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Abstract. In this paper, we prove that if {a1, b, c, d} and {a2, b, c, d} are
Diophantine quadruples with a1 < a2 < b < c < d, then a2 > 243,

a2 > max{36a3
1, 300a

2
1}, b < a

3/2
2 , and 16a2

1b
3 < c < 16a2b

3. The last
inequalities imply that for a fixed Diophantine triple {b, c, d} the number
of Diophantine quadruples {a, b, c, d} with a < min{b, c, d} is at most
two. Moreover, we show that there are only finitely many quintuples
{a1, a2, b, c, d} as above.
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1. Introduction

Throughout this paper, m positive integers ai (1 ≤ i ≤ m) with the property
that aiaj +1 is a perfect square for all 1 ≤ i < j ≤ m are collectively referred
to as Diophantine m–tuple. After the second author has proved in [12] that
the definition above is satisfied for no m–tuple with m ≥ 6, in [23] it is shown
that it necessarily holds m ≤ 4. For the sake of convenience, when m = 3 or
4 we shall speak of Diophantine triple or quadruple, respectively.

A successful strategy in the study of Diophantine tuples is based on
the idea of enlarging a given such set by finding an extra element with the
required property. Most of the published works are devoted to extensions
of Diophantine triples by adjoining a fourth element greater than the three
already known. A possible explanation for this preference could be the ex-
istence of a neat formula giving a legitimate extension for any Diophantine
triple {a, b, c} (see [1] or [22]), namely

d = a+ b+ c+ 2abc+ 2rst,

where r, s, t are positive integers defined by relations ab+1 = r2, ac+1 = s2,
bc+ 1 = t2. This integer d is the greatest root of the quadratic equation

(X + c− a− b)2 = 4(ab+ 1)(cX + 1), (1.1)
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whence the usual notation d+ for it. Diophantine quadruples of the type
{a, b, c, d+} are called regular. The currently open question of greatest interest
in this area is the status of the next conjecture, which was posed implicitly
in [1] or [22], and explicitly in [11].

Conjecture 1.1. Any Diophantine triple {a, b, c} has unique extension to a
Diophantine quadruple {a, b, c, d} by an element d > max{a, b, c}.

There are known many specific contexts in which this conjecture is valid,
see, for instance, [3], [9], [10], [17], [18] for the most general results of the kind.
In a different vein, in [10] it is shown that any Diophantine triple admits
at most 8 extensions by an integer greater than the three given elements.
A complete bibliography on Diophantine sets is maintained by the second
author [13].

The other root of equation (1.1) is a non-negative integer d−, smaller
than max{a, b, c}, for which all ad−+1, bd−+1, cd−+1 are perfect squares.
Thus, when d− is positive, one can produce a different Diophantine quadruple
{a, b, c, d−} out of {a, b, c}. It is easy to verify that this happens precisely
when c > a + b + 2r, with the convention that a < b < c. It is to be noted
that quite recently, [20] studied the number of ways of extending a fixed
Diophantine pair or triple to irregular Diophantine quadruples obtained by
adjoining either smaller or larger elements than the given ones.

In the previous work, the present authors have initiated in [5] the study
of extendibility of Diophantine triples by an integer smaller than all elements
of the initial triple. They put forward a statement similar to Conjecture 1.1.

Conjecture 1.2. Suppose that {a1, b, c, d} is a Diophantine quadruple with
a1 < b < c < d. Then, {a2, b, c, d} is not a Diophantine quadruple for any
integer a2 with a1 ̸= a2 < b.

Its validity is established for c < 16b3 in [5]. In the same paper it is
proved that there exists no Diophantine quadruple {a1, b, c, d} with a1 < b <
c < d such that the quadruple {a1+1, b, c, d} is Diophantine as well. Moreover,
as a consequence of Theorem 1.4 from [10], one sees that Conjecture 1.2 holds
when c ≥ 200b4.

The aim of the present work is to point out further necessary conditions
met by hypothetical counterexamples to our conjecture. The main findings
can be summarized as follows.

Main Theorem. Assume that {a1, b, c, d} and {a2, b, c, d} are Diophantine
quadruples with a1 < a2 < b < c < d. Then, the following hold:

(1) a2 > max{36a31, 300a21}.
(2) b < a

3/2
2 for a1 ≥ 1, and b < a

4/3
2 for a1 ≥ 2 or a1 = 1 and a2 < 4 · 105.

(3) a2 > 243 = 13824.
(4) 16a21b

3 < c < 16a2b
3.

We will prove Main Theorem step by step in Sections 5 to 8. Indeed,
Theorems 6.1, 6.2, 8.5 and Propositions 8.2, 8.3, 8.4, 8.6 and 8.7 together
imply Main Theorem.
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Let a, b, r with a < r < b be positive integers such that ab + 1 = r2.
Following [24], we define an integer cτν = cτν(a, b) by

cτν =
1

4ab

{
(
√
b+ τ

√
a)2(r +

√
ab)2ν + (

√
b− τ

√
a)2(r −

√
ab)2ν − 2(a+ b)

}
(1.2)

with ν a positive integer and τ ∈ {±}. Observe that if b > a+2, then {a, b, cτν}
is always a Diophantine triple for any ν and any τ .

The next corollary follows immediately from results obtained in the
course of proving Main Theorem.

Corollary 1.3. If {a1, b, c, d} and {a2, b, c, d} are Diophantine quadruples with
a1 < a2 < b < c < d, then c ̸= cτν(a2, b) for any positive integer ν and any
τ ∈ {±}. In particular, b > 13a2.

Main Theorem also has the following consequences.

Corollary 1.4. Let {b, c, d} be a Diophantine triple. Then, there exist at most
two positive integers a with a < min{b, c, d} such that {a, b, c, d} is a Dio-
phantine quadruple.

Corollary 1.5. There are only finitely many quintuples {a1, a2, b, c, d} with
a1 < a2 < b < c < d such that {a1, b, c, d} and {a2, b, c, d} are Diophantine
quadruples.

In fact, it can be shown that the largest element d satisfies d < 1010
26

.

Corollary 1.6. Conjecture 1.1 implies Conjecture 1.2.

Our proofs are based on three results from literature. A first one serves
to bound from above the solutions of a relevant system of Pellian equations.
The so-called method of hypergeometric functions provides several results
of the kind, we shall prefer that established in [7] and recalled in Section 3
below. Another essential ingredient is a particular instance of the observation
that in a Diophantine triple whose two smallest elements are very close to
each other, the largest element has a standard form. Such a result facilitates
explicit calculations we perform. The third result already available and which
is extensively employed in our proofs gives an absolute lower bound for the
second smallest entry in an irregular quadruple.

The paper is organized as follows. In the next two sections we fix no-
tation employed throughout the paper and adapt several useful results from
literature to our specific needs. Section 4 contains the main technical novelty.
More precisely, Lemma 4.2 gives a much better lower bound for solutions
of a relevant system of equations than the corresponding published results.
Therefore, we think Lemma 4.2 might be of independent interest. After prov-
ing a lighter version of Main Theorem in Sections 5 and 6, we derive the
corollaries stated above. The rest of the paper is devoted to completing the
proof of Main Theorem as stated above.
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2. Preliminaries

From now on we assume that {a1, b, c, d} and {a2, b, c, d} are Diophantine
quadruples with a1 < a2 < b < c < d. Let r1, r2, s1, s2, t, x1, x2, y, z be
positive integers satisfying

a1b+ 1 = r21, a2b+ 1 = r22, a1c+ 1 = s21, a2c+ 1 = s22, bc+ 1 = t2,

a1d+ 1 = x2
1, a2d+ 1 = x2

2, bd+ 1 = y2, cd+ 1 = z2.

Considering x1, x2, y, z as unknowns, we obtain the following system of Pellian
equations:

a1z
2 − cx2

1 = a1 − c, (2.1)

a2z
2 − cx2

2 = a2 − c, (2.2)

bz2 − cy2 = b− c. (2.3)

By [21, Theorem 1.3] and [10, Lemma 2.3], any positive integer solution to
(2.2) and (2.3) can be expressed as z = vm = wn for some non-negative
integers m,n, where {vm} and {wn} are recurrent sequences defined by

v0 = z(0), v1 = s2z(0) + cx(0), vm+2 = 2s2vm+1 − vm, (2.4)

w0 = z(1), w1 = tz(1) + cy(1), wn+2 = 2twn+1 − wn (2.5)

satisfying either of the following:

(i) m ≡ n ≡ 0 (mod 2) and x(0) = y(1) = |z(0)| = |z(1)| = 1 with z(0)z(1) >
0;

(ii) m ≡ n ≡ 1 (mod 2) and x(0) = y(1) = r2, |z(0)| = t, |z(1)| = s2 with
z(0)z(1) > 0.

In the next two sections we bound from above and from below the indices
m and n in terms of entries of the Diophantine quadruples in question. To
this end, we need an experimental result giving absolute lower bound for the
second smallest element of an irregular Diophantine quadruple.

Lemma 2.1. ([7, Lemma 3.4]) Let {a, b, c, d} be an irregular Diophantine
quadruple with a < b < c < d. Then:

(1) If b ≤ 2a, then b > 21000.
(2) If 2a < b ≤ 8a, then b > 130000.
(3) If b > 8a, then b > 4000.

Let a, b, r with a < r < b be positive integers such that ab + 1 = r2,
and define an integer cτν = cτν(a, b) with ν a positive integer and τ ∈ {±}
by (1.2). Note that for b = a + 2 one has c−1 = 0 and c−ν+1 = c+ν . From the
explicit formulas

cτ1 = a+ b+ 2τr,

cτ2 = 4ab(a+ b+ 2τr) + 4(a+ b+ τr),

cτ3 = 16a2b2(a+ b+ 2τr) + 8ab(3a+ 3b+ 4τr) + 3(3a+ 3b+ 2τr)
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it is seen that for b > a+ 2 it holds

c−2 < 4ab2 < c+2 < 16ab2 < c−3 < 16a2b3 < c+3 < c−4 < . . . . (2.6)

In [24, Theorem 8] it is shown that in any Diophantine triple {a, b, c}
with a < b ≤ 4a one has c = cτν for some ν and τ . The same conclusion
holds on a wider range, as seen from [16, Lemma 4.1], where it was shown for
b ≤ 8a, or the proof of Corollary 1.6 in [10], where the hypothesis is b ≤ 13a.
Imposing a mild additional condition, the property is valid for a different
range, including the interval a2 ≤ b ≤ 4a2 (see [8, Lemma 3.1]). In this paper
we shall use a very recent result from the same family.

Lemma 2.2. ([25, Lemma 3.1]) Let {a, b, c} be a Diophantine triple and a <
b ≤ 24a. Suppose that {1, 3, a, b} is not a Diophantine quadruple. Then c =
cτν(a, b) for some ν and τ .

Note that when {1, 3, a, b} is a Diophantine quadruple, then a = cτν(1, 3)
by [24, Theorem 8] and b = d+(1, 3, a) by [14]. It can be seen that in this case
a and b are consecutive terms of the sequence (ck)k≥1 with ck = s2k−1, where
s0 = 1, s1 = 3, and sk+2 = 4sk+1 − sk for k ≥ 0. Explicitly, the sequence
(ck)k≥1 starts with

8, 120, 1680, 23408, 326040, 4541160, 63250208, . . . . (2.7)

3. Upper bounds for solutions

Theorem 3.1. Let a1, a2 and N be integers with 0 < a1 < a2, a2 ≥ 5 and
N ≥ 3.804a′1a

2
2(a2 − a1)

2, where a′1 = max{a2 − a1, a1}. Assume that N is

divisible by a1a2. Then, the numbers θ1 =
√
1 + a2/N and θ2 =

√
1 + a1/N

satisfy

max

{∣∣∣∣θ1 − p1
q

∣∣∣∣ , ∣∣∣∣θ2 − p2
q

∣∣∣∣} >
a1

1.435 · 1028a′1a2N
q−λ

for all integers p1, p2, q with q > 0, where

λ = 1 +
log(10a−1

1 a′1a2N)

log(2.629a−1
1 a−1

2 (a2 − a1)−2N2)
< 2.

Proof. The validity of the assertion is obvious from the proof of [7, Theorem
2.1] with g replaced by 1. □

One can easily prove the following two lemmas in the same ways as [11,
Lemma 12] and [19, Lemma 25] (cf. [11, Theorem 3]), respectively.

Lemma 3.2. Let N = a1a2c and let θ1, θ2 be as in Theorem 3.1. Then, all
positive solutions to the system of Pellian equations (2.1) and (2.2) satisfy

max

{∣∣∣∣θ1 − s1a2x1

a1a2z

∣∣∣∣ , ∣∣∣∣θ2 − s2a1x2

a1a2z

∣∣∣∣} <
c

2a1
z−2.
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Lemma 3.3. Assume that c ≥ 4a2b
3. If z = wn with n ≥ 4, then

log z >
n

2
log(4bc).

Lemma 3.4. Assume that c ≥ 4a2b
3. If z = vm = wn has a solution for some

integers m and n with n ≥ 4, then

n <
8 log(8.471 · 1013a1/21 (a′1)

1/2a22c) log(1.622a
1/2
1 a

1/2
2 (a2 − a1)

−1c)

log(4bc) log(0.2629a1(a′1)
−1a−1

2 (a2 − a1)−2c)
.

Proof. Note that it holds a2 − a1 ≥ 3. Indeed, [5, Theorem 1.3] assures that
a2−a1 ̸= 1 and for a2−a1 = 2, {a1, a2, b, c, d} would be a Diophantine quin-
tuple, which contradicts [18, Corollary 2] or [23, Theorem 1]. In particular,
we may assume a2 ≥ 5. Actually, in the only possible case not covered by the
claim just proved one has a1 = 1 and a2 = 4. However, then, b+ 1 = u2 and
4b + 1 = v2 together yield v2 − 4u2 = −3, which has no solution in positive
integers other than (v, u) = (1, 1).

Since a1a2c ≥ 4a1a
2
2b

3 > 3.804a52, we may apply Theorem 3.1 with

q = a1a2z, p1 = s1a2x1, p2 = s2a1x2 and N = a1a2c.

Combining Theorem 3.1 with Lemma 3.2, one gets

z2−λ < 0.7175 · 1028a1a′1a42c2 <
(
8.471 · 1013a1/21 (a′1)

1/2a22c
)2

and

1

2− λ
=

log(2.629a1a2(a2 − a1)
−2c2)

log
(

2.629a1(a2−a1)−2c
10a′

1a2

) <
2 log(1.622a

1/2
1 a

1/2
2 (a2 − a1)

−1c)

log(0.2629a1(a′1)
−1a−1

2 (a2 − a1)−2c)
.

The assertion now follows from comparing the above inequalities with those
in Lemma 3.3. □

4. Lower bounds for solutions

Lemma 4.1. Assume that z = vm = wn has a solution for some integers m
and n. If c > b3, then

m ≤ 4

3
n+

2

3
and m ≤ 1.4n.

Proof. The first inequality can be easily shown in a similar fashion to [12,
Lemma 4]. The second one is a direct consequence of the first if n ≥ 10 and
follows by simple computations in the few remaining cases. □

Lemma 4.2. Assume that c > max{b3, a22b2} and b > 4000. If z = vm = wn

has a solution for some integers m and n with n ≥ 4, then m ≡ n (mod 2)
and n > b−1/2c1/4 for odd n and n > 5

7b
−1/2c1/2 for even n.
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Proof. In the case (i) m ≡ n ≡ 0 (mod 2) and |z(0)| = |z(1)| = 1 with

z(0)z(1) > 0, [4, Lemma 2.4] and its proof show that m > b−1/2c1/2. It follows

from c > b3 and Lemma 4.1 with n ≥ 4 that

n ≥ 5

7
m >

5

7
b−1/2c1/2.

In the case (ii) m ≡ n ≡ 1 (mod 2) and |z(0)| = t, |z(1)| = s with
z(0)z(1) > 0, as in the proof of [21, Lemma 3.1], we have

±t{a2(m2 − 1)− b(n2 − 1)} ≡ 2r2s2(n−m) (mod 8c), (4.1)

±s2{a2(m2 − 1)− b(n2 − 1)} ≡ 2r2t(n−m) (mod 8c). (4.2)

Since gcd(s2t, c) = 1, these congruences imply(
a2(m

2 − 1)− b(n2 − 1)
)2 ≡ 4r22(n−m)2 (mod c). (4.3)

We show that n ≤ b−1/2c1/4 entails |b(n2−1)−a2(m
2−1)|+2r2(m−n) < c1/2.

First we examine the situation when b(n2 − 1) ≥ a2(m
2 − 1). Since

m ≥ n by [10, Lemma 2.9] and a2 ≥ 5, Lemma 4.1 with n ≥ 5 implies that

b(n2 − 1)− a2(m
2 − 1) + 2r2(m− n) ≤ bn2 − 2

√
a2b(m2 − 1) + 2r2(m− n)

< bn2 ≤ c1/2.

In the opposite situation b(n2−1) < a2(m
2−1), by hypotheses c > max{b3, a22b2}

and b > 4000 it holds

a2(m
2 − 1)− b(n2 − 1) + 2r2(m− n) < (1.96a2 − b)n2 + b+ 0.8n

√
a2b+ 1

< 0.96c1/2 + c1/3 + a
1/2
2 c1/4

< 0.96c1/2 + 2b−1/2c1/2

≤
(
0.96 + 2 · 4001−1/2

)
c1/2 < c1/2.

Hence, (4.3) boils down to∣∣b(n2 − 1)− a2(m
2 − 1)

∣∣ = 2r2(m− n), (4.4)

so that (4.1) and (4.2) become

r2(m− n)(±t+ s2) ≡ 0 (mod 4c).

In view of Lemma 4.1 and c > max{b3, a22b2}, one has

r2(m− n)| ± t+ s2| < 0.9a
1/2
2 bc1/2n ≤ 0.9a

1/2
2 b1/2c3/4 < c.

Therefore, it necessarily holds (m − n)(t − s2) = 0, which implies either
m = n or a2 = b. In the former case, with (4.4) and n ≥ 4 one readily
sees that one also has a2 = b. This contradiction is due to the assumption
n ≤ b−1/2c1/4. □
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5. The first step of the proof

The goal of this section is to prove the following.

Theorem 5.1. Assume that {a1, b, c, d} and {a2, b, c, d} are Diophantine quadru-
ples with a1 < a2 < b < c < d. Then, the following hold:

(1) a2 > 2a1.
(2) 16a21b

3 < c < 16a22b
3.

We begin by ameliorating [5, Theorem 1.4].

Theorem 5.2. If {a1, b, c} and {a2, b, c} are Diophantine triples with a1 <
a2 < b < c ≤ 16a21b

3, then {a1, a2, b, c} is a Diophantine quadruple.

Proof. This is nothing but [5, Theorem 1.4] with the assumption c < 16b3

replaced by c ≤ 16a21b
3. The proof proceeds along exactly the same lines as

that of [5, Theorem 1.4]. □

On account of [23, Theorem 1], Theorem 5.2 has the following corollary.

Corollary 5.3. If {a1, b, c, d} and {a2, b, c, d} are Diophantine quadruples with
a1 < a2 < b < c < d, then c > 16a21b

3 and d > 16a22c
3.

Note that the former inequality in Corollary 5.3 proves the first inequal-
ity of assertion (2) in Theorem 5.1, and that since d+(ai, b, c) < 4aibc + 4c
(i ∈ {1, 2}), the latter inequality in Corollary 5.3 means that {ai, b, c, d}
(i ∈ {1, 2}) are irregular Diophantine quadruples.

After all these preparations, we are ready to prove Theorem 5.1. We
argue by reduction to absurd.

Proof of Theorem 5.1. First of all, we claim that n ≥ 4. From [10, Lemma 2.5]
we know thatm ≥ 3. In the case (i)m ≡ n ≡ 0 (mod 2) and |z(0)| = |z(1)| = 1

with z(0)z(1) > 0, since w2 = 2ct± (2bc+ 1) < 4c2 and

v4 = 4(2a2c+ 1)cs2 ± (8a22c
2 + 8a2c+ 1)

≥ 8a2c
2(s2 − a2) + 4c(s2 − 2a2)− 1 > 8a22c

2,

one has n ̸= 2. In the case (ii) m ≡ n ≡ 1 (mod 2) and |z(0)| = t, |z(1)| = s2
with z(0)z(1) > 0, [24, Theorem 8] implies that c > a2 + b + 2r2, that is,
c > 4a2b + a2 + b (by [24, Lemma 4]), which together with [10, Lemma 2.6]
implies that n ̸= 3. We therefore obtain n ≥ 4.

Since a2 ≤ 2a1 and c > 16a21b
3 (by Corollary 5.3) together imply c >

4a22b
3, under either of the assumptions a2 ≤ 2a1 and c ≥ 16a22b

3 one can
apply Lemmas 3.4 and 4.2 to get

n < 8φ, with n > b−1/2c1/4, (5.1)

where

φ =
log(8.471 · 1013a1/21 (a′1)

1/2a22c) log(1.622a
1/2
1 a

1/2
2 (a2 − a1)

−1c)

log(4bc) log(0.2629a1(a′1)
−1a−1

2 (a2 − a1)−2c)
.
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(1) Suppose that a2 ≤ 2a1. Then, from a2 − a1 ≥ 3 (see the proof of
Lemma 3.4) one gets

a
1/2
1 (a2 − a1)

−1 <
a
1/2
2

3
, (5.2)

a2(a2 − a1)
2 ≤ a32

4
. (5.3)

If b ≤ 4
√
5 a2, then c > 16a21b

3 and b > 4000 together show that

c > 16
(a2
2

)2

b3 ≥ 4

80
b5 > 0.05 · 4000b4 = 200b4.

However, from [10, Theorem 1.4] one has d+(a1, b, c) = d = d+(a2, b, c), which

contradicts a1 < a2. Thus, we may assume that b > 4
√
5 a2. It follows from

(5.2) and (5.3) that

φ <
log(8.471 · 1013a32c) log(0.5407a2c)
log(16

√
5 a2c) log(1.0516a

−3
2 c)

. (5.4)

Note that the right-hand side of (5.4) is a decreasing function of c provided

1.0516a−3
2 c > 1. Since c ≥ 4a22b

3 > 4 ·
(
4
√
5
)3
a52, one gets

n <
8 log(24.2455 · 1016a82) log

(
1547.5738a62

)
log(102400a62) log(3009.8548a

2
2)

.

From (5.1) and c/b2 ≥ 4a22b ≥ 16004a22 it follows that

160041/4a
1/2
2 < n <

32 log(148.9632a2) log(3.4011a2)

log(6.8399a2) log(54.8621a2)
,

which yields a2 ≤ 7.

We combine the upper bound for a2 just obtained with the lower bound
on b given by Lemma 2.1 to get b > λa2 for some λ much bigger than the
value 4

√
5 employed previously. This way we obtain a smaller bound on a2,

which entails a bigger λ. After a few rounds, if needed, the game ends when
a2 < 5. However, as noted in the proof of Lemma 3.4, one has a2 ≥ 5, a
contradiction.

From a2 ≤ 7 and b ≥ 4001 we infer that b ≥ λa2 with λ = 4001/7. The
reasoning detailed above leads to the inequalities

160041/4a
1/2
2 < n <

8 log
(
8.471 · 1013 · 4λ3a82

)
log

(
0.5407 · 4λ3a62

)
log

(
16λ4a62

)
log

(
1.0516 · 4λ3a22

)
which hold only for a2 ≤ 1. This contradiction shows that one cannot have
a2 ≤ 2a1.

(2) Now we assume, for the sake of contradiction, that we have c ≥
16a22b

3. By a similar argument to the above, we can see that b > 8
√
5 a2.

Moreover, in view of what we just did, we can additionally assume a2 > 2a1.
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Then,

a
1/2
1 (a2 − a1)

1/2 ≤ a2
2
, (5.5)

a
1/2
1 a

1/2
2 (a2 − a1)

−1 ≤
√
2. (5.6)

It follows from (5.1), (5.5) and (5.6) that one has

2 · 40011/4a1/22 <
8 log(3.879 · 1018a82) log(2.1008 · 105a52)

log(6.5528 · 106a62) log(24076.6a2)
,

from which one derives a2 ≤ 3. This contradiction completes the proof of
Theorem 5.1. □

6. The second step of the proof

In this section, utilizing the results and the methods in the previous sec-
tion, we improve the lower bound for a2 and the upper bound for c given in
Theorem 5.1. We first show the following.

Theorem 6.1. Assume that {a1, b, c, d} and {a2, b, c, d} are Diophantine quadru-
ples with a1 < a2 < b < c < d. Then, the following hold:

(1) a2 > 4a1.
(2) 16a21b

3 < c < 4a22b
3.

Proof. The reasoning has much in common with that employed to establish
Theorem 5.1, therefore we shall point out only the differences.

To prove part (1), we suppose that we have 2a1 < a2 ≤ 4a1. Then it

obviously holds c > 16a21b
3 ≥ a22b

3 and one can readily show that b > 2
√
5a2.

Thus, from Lemma 4.2 we conclude that n > (2
√
5a32)

1/4. In addition, from

Lemma 4.2 and b ≥ 4001 we see that n > 40011/4a
1/2
2 . Instead of (5.3) we

use the inequality

a2(a2 − a1)
3 ≤ 27

16
a1a

3
2

to obtain

φ <
log(4.2355 · 1013a32c) log(1.622

√
2 c)

log(8
√
5 a2c) log

(
0.2629 · 16 · 27−1a−3

2 c
) .

As 0.2629 ·16 ·27−1a−3
2 c > 0.1557a−1

2 b3 > b, the right-hand side is decreasing
with c. Comparison of the lower bound for n obtained above with the upper
bound given by Lemma 3.4 results in the relation

40011/4a
1/2
2 <

80 log(88.5740a2) log(2.9002a2)

3 log(3.4199a2) log(3.7328a2)
,

which implies a2 ≤ 29.
We resume the reasoning, using b ≥ λa2 with λ = 4001/29 instead

of λ = 2
√
5. The outcome of computations is a2 ≤ 8. One more iteration

decreases the bound on a2 to 5. Since no further improvement is obtained
this way, we concentrate on c instead of a2.
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Note that from 2a1 < a2 = 5 ≤ 4a1 it follows that a1 = 2, so that with
Lemma 3.4 we get

φ <
log(8.471 · 1013 ·

√
6 · 25c) log(1.622

√
10 · 3−1c)

log(4bc) log
(
0.2629 · 0.4 · 27−1c

) .

By using c < 16a22b
3 = 400b3, we obtain

φ <
3 log(5.1875 · 1015c) log(1.7098c)
4 log(0.6324c) log

(
256.752−1c

) .

As c > 16a21b
3 = 64b3 implies c/b2 > 16c1/3, from

2c1/12 < n <
6 log(5.1875 · 1015c) log(1.7098c)
log(0.6324c) log

(
256.752−1c

)
it results c < 5 · 1011, which is not compatible with c > 64 · 40013.

Now suppose that c > 4a22b
3. Then, as seen in the proof of Theorem 5.1,

one has λ = 4
√
5. Using part (1), one obtains

a
1/2
1 (a2 − a1)

1/2 <

√
3

4
a2, (6.1)

a
1/2
1 a

1/2
2 (a2 − a1)

−1 <
2

3
, (6.2)

which entail

160041/4a
1/2
2 <

160 log(134.1657a2) log(4.9904a2)

3 log(6.8399a2) log(752.4637a2)
.

Hence, a2 ≤ 12. With λ = 4001/12 one gets a2 < 5. This contradiction shows
that the assertion in part (2) is true. □

Theorem 6.2. Assume that {a1, b, c, d} and {a2, b, c, d} are Diophantine quadru-
ples with a1 < a2 < b < c < d. Then, the following hold:

(1) a2 > a21.
(2) b < a22.

Proof. (1) Assuming that a2 ≤ a21, from a2 > 4a1 one obtains a1 ≥ 5, which
implies a2 ≥ 21 and c > 16a2b

3 > 16a42.
According to inequalities established in the proof of Theorem 6.1, one

has

φ <
log

(
8.471 · 1013 ·

√
3
4 a32c

)
log

(
1.622 · 2

3c
)

log(4bc) log
(
0.2629a

−7/2
2 c

) .

A slightly larger upper bound is obtained by using the inequalities b >

200−1/4c1/4, 8a32 < c3/4 and a
−7/2
2 c > 27/2c1/8. Since c/b2 > 204/3c1/3, with

Lemma 3.4 one gets

φ <
56 log

(
1.7182 · 107c

)
log

(
1.0814c

)
5 log

(
1.0506c

)
log

(
6125.8247c

) . (6.3)

We discuss separately the two possible outcomes of comparison of b to a21.
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Case 1: b ≥ a21. Then it holds c > 16a81 and c/b2 > 16a41. Lemma 4.2
yields

2a1 < n <
448 log

(
11.3475a1

)
log

(
1.4282a1

)
5 log

(
1.4229a1

)
log

(
4.2063a1

) ,

whence a1 ≤ 53. Introducing the quantity µ = 4001/532 into argument,
one has b ≥ µa21 and one gets a1 ≤ 37. Then one updates µ = 4001/372,
which leads to a1 ≤ 18. After two more iterations one arrives at a1 ≤ 4, a
contradiction that shows that Case 1 is impossible.

Case 2: b < a21. Note that this hypothesis implies a1 ≥ 64 and a2 ≥ 257.
Working with inequality (6.3), one readily obtains

2561/3c1/12 < n <
448 log

(
1.7182 · 107c

)
log

(
1.0814c

)
5 log

(
1.0506c

)
log

(
6125.8247c

) ,

which is true only for c < 1015. As this inequality contradicts c > 16 · 642 ·
40013 > 4 · 1015, we conclude that Case 2 is not possible.

(2) Once again, we reason by reduction to absurd. So, assume that one
has a22 ≤ b. In view of Theorem 6.1 and (2), it is natural to distinguish the
next two cases.

Case A: a1 ≤ 4. Besides the inequalities (6.1) and (6.2), we employ those
specific to the case at hand, namely c > 16a21a

6
2, c/b

2 > 16a21a
2
2, and

a1
a2(a2 − a1)3

>
a1
a42

.

Lemma 4.2 yields

2a
1/2
1 a

1/2
2 <

27 log
(
43.7473a2

)
log

(
1.6083a2

)
log

(
1.6817a2

)
log

(
2.0509a2

) .

This gives bounds of the type a2 ≤ UBA(a1), specifically,

a2 ≤ 382 for a1 = 1, a2 ≤ 203 for a1 = 2,

a2 ≤ 141 for a1 = 3, a2 ≤ 109 for a1 = 4.

Now we work with c and use UBA(a1) to bound from above φ. The out-
come of routine calculations using inequalities established in previous proofs
is

(4a1)
1/3c1/12 <

8 log
(
8.471 · 1013 · 2−5/3a

−1/3
1 c17/12

)
log

(
1.622 · 2

3c
)

log
(
42/3a

−2/3
2 c4/3

)
log

(
0.2629 · 162/3a7/31 c1/3

)
<

51 log
(
3.0015 · 109a−4/17

1 c
)
log

(
1.0814c)

2 log
(
2UBA(a1)−1/2c

)
log

(
4.6517a71c

) .

If a1 = 1, then c < 8.168 · 1016 and b ≤ 172186; if a1 = 2, then
c < 1.637 · 1015 and b ≤ 29463; if a1 = 3, then c < 1.621 · 1014 and b ≤ 10402;
if a1 = 4, then c < 3.099 · 1013 and b ≤ 4946.

Having tight bounds for a1, a2, and b, a short computation gives all
triples {a1, a2, b} presumably extendible to Diophantine quadruples {ai, b, c, d}.
We fix a value for a1, then we search for values 4001 ≤ b ≤ 172186 such that
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{a1, b} is a Diophantine pair. For each such b we look for a2 ≤ UBA(a1)
with the property that {a2, b} is a Diophantine pair too. Next we use Lem-
mas 3.4 and 4.2 to bound from above c, say, by UBC(a1). More precisely,
we find 164 triples with a1 = 1 but only 73 of them satisfy the necessary
condition UBC(a1) > 16a21b

3. For a1 = 2 there are 51 triples (a1, a2, b),
16 out of which pass the test on the corresponding upper bound for c. The
only survivors when a1 = 3 are (a2, b) = (64, 4641) and (60, 5208). The test
eliminates all candidate triples with a1 = 4.

For each triple (a1, a2, b) thus obtained we perform the following algo-
rithm. Consider the equations

a1c+ 1 = s21, bc+ 1 = t2, a2c+ 1 = s22.

Elimination of c between the first two relations results in the quadratic equa-
tion

a1t
2 − bs21 = a1 − b (6.4)

whose solutions are given by finitely many formulas of the type s1 = ρ1u+θ1v,
t = ρ2u + θ2v, where (u, v) solves the associated Pell equation. Here the
constants ρi, θi are obtained by well-known procedures for determining the
fundamental solutions to quadratic equations (for an implementation see, for
instance, [26]).

We retain only those units (u, v) for which the corresponding t satisfies

4a1b
2 < (bc)1/2 < t < 2a2b

2 (6.5)

(see Theorem 6.1). Finally we check for each survivor whether a2(t
2−1)/b+1

is square.
This procedure implemented in Pari [27] finds that none of the 91 triples

(a1, a2, b) satisfies all the required conditions.

Case B: a1 > 4. Now the inequality a2 > a21 is stronger than a2 > 4a1,
so we shall employ it together with Lemma 4.2.

Note that under the current hypothesis one has a2 ≥ 26, as well as(
a1(a2 − a1)

)1/2
< a

3/4
2 ,

√
a1a2

a2 − a1
<

1.244

a
1/4
2

,

a1
a2(a2 − a1)3

>
5

a42
,

which imply

φ <
log

(
8.471 · 1013a11/42 c

)
log

(
1.622 · 1.244a−1/4

2 c
)

log(4bc) log
(
0.2629 · 5a−4

2 c
) .

Together with c > 400a62 and n > 2a
1/2
1 b1/4 > 201/2 · 40001/4, this yields

201/2 · 40001/4 <
805 log

(
77.4716a2

)
log

(
3.203a2

)
32 log

(
2.5148a2

)
log

(
22.9303a2

) .
Hence, a2 ≤ 3, which is a contradiction. □
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Corollary 6.3. Under the hypothesis of Theorem 6.2 it holds b > 4a21.

Proof. Assume the contrary. Then one has a21 < b < 4a21, so we can apply
Theorem 1.1 from [8], which gives that {a1, b, c, d} is a regular Diophantine
quadruple. Therefore, d = d+(a1, b, c) < d+(a2, b, c), in contradiction with
the assumption that {a2, b, c, d} is a Diophantine quadruple. □

7. Proof of Corollaries

Proof of Corollary 1.3. If c = cτν(a2, b) for some ν and τ , then inequalities
(2.6) and Theorem 6.1 together yield c = c−3 (a2, b), which, in view of the
inequality b < a22 obtained in Theorem 6.2, contradicts [10, Proposition 1.5
(4)]. As for the second assertion, if b ≤ 13a2, then the proof of [10, Corol-
lary 1.6] implies that c = cτν for some ν and τ , which contradicts the first
assertion. □
Proof of Corollary 1.4. Assume that there exist three positive integers a1, a2,
a3 with a1 < a2 < a3 < min{b, c, d} such that {ai, b, c, d} (i ∈ {1, 2, 3}) are
Diophantine quadruples. Applying Theorem 6.1 to {a1, b, c, d} and {a2, b, c, d}
one has c < 4a22b

3, while applying Theorem 6.1 to {a2, b, c, d} and {a3, b, c, d}
yields 16a22b

3 < c, which is a contradiction. □
Proof of Corollary 1.5. Assume that {a1, b, c, d} and {a2, b, c, d} are Diophan-
tine quadruples with a1 < a2 < b < c < d. By the discussion after Corollary
5.3, we know that {a1, b, c, d} and {a2, b, c, d} are irregular. In terminology of
[12], {a1, b, c} is a standard triple of the second kind, since b > a2 > 4a1 and
c > b3 by Theorem 6.1. It follows from Proposition 4 in [12] that c < 102171.

Therefore, as in Section 9 of [12], we can get that d < 1010
26

. □
Proof of Corollary 1.6. As seen in the previous proof, any counterexample
to Conjecture 1.2 gives rise to two irregular Diophantine quadruples, whose
existence would falsify Conjecture 1.1. □

8. The final step of the proof

In this section, the goal is to improve the results established above. We attack
problems from a different angle by employing Lemmas 2.1 and 2.2.

Lemma 8.1. Assume that {a1, b, c, d} and {a2, b, c, d} are Diophantine quadru-
ples with a1 < a2 < b < c < d. If b ≤ 24a2, then {1, 3, a2, b} is a Diophantine
quadruple. In particular, a1 ̸∈ {1, 3}, a2 ≥ 1680 and b ≥ 23408.

Proof. The first assertion follows from Lemma 2.2 and Corollary 1.3. This in
conjunction with Lemma 2.1 and (2.7) gives the lower bounds on a2 and b. If
a1 = 1 or 3, then {a1, a2, b, c, d} is a Diophantine quintuple, whose existence
is prohibited by [23, Theorem 1]. □
Proposition 8.2. If {a1, b, c, d} and {a2, b, c, d} are Diophantine quadruples
with a1 < a2 < b < c < d, then 4a21 < a2.
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Proof. Assume that a2 ≤ 4a21. From a22 > b > 4000 it follows that a2 ≥ 64,
whence a1 ≥ 4. Note that a1 = 4 enforces a2 = 64, a situation not compat-
ible with the hypothesis that both {ai, b, c, d} are Diophantine quadruples
(because a2/a1 is a perfect square). Thus, it holds a1 ≥ 5.

By part (1) of Theorem 6.2 it is clear that one has

√
a2 − a1 <

√
a2 ≤ 2a1,

√
a2a1

a2 − a1
<

√
a1

a1 − 1
≤ 5

4
√
a1

.

If b > ρa21 for some positive ρ, then c > 16a21b
3 > 16ρ3a81 and c/b2 > 16ρa41.

Thus, Lemmas 3.4 and 4.2 give

ρ1/4a1 <
4 log

(
4337.152 · 1013ρ3a27/21

)
log

(
32.44ρ3a

15/2
1

)
log

(
64ρ4a101

)
log

(
0.2629ρ3a1/16

) .

From Corollary 1.3 it is seen that we can take ρ = 13 in the previous relation,
which leads to a1 ≤ 20 and consequently a2 ≤ 1600. This inequality together
with Lemma 8.1 imply that b > 24a2, so that we can resume the reasoning
from the previous paragraph with ρ = 24. The new bound thus found is
a1 ≤ 14.

From now on we apply Lemmas 3.4 and 4.2 with focus on a2. Our
current knowledge allows us to use the following inequalities:√

a1(a2 − a1) < a
3/4
2 ,

√
a1a2

a2 − a1
≤

√
14a2

a2 − 14
≤ 32

√
14

25
√
a2

,

c > 16a21b
3 ≥ 4a2b

3 > 4 · 243a42.

We find

961/4a
1/2
2 <

378 log(583.4707a2) log(40.685a2)

5 log(22.1305a2) log(52833406a2)
,

whence a2 ≤ 169. In order to examine values of a2 close to this upper bound,
we consider first a2 ≥ 145, which in turn implies 7 ≤ a1 ≤ 12.

We treat the remaining cases with the help of the multiplicative ana-
logue of the idea introduced in the proof of Theorem 5.1. Specifically, instead
of inequalities b > λa2 we use b > aε2. Initially we have

c > 16 · 49 · 243a32 > 1693.15767a32 ≥ a6.157672 ,

c

b2
> a2.918642 ,

√
a1a2

a2 − a1
≤ 145

√
12

133
√
a2

,

4b > 96a2 > a1.889752 , 0.2629a1 ≥ 1.8403 > a0.118892 .

Hence,

a0.729662 <
22.0068 log(36.6091a2) log(1.3777a2)

(log a2)2
,

whence a2 ≤ 157. We resume the reasoning with this value instead of 169.
Note that we can obtain a further gain by replacing b > 24a2 by b ≥
(4001/157)a2. The outcome of calculations is the improved bound a2 ≤ 147.
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The next upper bound for a2 is computed as 134. At this moment the working
hypotheses are modified as follows: a2 ≤ 144 and a1 ≤ 11.

One continues on these lines until a bound a2 < 64 is obtained, when
one concludes that the assumption a2 ≤ 4a21 is refuted. □

Proposition 8.3. If {a1, b, c, d} and {a2, b, c, d} are Diophantine quadruples
with a1 < a2 < b < c < d, then c < 16a2b

3.

Proof. As before, we reason by contradiction. So assume it holds 16a2b
3 ≤ c.

We examine separately the situation for a1 = 1 by applying Lemmas 3.4
and 4.2 for {a2, b, c, d} with b > λa2. It follows from Lemma 8.1 that b > 24a2,
where we get a2 ≤ 21, a bound incompatible with a2 ≥ 64.

When a1 ≥ 2, our calculations initiated with λ = 13 give a2 ≤ 52, so
that we can resume the computations with λ = 4001/52. The resulting upper
bound a2 ≤ 19 is smaller than the lower bound a2 ≥ 64. □

Proposition 8.4. If {a1, b, c, d} and {a2, b, c, d} are Diophantine quadruples

with a1 < a2 < b < c < d, then b < a
3/2
2 .

Proof. Suppose, for the sake of a contradiction, that a
3/2
2 ≤ b. Note that

b > 24a2, since otherwise it would follow a2 ≤ 576, in contradiction with
Lemma 8.1.

We first show that one necessarily has a1 ≤ 7. Indeed, in view of Propo-
sition 8.2, for a1 ≥ 8 one obtains√

a1(a2 − a1) < 2−1/4a
3/4
2 , c > (4

√
2)4a

9/2
2 ,

c

b2
> (4

√
2)4a

3/2
2 ,

√
a1a2

a2 − a1
<

16
√
2

31a
1/4
2

,

whence

4
√
2 a

3/8
2 <

8 log
(
7.2942 · 1016a29/42

)
log

(
1212.3391a

17/4
2

)
log

(
4096a62

)
log

(
2153.6768a

1/2
2

) .

This inequality implies a2 ≤ 245, which is incompatible with a2 > 4a21 ≥
4 · 82 = 256, see Proposition 8.2.

From now on the reasoning parallels that employed in Case A of The-
orem 6.2. With the help of Lemmas 3.4 and 4.2 one finds a2 ≤ UBA(a1).
Using this bound and the same lemmas, one obtains c < UBC(a1), whence
b ≤ UBB(a1) by Theorem 5.1. Then one can explicitly enumerate the triples
(a1, a2, b), in number of NT (a1). For each triple thus obtained one considers
the corresponding equation (6.4). According to Proposition 8.3, instead of
condition (6.5) one requires

4a1b
2 < (bc)1/2 < t < 4a

1/2
2 b2. (8.1)

For a1 = 7 (6), we find UBA(a1) = 322 (446), UBC(a1) = 1.7 · 1014
(5.9 · 1014), UBB(a1) = 6007 (10080), and NT (a1) = 0. Table 1 summarizes
the data thus obtained for a1 ≤ 5.
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a1 1 2 3 4 5
UBA 23961 4870 1982 1100 659
UBB 4641588 375923 99065 38840 18171
UBC 1.6 · 1021 3.4 · 1018 1.4 · 1017 1.5 · 1016 2.4 · 1015
NT 282 181 117 55 10

Table 1. Experimental data for Proposition 8.4

Since none of the 645 equations of type (6.4) does have solutions satisfy-

ing condition (8.1), we conclude that the assumption a
3/2
2 ≤ b is refuted. □

Now we are ready to prove part (2) of Main Theorem.

Theorem 8.5. If {a1, b, c, d} and {a2, b, c, d} are Diophantine quadruples with

a1 < a2 < b < c < d, then b < a
4/3
2 for a1 ≥ 2 or a1 = 1 and a2 < 400000.

Proof. The argument closely follows the reasoning employed to obtain Propo-
sition 8.4. We shall therefore point out the salient differences.

Start by assuming that there exists a Diophantine quadruple with a
4/3
2 ≤

b. We claim that one necessarily has b > 24a2. Indeed, in the opposite case
one obtains a2 ≤ 243. This in conjunction with Lemma 8.1 and (2.7) leads to
the conclusion that (a2, b) = (1680, 23408). It is a matter of easy computation
to find that the only possibilities for 23408a1+1 to be a perfect square when
4a21 < 1680 are a1 = 1 or 3. These are rejected because their existence
contradicts the non-extendibility of Diophantine quadruples.

Now, that we know that b > 24a2, with the help of Proposition 8.4 we
find that a2 ≥ 577. From now we proceed as in the previous proof. With
the notation introduced there, we get UBA(a1) ≤ 542 for a1 ≥ 8. The other
upper bounds on a2 are much higher, ranging from UBA(1) < 1.855 · 107 to
UBA(2) = 260664 to UBA(7) = 985. Finally it is found that NT (2) = 5,
NT (3) = NT (4) = 7, and NT (a1) = 0 for a1 ≥ 5. Moreover, for a1 = 1 and
a2 ≤ 400000 our computations exhibit only 2 admissible values for b. The
proof is concluded by checking that none of the 21 equations of type (6.4)
does have solutions fulfilling all the required conditions. □

From the proof just concluded it is clear that removing the hypothesis
a2 ≤ 400000 is just a matter of extensive computation. It is highly unlikely
to find any extra equation (6.4) for the unexplored values of a2.

Part (3) of the Main Theorem is by now almost obvious.

Proposition 8.6. If {a1, b, c, d} and {a2, b, c, d} are Diophantine quadruples
with a1 < a2 < b < c < d, then a2 > 243.

Proof. Supposing a2 ≤ 243, from the previous theorem we get b < 24a2. The
argument employed in the second paragraph of the previous proof gives the
desired conclusion. □

In order to complete the proof of Main Theorem, it remains to show the
following.
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Proposition 8.7. If {a1, b, c, d} and {a2, b, c, d} are Diophantine quadruples
with a1 < a2 < b < c < d, then a2 > max{36a31, 300a21}.

Proof. Once again, we argue by contradiction. Assume first that there exist
two Diophantine quadruples with a2 ≤ 36a31.

With the help of Propositions 8.2 and 8.6 we obtain

√
a1a2

a2 − a1
<

√
2a

1/4
2

2a
1/2
2 − 1

< 0.7102a
−1/4
2 .

By Corollary 1.3 and Theorem 5.1 one has c > 35152a21a
3
2 as well as c/b2 >

208a21a2 ≥ 13(4/3)4/3a
5/3
2 , so that

φ <
log

(
2.9778 · 1018a5/21 a

11/2
2

)
log

(
40493.15a21a

11/4
2

)
log

(
1827904a21a

4
2

)
log

(
256.7072

) .

The expression in the right side is increasing with a1, therefore

131/4 ·
(
4

3

)1/3

a
5/12
2 <

8 log
(
5.2641 · 1017a27/42

)
log

(
10123.2875a

15/4
2

)
log

(
456976a52

)
log

(
256.7072

) ,

that is

a
5/12
2 <

3.49295 log
(
422.065a2

)
log

(
11.6974a2

)
log

(
13.5512a2

) .

This inequality is false for a2 > 14301. Hence, it remains to search for Dio-
phantine 2-tuples (ai, b) (i = 1, 2) satisfying the conditions 4a21 < a2 ≤ 36a31,

243 < a2 ≤ 14301, and 13a2 < b < a
4/3
2 .

Our current knowledge allows us to restrict the search to values 179712 =
13 · 243 < b ≤ 347127 =

⌊
143014/3

⌋
. A short computation finds only three

triples (a1, a2, b) for which the associated equation (6.4) needs to be consid-
ered. As none of them has solutions in the required range, the assumption
36a31 ≥ a2 is false.

To obtain the other part of the conclusion, we suppose that a2 ≤ 300a21.

Then c > 4 · 75−1 · 133a42, c/b2 > (52/75)a22, and a1 ≥
(
243/300

)1/2
> 6,

whence

a
1/2
2 <

8.2596 log
(
222.6345a2

)
log

(
3.6989a2

)
log

(
5.7143a2

)
and hence a2 ≤ 14116. The range where the hypothetical values for a2 sit has
been explored as described in the previous paragraph and no suitable values
have been found. Therefore, the inequality a2 ≤ 300a21 is refuted. □
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