1 − ṽm.

and

(15) w̃0 = z̃1, w̃1 = (2ab− 1)z̃1 + 2rbỹ1, w̃m+2 = (4ab− 2)w̃n+1 − w̃n,

with
0 < z̃0 = z̃1 < b, |x̃0| < β, |ỹ1| < r.

We also know that we have γ = ṽm = w̃n for certain values of m and n.
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3. Relationships between m and n

In this section we will prove an unconditional relationship between m and
n, which will be used several times later on.
Lemma 5. If vm = wn, then n ≤ m ≤ 2n.

Proof. We have the following estimates for v1:

v1 = (2ac− 1)z0 + 2scx0 ≥ (2ac− 1)z0 − 2sc|x0|

=
(4a2c2 − 4ac + 1)z2

0 − 4c2(ac− 1)x2
0

(2ac− 1)z0 + 2sc|x0|
≥ 4c(ac− 1)(az2

0 − cx2
0) + z2

0

(2ac− 1)z0 + 2sc|x0|

>
4c(ac− 1)(c− a) + z2

0

2(2ac− 1)z0
>

4c(ac− 1)(c− a)
4ac(c− 1)

> c− a,

where we have used (2). On the other side we trivially have

v1 ≤ 4ac2.

Hence,

(16) (c− a)(4ac− 3)m−1 < vm < 4ac2(4ac− 2)m−1, for m ≥ 1.

In the same manner, we obtain

(17) (c− b)(4bc− 3)n−1 < wn < 4bc2(4bc− 2)n−1, for n ≥ 1.

Now, by comparing the lower bound for vm with the upper bound of wn and
vice versa we will obtain the bounds.

We have

(4ac− 2)n−1 < (c− b)(4bc− 3)n−1 < 4ac2(4ac− 2)m−1 < (4ac− 2)m+1

and therefore
m + 1 > n− 1,

which implies m > n− 2 or m ≥ n− 1. Since m,n have the same parity (see
(12)), we conclude m ≥ n.

Moreover, we have

(c−a)(4s2)m−1 = (c−a)(4ac−4)m−1 < (c−a)(4ac−3)m−1 < 4bc2(4bc−2)n−1.

It is easy to see that we have

4bc− 2 < 4s4

and
4bc2

c− a
< 8s4,

which is true because we have

4bc2 ≤ 4(c− 2)c2 < 8(c− 1)3 ≤ 8(c− a)(ac− 1)2 = 8(c− a)s4.

We have used here, that the function f(x) = (c − x)(cx − 1)2 for integers
1 ≤ x ≤ c− 1 takes it minimum at x = 1. Thus, we have

(4s2)m−1 < 8s4(4s4)n−1,
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which implies
2(m− 1) < 4 + 4(n− 1).

Observe that for the exponent of 4, we have m − 1 < 3
2 + n − 1, which

is always satisfied with the above inequality. Therefore, we conclude
m < 2n + 1 or m ≤ 2n and therefore we get what we have claimed. �

The result from above is also true for D(−1)-triples {a, b, c} with 0 < a <
b < c, where possibly a = 1.
Lemma 6. If ṽm = w̃n, then n ≤ m ≤ 2n.

Proof. The proof of Lemma 5 does not use the fact that a ≥ 2 and therefore
the same is true for the sequences ṽm and w̃n which come from the triple
{1, a, b}. �

4. Gap principles

In this section we will prove that for our D(−1)-triple {a, b, c}, we have
a large gap between b and c of the form c > b9. This will be essential for
the proof of the theorems. We get this result by studying the associated
D(−1)-quadruple given by {1, a, b, c}.

Before we do this, we need the following useful gap principle for the ele-
ments of an arbitrary D(−1)-triple {a1, a2, a3}.
Lemma 7. If {a1, a2, a3} is a D(−1)-triple and 0 < a1 < a2 < a3, then
a3 = a1 + a2 + 2

√
a1a2 − 1 or a3 > 3a1a2 ≥ 3a2.

Proof. It follows from [10, Lemma 3] that there exist integers e, f, g such
that we have

(18) a3 = a1 + a2 − e + 2(a1a2e +
√

a1a2 − 1fg),

with a1e + 1 = f2, a2e + 1 = g2. Moreover, since we may take (see [10,
Lemma 3])

f = a1

√
a1a3 − 1−

√
a1a2 − 1

√
a2a3 − 1 and

g = a2

√
a2a3 − 1−

√
a1a2 − 1

√
a2a3 − 1,

it is easy to check that f, g are positive.
We have two cases: if e = 0, then the above equation gives

a3 = a1 + a2 + 2
√

a1a2 − 1,

which is the first part of our assertion. Otherwise, we have e ≥ 1. If a1 = 1
we get e ≥ 3 and therefore (18) implies a3 ≥ 7a1a2. In the case a1 = 2, we
have e ≥ 4 and therefore a3 ≥ 8a1a2. Now, if a1 ≥ 3, again by (18), we can
estimate a3 by

a3 ≥ 2a1a2 + 2
√

a1a2 − 1
√

a1a2 − a1 − a2 + 1
> 2a1a2 + 2(a1a2 − a1 − a2 + 1) > 3a1a2,

where the last inequality is true because of a1a2 > 2a1 + 2a2 − 2 or (a1 −
2)(a2 − 2) ≥ 2.
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Altogether, we have
a3 > 3a1a2 ≥ 3a2,

which was the statement of the lemma. �

We are intended to prove that the equation

(19) ṽm = w̃n

does not have a solution for small m,n (besides the trivial solution ṽ0 = w̃0

which leads to some extension d0 < b). We will show that if (19) has a
solution, then

m > 4 or n > 4
holds. By the relation between m and n proved in the last section (Lemma
6), we have to consider the following cases:

n = 1, m = 1,
n = 2, m = 2 or 4,
n = 3, m = 3,
n = 4, m = 4.

We will show this separately in the lemmas below.
Lemma 8. We have ṽ1 6= w̃1.

Proof. From the definition of the sequences it follows that we have

(2b− 1)z̃0 + 2βbx̃0 = (2ab− 1)z̃1 + 2rbỹ1.

We have z̃0 = z̃1. Therefore, by dividing by 2b we get

(20) (a− 1)z̃0 = βx̃0 − rỹ1.

We remark that the system of Pellian equations associated to the triple
{1, a, b} was given by

z̃2
0 − bx̃2

0 = b− 1,

az̃2
0 − bỹ2

1 = b− a

which implies
(a− 1)z̃2

0 − b(ỹ2
1 − x̃2

0) = 1− a.

Squaring (20) and using the last relation, we get

(a− 1)b(ỹ2
1 − x̃2

0)− (a− 1)2 = (b− 1)x̃2
0 + (ab− 1)ỹ2

1 − 2βrx̃0ỹ1.

Hence,
(x̃0r − ỹ1β)2 = x̃2

0r
2 + ỹ2

1β
2 − 2βrx̃0ỹ1 = −(a− 1)2,

which is a contradiction, since the left side is positive and the right hand
side of this equation is negative. Therefore, the lemma follows. �

Up to now we have shown that n, m ≥ 2. Our strategy is now the following:
we use Lemma 4 to prove that there exists a certain gap between a and b.
Using this gap principle and the congruence relations from Lemma 2, we
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obtain larger lower bounds for m,n. We will repeat this until we end up
with n > 4 or m > 4. First, we have the following lemma:
Lemma 9. If {1, a2, a3, a4} is a D(−1)-quadruple and 1 < a2 < a3 < a4,
then

a4 > 4a1.5
2 a2.5

3 .

Proof. As in Section 2, we can associate to the triple {1, a2, a3} two se-
quences (vm) and (wn) with the above properties such that a4 comes from
some solution z = vm = wn for certain indices n, m ≥ 1 by the formula
a3a4 = z2 + 1. For every possible solution z = wn = vm, we can now con-
clude by Lemma 7 that

z ≥ w2 ≥
{

a3
2 · 3a2a3 ≥ 3

2a2a
2
3 if a3 > 2a2√

a3 · 3a2a3 ≥ 3a2a3
√

a3 if a3 < 2a2

Because of the relation a3a4 − 1 = z2, we have

a4 ≥
{

9
4a2

2a
3
3 if a3 > 2a2,

9a2
2a

2
3 ≥ 9

2a1.5
2 a2.5

3 if a3 < 2a2.

This implies that
a4 > 4a1.5

2 a2.5
3 .

From this the conclusion follows. �

Using this improved gap principle, we now can prove the next step, which
is in fact the hardest one.
Lemma 10. We have ṽ2 6= w̃2.

Proof. First we can apply Lemma 4 to the triple {1, a, b} and we conclude
that there exists d0 < b such that d0 − 1, ad0 − 1 and bd0 − 1 are all perfect
squares. We have two cases depending on whether d0 = 1 or not.

Case d0 = 1: We have

z̃0 = β, x̃0 = 0, ỹ1 = ±α.

It follows that we have just three sequences to consider, namely (ṽm) corre-
sponding to x̃0 = 0 and two sequences (w̃n) and (w̃′

n) corresponding to the
case ỹ1 = α and −α, respectively.

We pause for a moment to show some properties of the sequences (ṽm)
and (w̃n), (w̃′

n). By the proof of Lemma 1 in [8] it follows that ṽ0 ≤ ṽ1. By
induction using (10) we immediately conclude that ṽ0 ≤ ṽ1 ≤ ṽ2 ≤ . . . . The
same is true for (w̃n), so w̃0 ≤ w̃1 ≤ w̃2 ≤ . . . and (w̃′

n), hence, w̃′
0 ≤ w̃′

1 ≤
w̃′

n ≤ . . .. Furthermore, we trivially have w̃′
n ≤ w̃n for all n ≥ 0. Moreover,

for ỹ1 = +α, we have

(21) ṽm < w̃m, for all m ≥ 1,

which follows again by induction.
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From this discussion it follows that for ỹ1 = α we have ṽ2 6= w̃2, and
therefore we just have to consider ỹ1 = −α and therefore only the sequence
(w̃′

n).
Next, we calculate an upper bound for (ṽm). We have

(22) ṽm < (4b)m−12b
√

b, m ≥ 1,

which can be easily seen by induction. Moreover, we need a lower bound for
(w̃′

n). We have w̃1 ≤ 4ab
√

b. Moreover,

w̃1w̃
′
1 = −4a2b2 + 4ab + b− 1 + 4ab3 − 4b2

> 4ab3 − 4a2b2 − 4b2 + 4ab ≥ 7
3
ab3.

For the last inequality we have used that

4a2b2 + 4b2 − 4ab ≤ 5
3
ab3,

which is true under the assumption that b > 3a, which we will assume for
the moment. Combining the upper bound for w̃1 with the lower bound for
w̃1w̃

′
1 we get

w̃′
1 >

7
12

b
√

b.

Proceeding with induction we end up with

(23) w̃′
n > (3ab)n−1 7

12
b
√

b, n ≥ 1.

Now by comparing the upper bound from (22) with the lower bound from
(23) with (n, m) = (2, 2), we get

(3ab)
7
12

b
√

b > (4b)2b
√

b,

which is true for all a ≥ 5. We remark that in [7] it was proven that the pair
{1, 2} cannot be extended to a D(−1)-quadruple, therefore we may assume
that a ≥ 5 holds. In the same way we can prove that

(24) ṽm < w̃′
m for all m ≥ 1,

since we have

(3ab)m−1 7
12

b
√

b > (4b)m−12b
√

b,

which implies

a >
4
3

(
24
7

) 1
m−1

,

which is again true since a ≥ 5.
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It remains to consider b ≤ 3a. In this case we can conclude by the gap
principle (Lemma 7) applied to the triple {1, a, b} that we have

b = a + 2
√

a− 1 + 1,

a = b− 2
√

b− 1 + 1,

β =
√

b− 1,

r = b− β = b−
√

b− 1.

Now, if we assume that ṽ2 = w̃2, then by (13) we get

4β ≡ 4(b− 2β + 1)β − 2(b− β)α (mod 4b).

Therefore,

4β ≡ −8β2 + 4β − 2βα ≡ 8 + 4β − 2βα (mod 4b).

Hence, we may conclude

2αβ ≡ 8 (mod 4b),

which by 2αβ = 2
√

a− 1
√

b− 1 < 2b implies that in fact equality must
hold, implying that 2αβ = 8 or αβ = 4, which is trivially a contradiction.

Altogether, the proof of the first case is finishes.

Case d0 6= 1: Now, we look back to our quadruple {1, a, d0, b}. Since d0 6=
1, we can apply our improved gap principle from Lemma 9 and we get

b > 4a2.5d1.5
0 .

From this it follows that

b2.5 > 4a2.5(bd0)1.5 > 4a2.5z̃3
0 ,

or

az̃0 <
b

4
2
5 z̃

1
5
0

<
3
5
b.

Now, we use again (13) and conclude that

4z̃0 + 2βx̃0 ≡ 4az̃0 + 2rỹ1 (mod 4b).

Since 4az̃0 is the largest term both sides can be bounded by 6az̃0 < 4b,
which follows by the above inequality, and therefore this inequality implies
that we have in fact equality here. Thus,

2z̃0 + βx̃0 = 2az̃0 − r|ỹ1|,
because for ỹ1 > 0 we would trivially have a contradiction. This can be
reformulated as

2(a− 1)z̃0 + βx̃0 = −r|ỹ1|.
Now, since βx̃0 < (a− 2)z̃0, which can be seen by squaring and using (14),
we receive a contradiction again.

This finally finishes the proof of the lemma. �
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Lemma 11. We have ṽ4 6= w̃2.
Proof. Again we use Lemma 4 to find a d0 such that {1, a, d0, b} is a D(−1)-

quadruple. As before we consider the two cases depending on whether d0 = 1
or not.

Assuming d0 = 1, we are intended to show that we have

ṽ4 > w̃2 ≥ w̃′
2,

where the last inequality is trivially true. We have the following lower bound
for ṽ4, which follows from (14), namely

ṽ4 ≥ (3ab)3b
√

b ≥ 27a3b4,

where we have used that ṽ1 = (2b − 1)β ≥ b
√

b. On the other side we have
by (15)

w̃2 ≤ (4ab− 2)w̃1 ≤ 16a2b3,

since we have w̃1 = (2ab − 1)β + 2r3b = 2ab
√

b + 2ab2 ≤ 4ab2. Comparing
these bounds we trivially get what we want.

Now, we assume that d0 6= 1. By using (13) and the same estimate as
above, we derive

16z̃0 + 4βx̃0 = 4az̃0 + 2rỹ1 > 2az̃0.

Hence,
2βx̃0 > (a− 8)z̃0,

which is trivially true if a ≤ 8, which means a = 5. We will handle this case
separately. Otherwise, we can square the above inequality and get

4β2x̃2
0 > (a− 8)2z̃2

0 > (a− 8)2bx̃2
0,

where we used for the last inequality the Pellian equation lying behind (14),
which is z̃2

0 − bx̃2
0 = b− 1. Dividing through x̃2

0 we derive

4b− 4 > (a− 8)2b,

which is trivially a contradiction unless 5 < a < 10. But in this range there
are no numbers of the form α2+1 = a. Thus, we are left with the case a = 5.
In this special case we have

16z̃0 + 4βx̃0 = 20z̃0 + 2rỹ1,

or
2(z̃0 − βx̃0) = −rỹ1.

This equation implies, since (βx̃0)2 = bx̃2
0 − x̃2

0 < z̃2
0 , that ỹ1 < 0. Thus, we

have
2βx̃0 − rỹ1 > 3βx̃0 > 2z̃0,

which is a contradiction. The last inequality follows from

(3βx̃0)2 = 9bx̃2
0 − 9x̃2

0 > 5bx̃2
0 > 4bx̃2

0 + 4b > 4z̃2
0 ,

where we used once again z̃2
0 − bx̃2

0 = b − 1. Therefore, the claim of the
lemma is proved. �
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Now, we do the remaining two cases, namely (m,n) = (3, 3) or (4, 4) in
the following lemma.
Lemma 12. We have ṽ3 6= w̃3 and ṽ4 6= w̃4.

Proof. We start as in the proof of the last lemma and consider the triple
{1, a, d0, b}. Again we have to consider the two cases d0 = 1 and d0 6= 1.

Let us assume d0 = 1 first. In Lemma 10 we have already proved that
ṽ3 < w̃′

3 ≤ w̃3 and ṽ4 < w̃′
4 ≤ w̃4 unless b ≤ 3a. In the latter case we have

b = a + 2
√

a− 1 + 1. But now from (13) we get for the case (m,n) = (3, 3)
that

9β ≡ 9β(−2β + 1)− 3α(b− β) (mod 4b),

which implies
0 ≡ 18 + 3β(β − 1) (mod b),

where we used that α = β − 1 which is easy to verify. Since β2 ≡ −1 (mod
b), we get

3β ≡ 15 (mod b),

and therefore β = 5. This implies b = 26 and a = 26 − 2 · 5 + 1 = 17, thus
we have the triple {1, 17, 26}. In this case we have z̃0 = 5, ỹ1 = −4, x̃0 = 0
and it is easy to check directly that for the completely concrete sequences
(ṽm) and (w̃′

n), we have ṽ3 < w̃′
3 ≤ w̃3.

In the same way we can handle the case (m, n) = (4, 4). We start with

16β ≡ 16aβ − 4αr

and conclude that β = 7 must hold. This gives b = 50 and a = 50−2 ·7+1 =
37, and therefore the triple {1, 37, 50}. Here we have z̃0 = 7, ỹ1 = −6, x̃0 = 0,
and we trivially get ṽ4 < w̃′

4 ≤ w̃4. Therefore, the proof of the first case is
finished.

Next, we assume that d0 6= 1. As in the proof of Lemma 10 we conclude
by the improved gap principle (Lemma 9) that we have

b > 4a2.5d1.5
0 > 8a2.5.

From this we get by bd0 ≥ z̃2
0 that b3 > 4a2.5b0.5z̃3

0 or

z̃0 <
2b

3a
5
6 b

1
6

=
2b

5
6

3a
5
6

.

First, we get for the case (m,n) = (3, 3) by (13) that

9z̃0 + 3βx̃0 ≡ 9az̃0 + 3rỹ1 (mod 4b).

Both sides of this equation can be bounded by 12az̃0. We want to show that
this is < 4b. But this follows easily from

3az̃0 < 2a
1
6 b

5
6 < b,

since b > 8a2.5 ≥ 8 · 51.5a > 89a > 26a. From this it follows that we have
equality in the above congruence relation. But the left hand side is bounded
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from above by 12az̃0 and the right side is bounded from below by 6bz̃0,
which show that

9z̃0 + 3βx̃0 < 12az̃0 < 6bz̃0 < 9az̃0 + 3rỹ1

and therefore this equation cannot hold.
We now turn to the case (m,n) = (4, 4). Here (13) reads

16z̃0 + 4βx̃0 ≡ 16az̃0 + 4rỹ1 (mod 4b).

This time both sides are bounded by 20az̃0 and we want to show that this
is < 4b. This follows from

5az̃0 <
10
3

a
1
6 b

5
6 < b,

where we used as before

b > 4a2.5d1.5
0 = 4a1.5d1.5

0 a > 4 · 51.5 · 101.5a > 1414a >

(
10
3

)6

a.

Observe that we have used that one of a, d0 is ≥ 5 and the other one
≥ 10 since there is no number in between which is a perfect square plus
one. As before, we conclude that we have equality in the above congruence
equation, which leads to a contradiction since the left side is bounded from
above by 20az̃0 and the ride side is bounded from below by 12bz̃0. This
concludes the proof of the lemma. �

As stated at the beginning of this section, we are now able to prove a
much improved gap principle in the triple {a, b, c} with which we started at
the beginning.

Lemma 13. Let {a, b, c, d} be a D(−1)-quadruple with 2 ≤ a < b < c < d
and with minimal d under all such quadruples, then we have

c > 40000b9.

Proof. We know that in fact {1, a, b, c} is a D(−1)-quadruple. From this
it follows that bc − 1 = z2 for an integer z with z = ṽm = w̃n for certain
integers m,n and by the lemmas in this section we can conclude that m > 4
or n > 4.

If we assume that m > 4, then we have

z ≥ ṽ5 > (b− 1)(4b− 3)4 > 200b5,

and therefore

c =
z2 + 1

b
≥ ṽ5 + 1

b
> 40000b9.

If we assume that n > 4, then we have:

z ≥ w̃5 > (b− a)(4ab− 3)4 >
b

2
(3ab)4 > 40a4b5,
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where we assumed that b > 2a which gives b− a > b
2 . It follows that

c =
z2 + 1

b
≥ w̃2

5 + 1
b

> 1600a8b9 > 105b9,

since a ≥ 2.
Otherwise, we have b− a = 2

√
b− 1− 1 >

√
b by Lemma 7. In this case we

get
z ≥ w̃5 >

√
b · 81a4b4

and we conclude

c > 6400a8b8 > 32000a7b9 > 105b9,

again since a ≥ 2.
Putting these results together, we have proven that

c > 40000b9,

which was the claim of our lemma. �

5. Lower bounds for m,n

The intention in this section is to prove that the gap principle from the
last section implies that we can estimate m,n in terms of c from below. The
idea is that if vm = wn, then we can study this equation modulo 8c2, which
leads to equation (13). But if a, b, m, n are small compared with c, then
these congruences are equations, which are in contradiction to the equation
vm = wn. This will imply the lower bounds for m,n. We have the following
lemma:
Lemma 14. If vm = wn, then m ≥ n > c0.064.

Proof. We start with the congruence (13) which is

am2z0 + smx0 ≡ bn2z0 + tny1 (mod 4c).

Let us assume that n ≤ c0.064. By Lemma 5 we have m ≤ 2c0.064 < c0.309

since c ≥ 17. All terms in the above congruence are bounded by bm2z0. By
our assumption, Lemma 4 and the gap principle c > 40000b9 from Lemma
13, we get that

bm2z0 <
4

40000
1
9

c
1
9
+2·0.061+ 1

2 < c.

Hence,
am2z0 + smx0 = bn2z0 + tny1

or
z0(am2 − bn2) = tny1 − smx0.

Squaring leads to

−(am2 − bn2)2 ≡ −n2y2
1 −m2x2

0 − 2stmnx0y1 (mod c)

or
[(am2 − bn2)2 − n2y2

1 −m2x2
0]

2 ≡ 4m2n2x2
0y

2
1 (mod c).



COMPLETE SOLUTION OF A PROBLEM OF DIOPHANTUS AND EULER 17

The left side is bounded by

[(bm2)2]2 = b4m8 < 256b4n8 < 256b4c0.064 < c

since we have c > 40000b9, which implies that the above inequality is satis-
fied for 256b4 < 176b4.392 < c0.488 which is true for b > 2.6. Also the right
side is by Lemma 4 bounded by

4m2n2ab < 16n4b2 < 16b2c0.256 < c.

Thus, we may conclude

(am2 − bn2)2 = (ny1 ±mx0)2,

which gives

am2 − bn2 = ±ny1 ±mx0 or am2 − bn2 = ±ny1 ∓mx0.

Therefore, we have

am2z0 − bn2z0 = tny1 − smx0 = ±ny1z0 ±mx0z0, or
am2z0 − bn2z0 = tny1 − smx0 = ±ny1z0 ∓mx0z0,

which implies

mx0(s± z0) = ny1(t∓ z0) or mx0(s± z0) = ny1(t± z0).

Let us first consider the first equation. Squaring once again leads to

n2y2
1(bc− 1∓ 2tz0 + z2

0) = m2x2
0(ac− 1± 2sz0 + z2

0).

Taking this equation modulo c and multiplying by z0 gives

n2y2
1(−2z0 ± 2t) ≡ m2x2

0(−2z0 ∓ 2s) (mod c).

Both sides are bounded by

4m2b2
√

bc < 32c2·0.064+ 2
9
+ 1

2
+ 1

18 < c.

Thus, we have equality, which means

m2x2
0(z0 ± s) = n2y2

1(z0 ∓ t).

But by squaring the starting equation, we also have

m2x2
0(s± z0)2 = n2y2

1(t∓ z0)2,

and therefore by dividing this equation by the previous one we conclude that
either s + z0 = z0 − t or z0 − s = z0 + t, which gives a contradiction in both
cases.

The second equation can be handled exactly in the same way as the first
one, leading to

m2x2
0(z0 ± s) = n2y2

1(z0 ± t),
m2x2

0(z0 ± s)2 = n2y2
1(z0 ± t)2

and by dividing one equation through the other we get z0±s = z0± t, which
is again a contradiction.

Therefore, the proof of the lemma is finished. �
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6. Application of a theorem of Bennett

Now we are ready to calculate an upper bound for d in the D(−1)-
quadruple {a, b, c, d}. For this we apply the following important and very
useful result of Bennett [2].
Lemma 15. If ai, pi, q and N are integers for 0 ≤ i ≤ 2, with a0 < a1 <
a2, aj = 0 for some 0 ≤ j ≤ 2, q nonzero and N > M9, where

M = max
0≤i≤2

{|ai|},

then we have

max
0≤i≤2

{∣∣∣∣√1 +
ai

N
− pi

q

∣∣∣∣} > (130Nγ)−1q−λ

where

λ = 1 +
log(33Nγ)

log
(
1.7N2

∏
0≤i<j≤2(ai − aj)−2

)
and

γ =

{
(a−2−a0)2(a2−a1)2

2a2−a0−a1
if a2 − a1 ≥ a1 − a0,

(a2−a0)2(a1−a0)2

a1+a2−2a0
if a2 − a1 < a1 − a0.

We apply Lemma 15 to the numbers

θ1 =
s

a

√
a

c
=

√
1− b

abc
and θ2 =

t

b

√
b

c
=

√
1− a

abc
.

So θ1 and θ2 are square roots of rationals which are close to 1. First, we
show that every solution of our problem induce good approximations of
these numbers.
Lemma 16. All positive integer solutions x, y, z of (2) and (3) satisfy

max
{∣∣∣∣θ1 −

sbx

abz

∣∣∣∣ ,

∣∣∣∣θ2 −
tay

abz

∣∣∣∣} <
c

a
z−2.

Proof. This is a special case of Lemma 1 in [10]. �

By combining this lemma with the lower bound from the theorem of
Bennett we obtain an upper bound for d.
Lemma 17. Let {a, b, c, d} be a D(−1)-quadruple with 2 ≤ a < b < c < d
and with minimal d, then

d < c51.06.

Proof. We apply Lemma 15 with a0 = −b, a1 = −a, a2 = 0, N = abc,M =
b, q = abz, p1 = sbx, p2 = tay. Since abc > b9 by our gap principle (Lemma
13), the condition N > M9 is satisfied. Considering γ from Lemma 15 as a
function of a we easily get

b3

6
≤ γ <

b3

2
.
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Lemma 15 and Lemma 16 imply
c

az2
> (130abcγ)−1(abz)λ1−2,

where

λ1 =
log(33abcγ)

log (1.7c2(b− a)2)
.

This gives
zλ1 < 65a2b6c2

and

log z <
log(65a2b6c2) log(1.7c2(b− a)−2)

log
(

1.7c
33ab(b−a)2γ

) .

We have

65a2b6c2 < 65b8c2 <
65

40000
8
9

c2+ 8
9 < c2.889,

1.7c2(b− a)−2 < c2,

1.7c

33ab(b− a)2γ
>

1.7c

33abb2 b3

2

> 0.103cb−7 > 391c1− 7
9 > c0.222.

Therefore, we get

log z <
2.889 log c · 2 log c

0.222 log c
< 26.028 log c.

Hence,

(25) z < c26.028

and

d =
z2 + 1

c
< c51.06,

which was the claim of the lemma. �

In the special case that a and b are very close, we can prove a better upper
bound.
Lemma 18. Let {a, b, c, d} be a D(−1)-quadruple with 2 ≤ a < b < c < d
and with minimal d. If b < 2a, then

d < c33.72.

Proof. The proof runs the same line as the proof of the last lemma. By
the assumption that b < 2a, we conclude by Lemma 7 applied to the D(−1)-
triple {1, a, b} that

a = b− 2
√

b− 1 + 1.

In this case we can get a better lower bound for
1.7c

33ab(b− a)2γ
>

1.7c

33b2(2
√

b)2 b3

2

> 0.0257cb−6 > 30c1− 6
9 > c0.333,
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where we have used that b− a = 2
√

b− 1− 1 ≤ 2
√

b. Now, we get

log z <
2.889 log c · 2 log c

0.333 log c
< 17.352 log c,

and therefore, z < c17.352 and

d <
z2 + 1

c
< c33.72.

That was the claim we wanted to prove. �

7. Proof of the theorems

Now, we put everything together to prove our theorems.

Proof of Theorems 1a and 1b.
Let {a, b, c, d} be a D(−1)-quadruple with 2 ≤ a < b < c < d and with

minimal d. We use the lower bound, which is given by (17), to get

cn−1 < wn = z < c26.028,

where we have used (25) from the proof of Lemma 17. It follows that n <
27.028 and thus n ≤ 27. But now we can use Lemma 14 to get

c0.064 < n ≤ 27,

which implies the following upper bound for c, namely

c < 27
1

0.064 < 2715.63 < 2.36 · 1022.

By our improved gap principle (Lemma 13), which was c > 40000b9, we
therefore derive

b ≤ 94.

It is easy to give a list of all D(−1)-triples {1, a, b} with b ≤ 94. They are

{1, 2, 5}, {1, 5, 10}, {1, 10, 17}, {1, 17, 26}, {1, 26, 37},
{1, 37, 50}, {1, 50, 65}, {1, 65, 82}, {1, 5, 65}.

The first eight of these triples are {1, i2 +1, (i+1)2 +1} for i = 1, . . . , 9. The
only one in the above list, which is not of this form, is the last one, namely
{1, 5, 65}. As remarked in the introduction it was proved already earlier that
{1, 2, 5}, {1, 5, 10}, {1, 5, 65}, {1, 10, 17} and {1, 26, 37} cannot be extended
to D(−1)-quadruples. So, we are left with the cases

{1, i2 + 1, (i + 1)2 + 1} for i = 4, 6, 7, 8, 9.

In all these cases a and b are very close (in fact they are closest possible) to
each other. Therefore, by using Lemma 18 in the same way as above, we get

cn−1 < wn = z < c17.36,

which implies n ≤ 18. Using the lower bound for n, we get

c < 1815.63 < 4.17 · 1019.
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This implies b ≤ 46. Hence, the only remaining case is

{1, 17, 26}.
In this case we have to consider c’s with 17c−1 = s2, 26c−1 = t2 and where
c− 1 is also a square. Therefore, we look at the Pell equation given by

17t2 − 26s2 = 9,

where the fundamental solutions are bounded by 0 < t0 < 26, |s0| <√
17 · 26− 1 = 21 and therefore are s0 = ±4, t0 = 5. All the solutions t

satisfy the following linear recurrences

t0 = 5, t1 = 47 or 8783, tn+2 = 1766tn+1 − tn.

We are interested in those t = tn for which t2 = 27c − 1 ≤ 26 · 4.17 · 1019,
this gives t < 4 · 1010, and which have the additional property that

c− 1 =
t2 + 1

26
− 1

is a square. It is checked easily that such a t does not exist, showing that
{1, 17, 26} cannot be extended to a quadruple {1, 17, 26, c} with c < 4.17 ·
1019.

Finally we get that there is no D(−1)-quadruple {a, b, c, d} with 2 ≤ a <
b < c < d. This completes the proof of our main result. �

8. Acknowledgements

This paper was written during a visit of the second author at the Uni-
versity of Zagreb in the frame of a joint Austrian-Croatian project granted
by the Croatian Ministry of Science, Education and Sports and the Aus-
trian Exchange Service (Nr. 20/2004). Both authors are most grateful for
this support. The second author wants to thank Andrej Dujella for his kind
hospitality.

References

[1] A. Baker and H. Davenport, The equations 3x2−2 = y2 and 8x2−7 = z2, Quart.
J. Math. Oxford Ser. (2) 20 (1969), 129-137.

[2] M. A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine
Angew. Math. 498 (1998), 173-199.

[3] E. Brown, Sets in which xy+k is always a square, Math. Comp. 45 (1985), 613-620.
[4] L. E. Dickson, “History of the Theory of Numbers” Vol. 2, Chelsea, New York, 1966,

518-519.
[5] Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers, (I.

G. Bashmakova, Ed.) (Nauka, 1974) (in Russian), 85-86, 215-217.
[6] A. Dujella, On the exceptional set in the problem of Diophantus and Davenport,

Application of Fibonacci Numbers Vol. 7, (G. E. Bergum, A. N. Philippou, A. F.
Horadam, eds.), Kluwer, Dordrecht, 1998, 69-76.

[7] A. Dujella, Complete solution of a family of simultaneous Pellian equations, Acta
Math. Inform. Univ. Ostraviensis 6 (1998), 59-67.

[8] A. Dujella, An absolute upper bound for the size of Diophantine m-tuples, J. Num-
ber Theory 89 (2001), 126-150.



22 ANDREJ DUJELLA AND CLEMENS FUCHS

[9] A. Dujella, An extension of an old problem of Diophantus and Euler II, Fibonacci
Quart. 40 (2002), 118-123.

[10] A. Dujella, On the size of Diophantine m-tuples, Math. Proc. Cambridge Philos.
Soc. 132 (2002), 23-33.

[11] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew.
Math. 566 (2004), 183-214.

[12] A. Dujella and C. Fuchs, A polynomial variant of a problem of Diophantus and
Euler, Rocky Mount. J. Math. 33 (2003), 797-811.

[13] A. Dujella and C. Fuchs, Complete solution of a polynomial version of a prob-
lem of Diophantus, J. Number Theory, to appear (Preprint: http://www.math.hr/∼
duje/polquad4.dvi).
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