Extensions of a Diophantine triple by adjoining smaller elements

Mihai Cipu, Andrej Dujella and Yasutsugu Fujita

Abstract

In this paper, we prove that if $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are Diophantine quadruples with $a_{1}<a_{2}<b<c<d$, then $a_{2}>24^{3}$, $a_{2}>\max \left\{36 a_{1}^{3}, 300 a_{1}^{2}\right\}, b<a_{2}^{3 / 2}$, and $16 a_{1}^{2} b^{3}<c<16 a_{2} b^{3}$. The last inequalities imply that for a fixed Diophantine triple $\{b, c, d\}$ the number of Diophantine quadruples $\{a, b, c, d\}$ with $a<\min \{b, c, d\}$ is at most two. Moreover, we show that there are only finitely many quintuples $\left\{a_{1}, a_{2}, b, c, d\right\}$ as above.

Mathematics Subject Classification. 11D09, 11B37, 11J68.
Keywords. Diophantine m-tuples, Pellian equations, hypergeometric method.

1. Introduction

Throughout this paper, m positive integers $a_{i}(1 \leq i \leq m)$ with the property that $a_{i} a_{j}+1$ is a perfect square for all $1 \leq i<j \leq m$ are collectively referred to as Diophantine m-tuple. After the second author has proved in [12] that the definition above is satisfied for no m-tuple with $m \geq 6$, in [23] it is shown that it necessarily holds $m \leq 4$. For the sake of convenience, when $m=3$ or 4 we shall speak of Diophantine triple or quadruple, respectively.

A successful strategy in the study of Diophantine tuples is based on the idea of enlarging a given such set by finding an extra element with the required property. Most of the published works are devoted to extensions of Diophantine triples by adjoining a fourth element greater than the three already known. A possible explanation for this preference could be the existence of a neat formula giving a legitimate extension for any Diophantine triple $\{a, b, c\}$ (see [1] or [22]), namely

$$
d=a+b+c+2 a b c+2 r s t
$$

where r, s, t are positive integers defined by relations $a b+1=r^{2}, a c+1=s^{2}$, $b c+1=t^{2}$. This integer d is the greatest root of the quadratic equation

$$
\begin{equation*}
(X+c-a-b)^{2}=4(a b+1)(c X+1) \tag{1.1}
\end{equation*}
$$

whence the usual notation d_{+}for it. Diophantine quadruples of the type $\left\{a, b, c, d_{+}\right\}$are called regular. The currently open question of greatest interest in this area is the status of the next conjecture, which was posed implicitly in [1] or [22], and explicitly in [11].

Conjecture 1.1. Any Diophantine triple $\{a, b, c\}$ has unique extension to a Diophantine quadruple $\{a, b, c, d\}$ by an element $d>\max \{a, b, c\}$.

There are known many specific contexts in which this conjecture is valid, see, for instance, [3], [9], [10], [17], [18] for the most general results of the kind. In a different vein, in [10] it is shown that any Diophantine triple admits at most 8 extensions by an integer greater than the three given elements. A complete bibliography on Diophantine sets is maintained by the second author [13].

The other root of equation (1.1) is a non-negative integer d_{-}, smaller than $\max \{a, b, c\}$, for which all $a d_{-}+1, b d_{-}+1, c d_{-}+1$ are perfect squares. Thus, when d_{-}is positive, one can produce a different Diophantine quadruple $\left\{a, b, c, d_{-}\right\}$out of $\{a, b, c\}$. It is easy to verify that this happens precisely when $c>a+b+2 r$, with the convention that $a<b<c$. It is to be noted that quite recently, [20] studied the number of ways of extending a fixed Diophantine pair or triple to irregular Diophantine quadruples obtained by adjoining either smaller or larger elements than the given ones.

In the previous work, the present authors have initiated in [5] the study of extendibility of Diophantine triples by an integer smaller than all elements of the initial triple. They put forward a statement similar to Conjecture 1.1.
Conjecture 1.2. Suppose that $\left\{a_{1}, b, c, d\right\}$ is a Diophantine quadruple with $a_{1}<b<c<d$. Then, $\left\{a_{2}, b, c, d\right\}$ is not a Diophantine quadruple for any integer a_{2} with $a_{1} \neq a_{2}<b$.

Its validity is established for $c<16 b^{3}$ in [5]. In the same paper it is proved that there exists no Diophantine quadruple $\left\{a_{1}, b, c, d\right\}$ with $a_{1}<b<$ $c<d$ such that the quadruple $\left\{a_{1}+1, b, c, d\right\}$ is Diophantine as well. Moreover, as a consequence of Theorem 1.4 from [10], one sees that Conjecture 1.2 holds when $c \geq 200 b^{4}$.

The aim of the present work is to point out further necessary conditions met by hypothetical counterexamples to our conjecture. The main findings can be summarized as follows.
Main Theorem. Assume that $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are Diophantine quadruples with $a_{1}<a_{2}<b<c<d$. Then, the following hold:
(1) $a_{2}>\max \left\{36 a_{1}^{3}, 300 a_{1}^{2}\right\}$.
(2) $b<a_{2}^{3 / 2}$ for $a_{1} \geq 1$, and $b<a_{2}^{4 / 3}$ for $a_{1} \geq 2$ or $a_{1}=1$ and $a_{2}<4 \cdot 10^{5}$.
(3) $a_{2}>24^{3}=13824$.
(4) $16 a_{1}^{2} b^{3}<c<16 a_{2} b^{3}$.

We will prove Main Theorem step by step in Sections 5 to 8. Indeed, Theorems 6.1, 6.2, 8.5 and Propositions 8.2, 8.3, 8.4, 8.6 and 8.7 together imply Main Theorem.

Let a, b, r with $a<r<b$ be positive integers such that $a b+1=r^{2}$. Following [24], we define an integer $c_{\nu}^{\tau}=c_{\nu}^{\tau}(a, b)$ by

$$
\begin{equation*}
c_{\nu}^{\tau}=\frac{1}{4 a b}\left\{(\sqrt{b}+\tau \sqrt{a})^{2}(r+\sqrt{a b})^{2 \nu}+(\sqrt{b}-\tau \sqrt{a})^{2}(r-\sqrt{a b})^{2 \nu}-2(a+b)\right\} \tag{1.2}
\end{equation*}
$$

with ν a positive integer and $\tau \in\{ \pm\}$. Observe that if $b>a+2$, then $\left\{a, b, c_{\nu}^{\tau}\right\}$ is always a Diophantine triple for any ν and any τ.

The next corollary follows immediately from results obtained in the course of proving Main Theorem.

Corollary 1.3. If $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are Diophantine quadruples with $a_{1}<a_{2}<b<c<d$, then $c \neq c_{\nu}^{\tau}\left(a_{2}, b\right)$ for any positive integer ν and any $\tau \in\{ \pm\}$. In particular, $b>13 a_{2}$.

Main Theorem also has the following consequences.
Corollary 1.4. Let $\{b, c, d\}$ be a Diophantine triple. Then, there exist at most two positive integers a with $a<\min \{b, c, d\}$ such that $\{a, b, c, d\}$ is a Diophantine quadruple.

Corollary 1.5. There are only finitely many quintuples $\left\{a_{1}, a_{2}, b, c, d\right\}$ with $a_{1}<a_{2}<b<c<d$ such that $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are Diophantine quadruples.

In fact, it can be shown that the largest element d satisfies $d<10^{10^{26}}$.
Corollary 1.6. Conjecture 1.1 implies Conjecture 1.2.
Our proofs are based on three results from literature. A first one serves to bound from above the solutions of a relevant system of Pellian equations. The so-called method of hypergeometric functions provides several results of the kind, we shall prefer that established in [7] and recalled in Section 3 below. Another essential ingredient is a particular instance of the observation that in a Diophantine triple whose two smallest elements are very close to each other, the largest element has a standard form. Such a result facilitates explicit calculations we perform. The third result already available and which is extensively employed in our proofs gives an absolute lower bound for the second smallest entry in an irregular quadruple.

The paper is organized as follows. In the next two sections we fix notation employed throughout the paper and adapt several useful results from literature to our specific needs. Section 4 contains the main technical novelty. More precisely, Lemma 4.2 gives a much better lower bound for solutions of a relevant system of equations than the corresponding published results. Therefore, we think Lemma 4.2 might be of independent interest. After proving a lighter version of Main Theorem in Sections 5 and 6, we derive the corollaries stated above. The rest of the paper is devoted to completing the proof of Main Theorem as stated above.

2. Preliminaries

From now on we assume that $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are Diophantine quadruples with $a_{1}<a_{2}<b<c<d$. Let $r_{1}, r_{2}, s_{1}, s_{2}, t, x_{1}, x_{2}, y, z$ be positive integers satisfying

$$
\begin{aligned}
& a_{1} b+1=r_{1}^{2}, a_{2} b+1=r_{2}^{2}, a_{1} c+1=s_{1}^{2}, a_{2} c+1=s_{2}^{2}, b c+1=t^{2}, \\
& a_{1} d+1=x_{1}^{2}, a_{2} d+1=x_{2}^{2}, b d+1=y^{2}, c d+1=z^{2}
\end{aligned}
$$

Considering x_{1}, x_{2}, y, z as unknowns, we obtain the following system of Pellian equations:

$$
\begin{align*}
a_{1} z^{2}-c x_{1}^{2} & =a_{1}-c, \tag{2.1}\\
a_{2} z^{2}-c x_{2}^{2} & =a_{2}-c, \tag{2.2}\\
b z^{2}-c y^{2} & =b-c . \tag{2.3}
\end{align*}
$$

By [21, Theorem 1.3] and [10, Lemma 2.3], any positive integer solution to (2.2) and (2.3) can be expressed as $z=v_{m}=w_{n}$ for some non-negative integers m, n, where $\left\{v_{m}\right\}$ and $\left\{w_{n}\right\}$ are recurrent sequences defined by

$$
\begin{align*}
v_{0} & =z_{(0)}, \quad v_{1}=s_{2} z_{(0)}+c x_{(0)}, \quad v_{m+2}=2 s_{2} v_{m+1}-v_{m}, \tag{2.4}\\
w_{0} & =z_{(1)}, w_{1}=t z_{(1)}+c y_{(1)}, \quad w_{n+2}=2 t w_{n+1}-w_{n} \tag{2.5}
\end{align*}
$$

satisfying either of the following:
(i) $m \equiv n \equiv 0(\bmod 2)$ and $x_{(0)}=y_{(1)}=\left|z_{(0)}\right|=\left|z_{(1)}\right|=1$ with $z_{(0)} z_{(1)}>$ 0 ;
(ii) $m \equiv n \equiv 1(\bmod 2)$ and $x_{(0)}=y_{(1)}=r_{2},\left|z_{(0)}\right|=t,\left|z_{(1)}\right|=s_{2}$ with $z_{(0)} z_{(1)}>0$.

In the next two sections we bound from above and from below the indices m and n in terms of entries of the Diophantine quadruples in question. To this end, we need an experimental result giving absolute lower bound for the second smallest element of an irregular Diophantine quadruple.

Lemma 2.1. ([7, Lemma 3.4]) Let $\{a, b, c, d\}$ be an irregular Diophantine quadruple with $a<b<c<d$. Then:
(1) If $b \leq 2 a$, then $b>21000$.
(2) If $2 a<b \leq 8 a$, then $b>130000$.
(3) If $b>8 a$, then $b>4000$.

Let a, b, r with $a<r<b$ be positive integers such that $a b+1=r^{2}$, and define an integer $c_{\nu}^{\tau}=c_{\nu}^{\tau}(a, b)$ with ν a positive integer and $\tau \in\{ \pm\}$ by (1.2). Note that for $b=a+2$ one has $c_{1}^{-}=0$ and $c_{\nu+1}^{-}=c_{\nu}^{+}$. From the explicit formulas

$$
\begin{aligned}
& c_{1}^{\tau}=a+b+2 \tau r, \\
& c_{2}^{\tau}=4 a b(a+b+2 \tau r)+4(a+b+\tau r), \\
& c_{3}^{\tau}=16 a^{2} b^{2}(a+b+2 \tau r)+8 a b(3 a+3 b+4 \tau r)+3(3 a+3 b+2 \tau r)
\end{aligned}
$$

it is seen that for $b>a+2$ it holds

$$
\begin{equation*}
c_{2}^{-}<4 a b^{2}<c_{2}^{+}<16 a b^{2}<c_{3}^{-}<16 a^{2} b^{3}<c_{3}^{+}<c_{4}^{-}<\ldots . \tag{2.6}
\end{equation*}
$$

In [24, Theorem 8] it is shown that in any Diophantine triple $\{a, b, c\}$ with $a<b \leq 4 a$ one has $c=c_{\nu}^{\tau}$ for some ν and τ. The same conclusion holds on a wider range, as seen from [16, Lemma 4.1], where it was shown for $b \leq 8 a$, or the proof of Corollary 1.6 in [10], where the hypothesis is $b \leq 13 a$. Imposing a mild additional condition, the property is valid for a different range, including the interval $a^{2} \leq b \leq 4 a^{2}$ (see [8, Lemma 3.1]). In this paper we shall use a very recent result from the same family.

Lemma 2.2. ([25, Lemma 3.1]) Let $\{a, b, c\}$ be a Diophantine triple and $a<$ $b \leq 24 a$. Suppose that $\{1,3, a, b\}$ is not a Diophantine quadruple. Then $c=$ $c_{\nu}^{\tau}(a, b)$ for some ν and τ.

Note that when $\{1,3, a, b\}$ is a Diophantine quadruple, then $a=c_{\nu}^{\tau}(1,3)$ by [24, Theorem 8$]$ and $b=d_{+}(1,3, a)$ by [14]. It can be seen that in this case a and b are consecutive terms of the sequence $\left(c_{k}\right)_{k \geq 1}$ with $c_{k}=s_{k}^{2}-1$, where $s_{0}=1, s_{1}=3$, and $s_{k+2}=4 s_{k+1}-s_{k}$ for $k \geq 0$. Explicitly, the sequence $\left(c_{k}\right)_{k \geq 1}$ starts with

$$
\begin{equation*}
8,120,1680,23408,326040,4541160,63250208, \ldots . \tag{2.7}
\end{equation*}
$$

3. Upper bounds for solutions

Theorem 3.1. Let a_{1}, a_{2} and N be integers with $0<a_{1}<a_{2}, a_{2} \geq 5$ and $N \geq 3.804 a_{1}^{\prime} a_{2}^{2}\left(a_{2}-a_{1}\right)^{2}$, where $a_{1}^{\prime}=\max \left\{a_{2}-a_{1}, a_{1}\right\}$. Assume that N is divisible by $a_{1} a_{2}$. Then, the numbers $\theta_{1}=\sqrt{1+a_{2} / N}$ and $\theta_{2}=\sqrt{1+a_{1} / N}$ satisfy

$$
\max \left\{\left|\theta_{1}-\frac{p_{1}}{q}\right|,\left|\theta_{2}-\frac{p_{2}}{q}\right|\right\}>\frac{a_{1}}{1.435 \cdot 10^{28} a_{1}^{\prime} a_{2} N} q^{-\lambda}
$$

for all integers p_{1}, p_{2}, q with $q>0$, where

$$
\lambda=1+\frac{\log \left(10 a_{1}^{-1} a_{1}^{\prime} a_{2} N\right)}{\log \left(2.629 a_{1}^{-1} a_{2}^{-1}\left(a_{2}-a_{1}\right)^{-2} N^{2}\right)}<2 .
$$

Proof. The validity of the assertion is obvious from the proof of [7, Theorem 2.1] with g replaced by 1 .

One can easily prove the following two lemmas in the same ways as [11, Lemma 12] and [19, Lemma 25] (cf. [11, Theorem 3]), respectively.

Lemma 3.2. Let $N=a_{1} a_{2} c$ and let θ_{1}, θ_{2} be as in Theorem 3.1. Then, all positive solutions to the system of Pellian equations (2.1) and (2.2) satisfy

$$
\max \left\{\left|\theta_{1}-\frac{s_{1} a_{2} x_{1}}{a_{1} a_{2} z}\right|,\left|\theta_{2}-\frac{s_{2} a_{1} x_{2}}{a_{1} a_{2} z}\right|\right\}<\frac{c}{2 a_{1}} z^{-2}
$$

Lemma 3.3. Assume that $c \geq 4 a_{2} b^{3}$. If $z=w_{n}$ with $n \geq 4$, then

$$
\log z>\frac{n}{2} \log (4 b c)
$$

Lemma 3.4. Assume that $c \geq 4 a_{2} b^{3}$. If $z=v_{m}=w_{n}$ has a solution for some integers m and n with $n \geq 4$, then

$$
n<\frac{8 \log \left(8.471 \cdot 10^{13} a_{1}^{1 / 2}\left(a_{1}^{\prime}\right)^{1 / 2} a_{2}^{2} c\right) \log \left(1.622 a_{1}^{1 / 2} a_{2}^{1 / 2}\left(a_{2}-a_{1}\right)^{-1} c\right)}{\log (4 b c) \log \left(0.2629 a_{1}\left(a_{1}^{\prime}\right)^{-1} a_{2}^{-1}\left(a_{2}-a_{1}\right)^{-2} c\right)}
$$

Proof. Note that it holds $a_{2}-a_{1} \geq 3$. Indeed, [5, Theorem 1.3] assures that $a_{2}-a_{1} \neq 1$ and for $a_{2}-a_{1}=2,\left\{a_{1}, a_{2}, b, c, d\right\}$ would be a Diophantine quintuple, which contradicts [18, Corollary 2] or [23, Theorem 1]. In particular, we may assume $a_{2} \geq 5$. Actually, in the only possible case not covered by the claim just proved one has $a_{1}=1$ and $a_{2}=4$. However, then, $b+1=u^{2}$ and $4 b+1=v^{2}$ together yield $v^{2}-4 u^{2}=-3$, which has no solution in positive integers other than $(v, u)=(1,1)$.

Since $a_{1} a_{2} c \geq 4 a_{1} a_{2}^{2} b^{3}>3.804 a_{2}^{5}$, we may apply Theorem 3.1 with

$$
q=a_{1} a_{2} z, p_{1}=s_{1} a_{2} x_{1}, p_{2}=s_{2} a_{1} x_{2} \text { and } N=a_{1} a_{2} c
$$

Combining Theorem 3.1 with Lemma 3.2, one gets

$$
z^{2-\lambda}<0.7175 \cdot 10^{28} a_{1} a_{1}^{\prime} a_{2}^{4} c^{2}<\left(8.471 \cdot 10^{13} a_{1}^{1 / 2}\left(a_{1}^{\prime}\right)^{1 / 2} a_{2}^{2} c\right)^{2}
$$

and

$$
\frac{1}{2-\lambda}=\frac{\log \left(2.629 a_{1} a_{2}\left(a_{2}-a_{1}\right)^{-2} c^{2}\right)}{\log \left(\frac{2.629 a_{1}\left(a_{2}-a_{1}\right)^{-2} c}{10 a_{1}^{\prime} a_{2}}\right)}<\frac{2 \log \left(1.622 a_{1}^{1 / 2} a_{2}^{1 / 2}\left(a_{2}-a_{1}\right)^{-1} c\right)}{\log \left(0.2629 a_{1}\left(a_{1}^{\prime}\right)^{-1} a_{2}^{-1}\left(a_{2}-a_{1}\right)^{-2} c\right)}
$$

The assertion now follows from comparing the above inequalities with those in Lemma 3.3.

4. Lower bounds for solutions

Lemma 4.1. Assume that $z=v_{m}=w_{n}$ has a solution for some integers m and n. If $c>b^{3}$, then

$$
m \leq \frac{4}{3} n+\frac{2}{3} \quad \text { and } \quad m \leq 1.4 n
$$

Proof. The first inequality can be easily shown in a similar fashion to [12, Lemma 4]. The second one is a direct consequence of the first if $n \geq 10$ and follows by simple computations in the few remaining cases.

Lemma 4.2. Assume that $c>\max \left\{b^{3}, a_{2}^{2} b^{2}\right\}$ and $b>4000$. If $z=v_{m}=w_{n}$ has a solution for some integers m and n with $n \geq 4$, then $m \equiv n(\bmod 2)$ and $n>b^{-1 / 2} c^{1 / 4}$ for odd n and $n>\frac{5}{7} b^{-1 / 2} c^{1 / 2}$ for even n.

Proof. In the case (i) $m \equiv n \equiv 0(\bmod 2)$ and $\left|z_{(0)}\right|=\left|z_{(1)}\right|=1$ with $z_{(0)} z_{(1)}>0,\left[4\right.$, Lemma 2.4] and its proof show that $m>b^{-1 / 2} c^{1 / 2}$. It follows from $c>b^{3}$ and Lemma 4.1 with $n \geq 4$ that

$$
n \geq \frac{5}{7} m>\frac{5}{7} b^{-1 / 2} c^{1 / 2}
$$

In the case (ii) $m \equiv n \equiv 1(\bmod 2)$ and $\left|z_{(0)}\right|=t,\left|z_{(1)}\right|=s$ with $z_{(0)} z_{(1)}>0$, as in the proof of [21, Lemma 3.1], we have

$$
\begin{align*}
\pm t\left\{a_{2}\left(m^{2}-1\right)-b\left(n^{2}-1\right)\right\} & \equiv 2 r_{2} s_{2}(n-m) \quad(\bmod 8 c) \tag{4.1}\\
\pm s_{2}\left\{a_{2}\left(m^{2}-1\right)-b\left(n^{2}-1\right)\right\} & \equiv 2 r_{2} t(n-m) \quad(\bmod 8 c) \tag{4.2}
\end{align*}
$$

Since $\operatorname{gcd}\left(s_{2} t, c\right)=1$, these congruences imply

$$
\begin{equation*}
\left(a_{2}\left(m^{2}-1\right)-b\left(n^{2}-1\right)\right)^{2} \equiv 4 r_{2}^{2}(n-m)^{2} \quad(\bmod c) \tag{4.3}
\end{equation*}
$$

We show that $n \leq b^{-1 / 2} c^{1 / 4}$ entails $\left|b\left(n^{2}-1\right)-a_{2}\left(m^{2}-1\right)\right|+2 r_{2}(m-n)<c^{1 / 2}$.
First we examine the situation when $b\left(n^{2}-1\right) \geq a_{2}\left(m^{2}-1\right)$. Since $m \geq n$ by [10, Lemma 2.9] and $a_{2} \geq 5$, Lemma 4.1 with $n \geq 5$ implies that

$$
\begin{aligned}
b\left(n^{2}-1\right)-a_{2}\left(m^{2}-1\right)+2 r_{2}(m-n) & \leq b n^{2}-2 \sqrt{a_{2} b\left(m^{2}-1\right)}+2 r_{2}(m-n) \\
& <b n^{2} \leq c^{1 / 2}
\end{aligned}
$$

In the opposite situation $b\left(n^{2}-1\right)<a_{2}\left(m^{2}-1\right)$, by hypotheses $c>\max \left\{b^{3}, a_{2}^{2} b^{2}\right\}$ and $b>4000$ it holds

$$
\begin{aligned}
a_{2}\left(m^{2}-1\right)-b\left(n^{2}-1\right)+2 r_{2}(m-n) & <\left(1.96 a_{2}-b\right) n^{2}+b+0.8 n \sqrt{a_{2} b+1} \\
& <0.96 c^{1 / 2}+c^{1 / 3}+a_{2}^{1 / 2} c^{1 / 4} \\
& <0.96 c^{1 / 2}+2 b^{-1 / 2} c^{1 / 2} \\
& \leq\left(0.96+2 \cdot 4001^{-1 / 2}\right) c^{1 / 2}<c^{1 / 2}
\end{aligned}
$$

Hence, (4.3) boils down to

$$
\begin{equation*}
\left|b\left(n^{2}-1\right)-a_{2}\left(m^{2}-1\right)\right|=2 r_{2}(m-n) \tag{4.4}
\end{equation*}
$$

so that (4.1) and (4.2) become

$$
r_{2}(m-n)\left(\pm t+s_{2}\right) \equiv 0 \quad(\bmod 4 c)
$$

In view of Lemma 4.1 and $c>\max \left\{b^{3}, a_{2}^{2} b^{2}\right\}$, one has

$$
r_{2}(m-n)\left| \pm t+s_{2}\right|<0.9 a_{2}^{1 / 2} b c^{1 / 2} n \leq 0.9 a_{2}^{1 / 2} b^{1 / 2} c^{3 / 4}<c
$$

Therefore, it necessarily holds $(m-n)\left(t-s_{2}\right)=0$, which implies either $m=n$ or $a_{2}=b$. In the former case, with (4.4) and $n \geq 4$ one readily sees that one also has $a_{2}=b$. This contradiction is due to the assumption $n \leq b^{-1 / 2} c^{1 / 4}$.

5. The first step of the proof

The goal of this section is to prove the following.
Theorem 5.1. Assume that $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are Diophantine quadruples with $a_{1}<a_{2}<b<c<d$. Then, the following hold:
(1) $a_{2}>2 a_{1}$.
(2) $16 a_{1}^{2} b^{3}<c<16 a_{2}^{2} b^{3}$.

We begin by ameliorating [5, Theorem 1.4].
Theorem 5.2. If $\left\{a_{1}, b, c\right\}$ and $\left\{a_{2}, b, c\right\}$ are Diophantine triples with $a_{1}<$ $a_{2}<b<c \leq 16 a_{1}^{2} b^{3}$, then $\left\{a_{1}, a_{2}, b, c\right\}$ is a Diophantine quadruple.

Proof. This is nothing but [5, Theorem 1.4] with the assumption $c<16 b^{3}$ replaced by $c \leq 16 a_{1}^{2} b^{3}$. The proof proceeds along exactly the same lines as that of [5 , Theorem 1.4].

On account of [23, Theorem 1], Theorem 5.2 has the following corollary.
Corollary 5.3. If $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are Diophantine quadruples with $a_{1}<a_{2}<b<c<d$, then $c>16 a_{1}^{2} b^{3}$ and $d>16 a_{2}^{2} c^{3}$.

Note that the former inequality in Corollary 5.3 proves the first inequality of assertion (2) in Theorem 5.1, and that since $d_{+}\left(a_{i}, b, c\right)<4 a_{i} b c+4 c$ $(i \in\{1,2\})$, the latter inequality in Corollary 5.3 means that $\left\{a_{i}, b, c, d\right\}$ ($i \in\{1,2\}$) are irregular Diophantine quadruples.

After all these preparations, we are ready to prove Theorem 5.1. We argue by reduction to absurd.

Proof of Theorem 5.1. First of all, we claim that $n \geq 4$. From [10, Lemma 2.5] we know that $m \geq 3$. In the case (i) $m \equiv n \equiv 0(\bmod 2)$ and $\left|z_{(0)}\right|=\left|z_{(1)}\right|=1$ with $z_{(0)} z_{(1)}>0$, since $w_{2}=2 c t \pm(2 b c+1)<4 c^{2}$ and

$$
\begin{aligned}
v_{4} & =4\left(2 a_{2} c+1\right) c s_{2} \pm\left(8 a_{2}^{2} c^{2}+8 a_{2} c+1\right) \\
& \geq 8 a_{2} c^{2}\left(s_{2}-a_{2}\right)+4 c\left(s_{2}-2 a_{2}\right)-1>8 a_{2}^{2} c^{2}
\end{aligned}
$$

one has $n \neq 2$. In the case (ii) $m \equiv n \equiv 1(\bmod 2)$ and $\left|z_{(0)}\right|=t,\left|z_{(1)}\right|=s_{2}$ with $z_{(0)} z_{(1)}>0$, [24, Theorem 8] implies that $c>a_{2}+b+2 r_{2}$, that is, $c>4 a_{2} b+a_{2}+b$ (by [24, Lemma 4]), which together with [10, Lemma 2.6] implies that $n \neq 3$. We therefore obtain $n \geq 4$.

Since $a_{2} \leq 2 a_{1}$ and $c>16 a_{1}^{2} b^{3}$ (by Corollary 5.3) together imply $c>$ $4 a_{2}^{2} b^{3}$, under either of the assumptions $a_{2} \leq 2 a_{1}$ and $c \geq 16 a_{2}^{2} b^{3}$ one can apply Lemmas 3.4 and 4.2 to get

$$
\begin{equation*}
n<8 \varphi, \quad \text { with } \quad n>b^{-1 / 2} c^{1 / 4} \tag{5.1}
\end{equation*}
$$

where

$$
\varphi=\frac{\log \left(8.471 \cdot 10^{13} a_{1}^{1 / 2}\left(a_{1}^{\prime}\right)^{1 / 2} a_{2}^{2} c\right) \log \left(1.622 a_{1}^{1 / 2} a_{2}^{1 / 2}\left(a_{2}-a_{1}\right)^{-1} c\right)}{\log (4 b c) \log \left(0.2629 a_{1}\left(a_{1}^{\prime}\right)^{-1} a_{2}^{-1}\left(a_{2}-a_{1}\right)^{-2} c\right)}
$$

(1) Suppose that $a_{2} \leq 2 a_{1}$. Then, from $a_{2}-a_{1} \geq 3$ (see the proof of Lemma 3.4) one gets

$$
\begin{gather*}
a_{1}^{1 / 2}\left(a_{2}-a_{1}\right)^{-1}<\frac{a_{2}^{1 / 2}}{3} \tag{5.2}\\
a_{2}\left(a_{2}-a_{1}\right)^{2} \leq \frac{a_{2}^{3}}{4} \tag{5.3}
\end{gather*}
$$

If $b \leq 4 \sqrt{5} a_{2}$, then $c>16 a_{1}^{2} b^{3}$ and $b>4000$ together show that

$$
c>16\left(\frac{a_{2}}{2}\right)^{2} b^{3} \geq \frac{4}{80} b^{5}>0.05 \cdot 4000 b^{4}=200 b^{4}
$$

However, from [10, Theorem 1.4] one has $d_{+}\left(a_{1}, b, c\right)=d=d_{+}\left(a_{2}, b, c\right)$, which contradicts $a_{1}<a_{2}$. Thus, we may assume that $b>4 \sqrt{5} a_{2}$. It follows from (5.2) and (5.3) that

$$
\begin{equation*}
\varphi<\frac{\log \left(8.471 \cdot 10^{13} a_{2}^{3} c\right) \log \left(0.5407 a_{2} c\right)}{\log \left(16 \sqrt{5} a_{2} c\right) \log \left(1.0516 a_{2}^{-3} c\right)} \tag{5.4}
\end{equation*}
$$

Note that the right-hand side of (5.4) is a decreasing function of c provided $1.0516 a_{2}^{-3} c>1$. Since $c \geq 4 a_{2}^{2} b^{3}>4 \cdot(4 \sqrt{5})^{3} a_{2}^{5}$, one gets

$$
n<\frac{8 \log \left(24.2455 \cdot 10^{16} a_{2}^{8}\right) \log \left(1547.5738 a_{2}^{6}\right)}{\log \left(102400 a_{2}^{6}\right) \log \left(3009.8548 a_{2}^{2}\right)}
$$

From (5.1) and $c / b^{2} \geq 4 a_{2}^{2} b \geq 16004 a_{2}^{2}$ it follows that

$$
16004^{1 / 4} a_{2}^{1 / 2}<n<\frac{32 \log \left(148.9632 a_{2}\right) \log \left(3.4011 a_{2}\right)}{\log \left(6.8399 a_{2}\right) \log \left(54.8621 a_{2}\right)}
$$

which yields $a_{2} \leq 7$.
We combine the upper bound for a_{2} just obtained with the lower bound on b given by Lemma 2.1 to get $b>\lambda a_{2}$ for some λ much bigger than the value $4 \sqrt{5}$ employed previously. This way we obtain a smaller bound on a_{2}, which entails a bigger λ. After a few rounds, if needed, the game ends when $a_{2}<5$. However, as noted in the proof of Lemma 3.4, one has $a_{2} \geq 5$, a contradiction.

From $a_{2} \leq 7$ and $b \geq 4001$ we infer that $b \geq \lambda a_{2}$ with $\lambda=4001 / 7$. The reasoning detailed above leads to the inequalities

$$
16004^{1 / 4} a_{2}^{1 / 2}<n<\frac{8 \log \left(8.471 \cdot 10^{13} \cdot 4 \lambda^{3} a_{2}^{8}\right) \log \left(0.5407 \cdot 4 \lambda^{3} a_{2}^{6}\right)}{\log \left(16 \lambda^{4} a_{2}^{6}\right) \log \left(1.0516 \cdot 4 \lambda^{3} a_{2}^{2}\right)}
$$

which hold only for $a_{2} \leq 1$. This contradiction shows that one cannot have $a_{2} \leq 2 a_{1}$.
(2) Now we assume, for the sake of contradiction, that we have $c \geq$ $16 a_{2}^{2} b^{3}$. By a similar argument to the above, we can see that $b>8 \sqrt{5} a_{2}$. Moreover, in view of what we just did, we can additionally assume $a_{2}>2 a_{1}$.

Then,

$$
\begin{align*}
a_{1}^{1 / 2}\left(a_{2}-a_{1}\right)^{1 / 2} & \leq \frac{a_{2}}{2}, \tag{5.5}\\
a_{1}^{1 / 2} a_{2}^{1 / 2}\left(a_{2}-a_{1}\right)^{-1} & \leq \sqrt{2} . \tag{5.6}
\end{align*}
$$

It follows from (5.1), (5.5) and (5.6) that one has

$$
2 \cdot 4001^{1 / 4} a_{2}^{1 / 2}<\frac{8 \log \left(3.879 \cdot 10^{18} a_{2}^{8}\right) \log \left(2.1008 \cdot 10^{5} a_{2}^{5}\right)}{\log \left(6.5528 \cdot 10^{6} a_{2}^{6}\right) \log \left(24076.6 a_{2}\right)}
$$

from which one derives $a_{2} \leq 3$. This contradiction completes the proof of Theorem 5.1.

6. The second step of the proof

In this section, utilizing the results and the methods in the previous section, we improve the lower bound for a_{2} and the upper bound for c given in Theorem 5.1. We first show the following.

Theorem 6.1. Assume that $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are Diophantine quadruples with $a_{1}<a_{2}<b<c<d$. Then, the following hold:
(1) $a_{2}>4 a_{1}$.
(2) $16 a_{1}^{2} b^{3}<c<4 a_{2}^{2} b^{3}$.

Proof. The reasoning has much in common with that employed to establish Theorem 5.1, therefore we shall point out only the differences.

To prove part (1), we suppose that we have $2 a_{1}<a_{2} \leq 4 a_{1}$. Then it obviously holds $c>16 a_{1}^{2} b^{3} \geq a_{2}^{2} b^{3}$ and one can readily show that $b>2 \sqrt{5} a_{2}$. Thus, from Lemma 4.2 we conclude that $n>\left(2 \sqrt{5} a_{2}^{3}\right)^{1 / 4}$. In addition, from Lemma 4.2 and $b \geq 4001$ we see that $n>4001^{1 / 4} a_{2}^{1 / 2}$. Instead of (5.3) we use the inequality

$$
a_{2}\left(a_{2}-a_{1}\right)^{3} \leq \frac{27}{16} a_{1} a_{2}^{3}
$$

to obtain

$$
\varphi<\frac{\log \left(4.2355 \cdot 10^{13} a_{2}^{3} c\right) \log (1.622 \sqrt{2} c)}{\log \left(8 \sqrt{5} a_{2} c\right) \log \left(0.2629 \cdot 16 \cdot 27^{-1} a_{2}^{-3} c\right)}
$$

As $0.2629 \cdot 16 \cdot 27^{-1} a_{2}^{-3} c>0.1557 a_{2}^{-1} b^{3}>b$, the right-hand side is decreasing with c. Comparison of the lower bound for n obtained above with the upper bound given by Lemma 3.4 results in the relation

$$
4001^{1 / 4} a_{2}^{1 / 2}<\frac{80 \log \left(88.5740 a_{2}\right) \log \left(2.9002 a_{2}\right)}{3 \log \left(3.4199 a_{2}\right) \log \left(3.7328 a_{2}\right)}
$$

which implies $a_{2} \leq 29$.
We resume the reasoning, using $b \geq \lambda a_{2}$ with $\lambda=4001 / 29$ instead of $\lambda=2 \sqrt{5}$. The outcome of computations is $a_{2} \leq 8$. One more iteration decreases the bound on a_{2} to 5 . Since no further improvement is obtained this way, we concentrate on c instead of a_{2}.

Note that from $2 a_{1}<a_{2}=5 \leq 4 a_{1}$ it follows that $a_{1}=2$, so that with Lemma 3.4 we get

$$
\varphi<\frac{\log \left(8.471 \cdot 10^{13} \cdot \sqrt{6} \cdot 25 c\right) \log \left(1.622 \sqrt{10} \cdot 3^{-1} c\right)}{\log (4 b c) \log \left(0.2629 \cdot 0.4 \cdot 27^{-1} c\right)}
$$

By using $c<16 a_{2}^{2} b^{3}=400 b^{3}$, we obtain

$$
\varphi<\frac{3 \log \left(5.1875 \cdot 10^{15} c\right) \log (1.7098 c)}{4 \log (0.6324 c) \log \left(256.752^{-1} c\right)}
$$

As $c>16 a_{1}^{2} b^{3}=64 b^{3}$ implies $c / b^{2}>16 c^{1 / 3}$, from

$$
2 c^{1 / 12}<n<\frac{6 \log \left(5.1875 \cdot 10^{15} c\right) \log (1.7098 c)}{\log (0.6324 c) \log \left(256.752^{-1} c\right)}
$$

it results $c<5 \cdot 10^{11}$, which is not compatible with $c>64 \cdot 4001^{3}$.
Now suppose that $c>4 a_{2}^{2} b^{3}$. Then, as seen in the proof of Theorem 5.1, one has $\lambda=4 \sqrt{5}$. Using part (1), one obtains

$$
\begin{align*}
& a_{1}^{1 / 2}\left(a_{2}-a_{1}\right)^{1 / 2}<\frac{\sqrt{3}}{4} a_{2}, \tag{6.1}\\
& a_{1}^{1 / 2} a_{2}^{1 / 2}\left(a_{2}-a_{1}\right)^{-1}<\frac{2}{3} \tag{6.2}
\end{align*}
$$

which entail

$$
16004^{1 / 4} a_{2}^{1 / 2}<\frac{160 \log \left(134.1657 a_{2}\right) \log \left(4.9904 a_{2}\right)}{3 \log \left(6.8399 a_{2}\right) \log \left(752.4637 a_{2}\right)}
$$

Hence, $a_{2} \leq 12$. With $\lambda=4001 / 12$ one gets $a_{2}<5$. This contradiction shows that the assertion in part (2) is true.

Theorem 6.2. Assume that $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are Diophantine quadruples with $a_{1}<a_{2}<b<c<d$. Then, the following hold:
(1) $a_{2}>a_{1}^{2}$.
(2) $b<a_{2}^{2}$.

Proof. (1) Assuming that $a_{2} \leq a_{1}^{2}$, from $a_{2}>4 a_{1}$ one obtains $a_{1} \geq 5$, which implies $a_{2} \geq 21$ and $c>16 a_{2} b^{3}>16 a_{2}^{4}$.

According to inequalities established in the proof of Theorem 6.1, one has

$$
\varphi<\frac{\log \left(8.471 \cdot 10^{13} \cdot \frac{\sqrt{3}}{4} a_{2}^{3} c\right) \log \left(1.622 \cdot \frac{2}{3} c\right)}{\log (4 b c) \log \left(0.2629 a_{2}^{-7 / 2} c\right)}
$$

A slightly larger upper bound is obtained by using the inequalities $b>$ $200^{-1 / 4} c^{1 / 4}, 8 a_{2}^{3}<c^{3 / 4}$ and $a_{2}^{-7 / 2} c>2^{7 / 2} c^{1 / 8}$. Since $c / b^{2}>20^{4 / 3} c^{1 / 3}$, with Lemma 3.4 one gets

$$
\begin{equation*}
\varphi<\frac{56 \log \left(1.7182 \cdot 10^{7} c\right) \log (1.0814 c)}{5 \log (1.0506 c) \log (6125.8247 c)} \tag{6.3}
\end{equation*}
$$

We discuss separately the two possible outcomes of comparison of b to a_{1}^{2}.

Case 1: $b \geq a_{1}^{2}$. Then it holds $c>16 a_{1}^{8}$ and $c / b^{2}>16 a_{1}^{4}$. Lemma 4.2 yields

$$
2 a_{1}<n<\frac{448 \log \left(11.3475 a_{1}\right) \log \left(1.4282 a_{1}\right)}{5 \log \left(1.4229 a_{1}\right) \log \left(4.2063 a_{1}\right)}
$$

whence $a_{1} \leq 53$. Introducing the quantity $\mu=4001 / 53^{2}$ into argument, one has $b \geq \mu a_{1}^{2}$ and one gets $a_{1} \leq 37$. Then one updates $\mu=4001 / 37^{2}$, which leads to $a_{1} \leq 18$. After two more iterations one arrives at $a_{1} \leq 4$, a contradiction that shows that Case 1 is impossible.

Case 2: $b<a_{1}^{2}$. Note that this hypothesis implies $a_{1} \geq 64$ and $a_{2} \geq 257$. Working with inequality (6.3), one readily obtains

$$
256^{1 / 3} c^{1 / 12}<n<\frac{448 \log \left(1.7182 \cdot 10^{7} c\right) \log (1.0814 c)}{5 \log (1.0506 c) \log (6125.8247 c)}
$$

which is true only for $c<10^{15}$. As this inequality contradicts $c>16 \cdot 64^{2}$. $4001^{3}>4 \cdot 10^{15}$, we conclude that Case 2 is not possible.
(2) Once again, we reason by reduction to absurd. So, assume that one has $a_{2}^{2} \leq b$. In view of Theorem 6.1 and (2), it is natural to distinguish the next two cases.

Case A: $a_{1} \leq 4$. Besides the inequalities (6.1) and (6.2), we employ those specific to the case at hand, namely $c>16 a_{1}^{2} a_{2}^{6}, c / b^{2}>16 a_{1}^{2} a_{2}^{2}$, and

$$
\frac{a_{1}}{a_{2}\left(a_{2}-a_{1}\right)^{3}}>\frac{a_{1}}{a_{2}^{4}}
$$

Lemma 4.2 yields

$$
2 a_{1}^{1 / 2} a_{2}^{1 / 2}<\frac{27 \log \left(43.7473 a_{2}\right) \log \left(1.6083 a_{2}\right)}{\log \left(1.6817 a_{2}\right) \log \left(2.0509 a_{2}\right)}
$$

This gives bounds of the type $a_{2} \leq U B A\left(a_{1}\right)$, specifically,

$$
\begin{aligned}
& a_{2} \leq 382 \text { for } a_{1}=1, \quad a_{2} \leq 203 \text { for } a_{1}=2, \\
& a_{2} \leq 141 \text { for } a_{1}=3, \quad a_{2} \leq 109 \text { for } a_{1}=4 .
\end{aligned}
$$

Now we work with c and use $U B A\left(a_{1}\right)$ to bound from above φ. The outcome of routine calculations using inequalities established in previous proofs is

$$
\begin{aligned}
\left(4 a_{1}\right)^{1 / 3} c^{1 / 12} & <\frac{8 \log \left(8.471 \cdot 10^{13} \cdot 2^{-5 / 3} a_{1}^{-1 / 3} c^{17 / 12}\right) \log \left(1.622 \cdot \frac{2}{3} c\right)}{\log \left(4^{2 / 3} a_{2}^{-2 / 3} c^{4 / 3}\right) \log \left(0.2629 \cdot 16^{2 / 3} a_{1}^{7 / 3} c^{1 / 3}\right)} \\
& <\frac{51 \log \left(3.0015 \cdot 10^{9} a_{1}^{-4 / 17} c\right) \log (1.0814 c)}{2 \log \left(2 U B A\left(a_{1}\right)^{-1 / 2} c\right) \log \left(4.6517 a_{1}^{7} c\right)}
\end{aligned}
$$

If $a_{1}=1$, then $c<8.168 \cdot 10^{16}$ and $b \leq 172186$; if $a_{1}=2$, then $c<1.637 \cdot 10^{15}$ and $b \leq 29463$; if $a_{1}=3$, then $c<1.621 \cdot 10^{14}$ and $b \leq 10402$; if $a_{1}=4$, then $c<3.099 \cdot 10^{13}$ and $b \leq 4946$.

Having tight bounds for a_{1}, a_{2}, and b, a short computation gives all triples $\left\{a_{1}, a_{2}, b\right\}$ presumably extendible to Diophantine quadruples $\left\{a_{i}, b, c, d\right\}$. We fix a value for a_{1}, then we search for values $4001 \leq b \leq 172186$ such that
$\left\{a_{1}, b\right\}$ is a Diophantine pair. For each such b we look for $a_{2} \leq U B A\left(a_{1}\right)$ with the property that $\left\{a_{2}, b\right\}$ is a Diophantine pair too. Next we use Lemmas 3.4 and 4.2 to bound from above c, say, by $\operatorname{UBC}\left(a_{1}\right)$. More precisely, we find 164 triples with $a_{1}=1$ but only 73 of them satisfy the necessary condition $U B C\left(a_{1}\right)>16 a_{1}^{2} b^{3}$. For $a_{1}=2$ there are 51 triples $\left(a_{1}, a_{2}, b\right)$, 16 out of which pass the test on the corresponding upper bound for c. The only survivors when $a_{1}=3$ are $\left(a_{2}, b\right)=(64,4641)$ and $(60,5208)$. The test eliminates all candidate triples with $a_{1}=4$.

For each triple $\left(a_{1}, a_{2}, b\right)$ thus obtained we perform the following algorithm. Consider the equations

$$
a_{1} c+1=s_{1}^{2}, \quad b c+1=t^{2}, \quad a_{2} c+1=s_{2}^{2} .
$$

Elimination of c between the first two relations results in the quadratic equation

$$
\begin{equation*}
a_{1} t^{2}-b s_{1}^{2}=a_{1}-b \tag{6.4}
\end{equation*}
$$

whose solutions are given by finitely many formulas of the type $s_{1}=\rho_{1} u+\theta_{1} v$, $t=\rho_{2} u+\theta_{2} v$, where (u, v) solves the associated Pell equation. Here the constants ρ_{i}, θ_{i} are obtained by well-known procedures for determining the fundamental solutions to quadratic equations (for an implementation see, for instance, [26]).

We retain only those units (u, v) for which the corresponding t satisfies

$$
\begin{equation*}
4 a_{1} b^{2}<(b c)^{1 / 2}<t<2 a_{2} b^{2} \tag{6.5}
\end{equation*}
$$

(see Theorem 6.1). Finally we check for each survivor whether $a_{2}\left(t^{2}-1\right) / b+1$ is square.

This procedure implemented in Pari [27] finds that none of the 91 triples $\left(a_{1}, a_{2}, b\right)$ satisfies all the required conditions.

Case B: $a_{1}>4$. Now the inequality $a_{2}>a_{1}^{2}$ is stronger than $a_{2}>4 a_{1}$, so we shall employ it together with Lemma 4.2.

Note that under the current hypothesis one has $a_{2} \geq 26$, as well as

$$
\begin{aligned}
\left(a_{1}\left(a_{2}-a_{1}\right)\right)^{1 / 2} & <a_{2}^{3 / 4}, \\
\frac{\sqrt{a_{1} a_{2}}}{a_{2}-a_{1}} & <\frac{1.244}{a_{2}^{1 / 4}}, \\
\frac{a_{1}}{a_{2}\left(a_{2}-a_{1}\right)^{3}} & >\frac{5}{a_{2}^{4}},
\end{aligned}
$$

which imply

$$
\varphi<\frac{\log \left(8.471 \cdot 10^{13} a_{2}^{11 / 4} c\right) \log \left(1.622 \cdot 1.244 a_{2}^{-1 / 4} c\right)}{\log (4 b c) \log \left(0.2629 \cdot 5 a_{2}^{-4} c\right)}
$$

Together with $c>400 a_{2}^{6}$ and $n>2 a_{1}^{1 / 2} b^{1 / 4}>20^{1 / 2} \cdot 4000^{1 / 4}$, this yields

$$
20^{1 / 2} \cdot 4000^{1 / 4}<\frac{805 \log \left(77.4716 a_{2}\right) \log \left(3.203 a_{2}\right)}{32 \log \left(2.5148 a_{2}\right) \log \left(22.9303 a_{2}\right)}
$$

Hence, $a_{2} \leq 3$, which is a contradiction.

Corollary 6.3. Under the hypothesis of Theorem 6.2 it holds $b>4 a_{1}^{2}$.
Proof. Assume the contrary. Then one has $a_{1}^{2}<b<4 a_{1}^{2}$, so we can apply Theorem 1.1 from [8], which gives that $\left\{a_{1}, b, c, d\right\}$ is a regular Diophantine quadruple. Therefore, $d=d_{+}\left(a_{1}, b, c\right)<d_{+}\left(a_{2}, b, c\right)$, in contradiction with the assumption that $\left\{a_{2}, b, c, d\right\}$ is a Diophantine quadruple.

7. Proof of Corollaries

Proof of Corollary 1.3. If $c=c_{\nu}^{\tau}\left(a_{2}, b\right)$ for some ν and τ, then inequalities (2.6) and Theorem 6.1 together yield $c=c_{3}^{-}\left(a_{2}, b\right)$, which, in view of the inequality $b<a_{2}^{2}$ obtained in Theorem 6.2 , contradicts [10, Proposition 1.5 (4)]. As for the second assertion, if $b \leq 13 a_{2}$, then the proof of [10, Corollary 1.6] implies that $c=c_{\nu}^{\tau}$ for some ν and τ, which contradicts the first assertion.

Proof of Corollary 1.4. Assume that there exist three positive integers a_{1}, a_{2}, a_{3} with $a_{1}<a_{2}<a_{3}<\min \{b, c, d\}$ such that $\left\{a_{i}, b, c, d\right\}(i \in\{1,2,3\})$ are Diophantine quadruples. Applying Theorem 6.1 to $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ one has $c<4 a_{2}^{2} b^{3}$, while applying Theorem 6.1 to $\left\{a_{2}, b, c, d\right\}$ and $\left\{a_{3}, b, c, d\right\}$ yields $16 a_{2}^{2} b^{3}<c$, which is a contradiction.

Proof of Corollary 1.5. Assume that $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are Diophantine quadruples with $a_{1}<a_{2}<b<c<d$. By the discussion after Corollary 5.3, we know that $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are irregular. In terminology of [12], $\left\{a_{1}, b, c\right\}$ is a standard triple of the second kind, since $b>a_{2}>4 a_{1}$ and $c>b^{3}$ by Theorem 6.1. It follows from Proposition 4 in [12] that $c<10^{2171}$. Therefore, as in Section 9 of [12], we can get that $d<10^{10^{26}}$.

Proof of Corollary 1.6. As seen in the previous proof, any counterexample to Conjecture 1.2 gives rise to two irregular Diophantine quadruples, whose existence would falsify Conjecture 1.1.

8. The final step of the proof

In this section, the goal is to improve the results established above. We attack problems from a different angle by employing Lemmas 2.1 and 2.2.

Lemma 8.1. Assume that $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are Diophantine quadruples with $a_{1}<a_{2}<b<c<d$. If $b \leq 24 a_{2}$, then $\left\{1,3, a_{2}, b\right\}$ is a Diophantine quadruple. In particular, $a_{1} \notin\{1,3\}, a_{2} \geq 1680$ and $b \geq 23408$.

Proof. The first assertion follows from Lemma 2.2 and Corollary 1.3. This in conjunction with Lemma 2.1 and (2.7) gives the lower bounds on a_{2} and b. If $a_{1}=1$ or 3 , then $\left\{a_{1}, a_{2}, b, c, d\right\}$ is a Diophantine quintuple, whose existence is prohibited by [23, Theorem 1].
Proposition 8.2. If $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are Diophantine quadruples with $a_{1}<a_{2}<b<c<d$, then $4 a_{1}^{2}<a_{2}$.

Proof. Assume that $a_{2} \leq 4 a_{1}^{2}$. From $a_{2}^{2}>b>4000$ it follows that $a_{2} \geq 64$, whence $a_{1} \geq 4$. Note that $a_{1}=4$ enforces $a_{2}=64$, a situation not compatible with the hypothesis that both $\left\{a_{i}, b, c, d\right\}$ are Diophantine quadruples (because a_{2} / a_{1} is a perfect square). Thus, it holds $a_{1} \geq 5$.

By part (1) of Theorem 6.2 it is clear that one has

$$
\sqrt{a_{2}-a_{1}}<\sqrt{a_{2}} \leq 2 a_{1}, \frac{\sqrt{a_{2} a_{1}}}{a_{2}-a_{1}}<\frac{\sqrt{a_{1}}}{a_{1}-1} \leq \frac{5}{4 \sqrt{a_{1}}}
$$

If $b>\rho a_{1}^{2}$ for some positive ρ, then $c>16 a_{1}^{2} b^{3}>16 \rho^{3} a_{1}^{8}$ and $c / b^{2}>16 \rho a_{1}^{4}$. Thus, Lemmas 3.4 and 4.2 give

$$
\rho^{1 / 4} a_{1}<\frac{4 \log \left(4337.152 \cdot 10^{13} \rho^{3} a_{1}^{27 / 2}\right) \log \left(32.44 \rho^{3} a_{1}^{15 / 2}\right)}{\log \left(64 \rho^{4} a_{1}^{10}\right) \log \left(0.2629 \rho^{3} a_{1} / 16\right)}
$$

From Corollary 1.3 it is seen that we can take $\rho=13$ in the previous relation, which leads to $a_{1} \leq 20$ and consequently $a_{2} \leq 1600$. This inequality together with Lemma 8.1 imply that $b>24 a_{2}$, so that we can resume the reasoning from the previous paragraph with $\rho=24$. The new bound thus found is $a_{1} \leq 14$.

From now on we apply Lemmas 3.4 and 4.2 with focus on a_{2}. Our current knowledge allows us to use the following inequalities:

$$
\begin{aligned}
\sqrt{a_{1}\left(a_{2}-a_{1}\right)} & <a_{2}^{3 / 4} \\
\frac{\sqrt{a_{1} a_{2}}}{a_{2}-a_{1}} & \leq \frac{\sqrt{14 a_{2}}}{a_{2}-14} \leq \frac{32 \sqrt{14}}{25 \sqrt{a_{2}}} \\
c & >16 a_{1}^{2} b^{3} \geq 4 a_{2} b^{3}>4 \cdot 24^{3} a_{2}^{4}
\end{aligned}
$$

We find

$$
96^{1 / 4} a_{2}^{1 / 2}<\frac{378 \log \left(583.4707 a_{2}\right) \log \left(40.685 a_{2}\right)}{5 \log \left(22.1305 a_{2}\right) \log \left(52833406 a_{2}\right)}
$$

whence $a_{2} \leq 169$. In order to examine values of a_{2} close to this upper bound, we consider first $a_{2} \geq 145$, which in turn implies $7 \leq a_{1} \leq 12$.

We treat the remaining cases with the help of the multiplicative analogue of the idea introduced in the proof of Theorem 5.1. Specifically, instead of inequalities $b>\lambda a_{2}$ we use $b>a_{2}^{\varepsilon}$. Initially we have

$$
\begin{gathered}
c>16 \cdot 49 \cdot 24^{3} a_{2}^{3}>169^{3.15767} a_{2}^{3} \geq a_{2}^{6.15767} \\
\frac{c}{b^{2}}>a_{2}^{2.91864}, \quad \frac{\sqrt{a_{1} a_{2}}}{a_{2}-a_{1}} \leq \frac{145 \sqrt{12}}{133 \sqrt{a_{2}}} \\
4 b>96 a_{2}>a_{2}^{1.88975}, \quad 0.2629 a_{1} \geq 1.8403>a_{2}^{0.11889}
\end{gathered}
$$

Hence,

$$
a_{2}^{0.72966}<\frac{22.0068 \log \left(36.6091 a_{2}\right) \log \left(1.3777 a_{2}\right)}{\left(\log a_{2}\right)^{2}}
$$

whence $a_{2} \leq 157$. We resume the reasoning with this value instead of 169 . Note that we can obtain a further gain by replacing $b>24 a_{2}$ by $b \geq$ $(4001 / 157) a_{2}$. The outcome of calculations is the improved bound $a_{2} \leq 147$.

The next upper bound for a_{2} is computed as 134. At this moment the working hypotheses are modified as follows: $a_{2} \leq 144$ and $a_{1} \leq 11$.

One continues on these lines until a bound $a_{2}<64$ is obtained, when one concludes that the assumption $a_{2} \leq 4 a_{1}^{2}$ is refuted.

Proposition 8.3. If $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are Diophantine quadruples with $a_{1}<a_{2}<b<c<d$, then $c<16 a_{2} b^{3}$.

Proof. As before, we reason by contradiction. So assume it holds $16 a_{2} b^{3} \leq c$.
We examine separately the situation for $a_{1}=1$ by applying Lemmas 3.4 and 4.2 for $\left\{a_{2}, b, c, d\right\}$ with $b>\lambda a_{2}$. It follows from Lemma 8.1 that $b>24 a_{2}$, where we get $a_{2} \leq 21$, a bound incompatible with $a_{2} \geq 64$.

When $a_{1} \geq 2$, our calculations initiated with $\lambda=13$ give $a_{2} \leq 52$, so that we can resume the computations with $\lambda=4001 / 52$. The resulting upper bound $a_{2} \leq 19$ is smaller than the lower bound $a_{2} \geq 64$.

Proposition 8.4. If $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are Diophantine quadruples with $a_{1}<a_{2}<b<c<d$, then $b<a_{2}^{3 / 2}$.
Proof. Suppose, for the sake of a contradiction, that $a_{2}^{3 / 2} \leq b$. Note that $b>24 a_{2}$, since otherwise it would follow $a_{2} \leq 576$, in contradiction with Lemma 8.1.

We first show that one necessarily has $a_{1} \leq 7$. Indeed, in view of Proposition 8.2 , for $a_{1} \geq 8$ one obtains

$$
\begin{aligned}
\sqrt{a_{1}\left(a_{2}-a_{1}\right)} & <2^{-1 / 4} a_{2}^{3 / 4},
\end{aligned} \quad c>(4 \sqrt{2})^{4} a_{2}^{9 / 2}, ~ \begin{aligned}
\frac{c}{b^{2}} & >(4 \sqrt{2})^{4} a_{2}^{3 / 2},
\end{aligned} \quad \frac{\sqrt{a_{1} a_{2}}}{a_{2}-a_{1}}<\frac{16 \sqrt{2}}{31 a_{2}^{1 / 4}},
$$

whence

$$
4 \sqrt{2} a_{2}^{3 / 8}<\frac{8 \log \left(7.2942 \cdot 10^{16} a_{2}^{29 / 4}\right) \log \left(1212.3391 a_{2}^{17 / 4}\right)}{\log \left(4096 a_{2}^{6}\right) \log \left(2153.6768 a_{2}^{1 / 2}\right)}
$$

This inequality implies $a_{2} \leq 245$, which is incompatible with $a_{2}>4 a_{1}^{2} \geq$ $4 \cdot 8^{2}=256$, see Proposition 8.2.

From now on the reasoning parallels that employed in Case A of Theorem 6.2. With the help of Lemmas 3.4 and 4.2 one finds $a_{2} \leq U B A\left(a_{1}\right)$. Using this bound and the same lemmas, one obtains $c<U B C\left(a_{1}\right)$, whence $b \leq U B B\left(a_{1}\right)$ by Theorem 5.1. Then one can explicitly enumerate the triples $\left(a_{1}, a_{2}, b\right)$, in number of $N T\left(a_{1}\right)$. For each triple thus obtained one considers the corresponding equation (6.4). According to Proposition 8.3, instead of condition (6.5) one requires

$$
\begin{equation*}
4 a_{1} b^{2}<(b c)^{1 / 2}<t<4 a_{2}^{1 / 2} b^{2} \tag{8.1}
\end{equation*}
$$

For $a_{1}=7(6)$, we find $U B A\left(a_{1}\right)=322(446), U B C\left(a_{1}\right)=1.7 \cdot 10^{14}$ $\left(5.9 \cdot 10^{14}\right), U B B\left(a_{1}\right)=6007(10080)$, and $N T\left(a_{1}\right)=0$. Table 1 summarizes the data thus obtained for $a_{1} \leq 5$.

a_{1}	1	2	3	4	5
UBA	23961	4870	1982	1100	659
UBB	4641588	375923	99065	38840	18171
UBC	$1.6 \cdot 10^{21}$	$3.4 \cdot 10^{18}$	$1.4 \cdot 10^{17}$	$1.5 \cdot 10^{16}$	$2.4 \cdot 10^{15}$
NT	282	181	117		10

Since none of the 645 equations of type (6.4) does have solutions satisfying condition (8.1), we conclude that the assumption $a_{2}^{3 / 2} \leq b$ is refuted.

Now we are ready to prove part (2) of Main Theorem.
Theorem 8.5. If $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are Diophantine quadruples with $a_{1}<a_{2}<b<c<d$, then $b<a_{2}^{4 / 3}$ for $a_{1} \geq 2$ or $a_{1}=1$ and $a_{2}<400000$.

Proof. The argument closely follows the reasoning employed to obtain Proposition 8.4. We shall therefore point out the salient differences.

Start by assuming that there exists a Diophantine quadruple with $a_{2}^{4 / 3} \leq$ b. We claim that one necessarily has $b>24 a_{2}$. Indeed, in the opposite case one obtains $a_{2} \leq 24^{3}$. This in conjunction with Lemma 8.1 and (2.7) leads to the conclusion that $\left(a_{2}, b\right)=(1680,23408)$. It is a matter of easy computation to find that the only possibilities for $23408 a_{1}+1$ to be a perfect square when $4 a_{1}^{2}<1680$ are $a_{1}=1$ or 3 . These are rejected because their existence contradicts the non-extendibility of Diophantine quadruples.

Now, that we know that $b>24 a_{2}$, with the help of Proposition 8.4 we find that $a_{2} \geq 577$. From now we proceed as in the previous proof. With the notation introduced there, we get $U B A\left(a_{1}\right) \leq 542$ for $a_{1} \geq 8$. The other upper bounds on a_{2} are much higher, ranging from $U B A(1)<1.855 \cdot 10^{7}$ to $U B A(2)=260664$ to $U B A(7)=985$. Finally it is found that $N T(2)=5$, $N T(3)=N T(4)=7$, and $N T\left(a_{1}\right)=0$ for $a_{1} \geq 5$. Moreover, for $a_{1}=1$ and $a_{2} \leq 400000$ our computations exhibit only 2 admissible values for b. The proof is concluded by checking that none of the 21 equations of type (6.4) does have solutions fulfilling all the required conditions.

From the proof just concluded it is clear that removing the hypothesis $a_{2} \leq 400000$ is just a matter of extensive computation. It is highly unlikely to find any extra equation (6.4) for the unexplored values of a_{2}.

Part (3) of the Main Theorem is by now almost obvious.
Proposition 8.6. If $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are Diophantine quadruples with $a_{1}<a_{2}<b<c<d$, then $a_{2}>24^{3}$.
Proof. Supposing $a_{2} \leq 24^{3}$, from the previous theorem we get $b<24 a_{2}$. The argument employed in the second paragraph of the previous proof gives the desired conclusion.

In order to complete the proof of Main Theorem, it remains to show the following.

Proposition 8.7. If $\left\{a_{1}, b, c, d\right\}$ and $\left\{a_{2}, b, c, d\right\}$ are Diophantine quadruples with $a_{1}<a_{2}<b<c<d$, then $a_{2}>\max \left\{36 a_{1}^{3}, 300 a_{1}^{2}\right\}$.

Proof. Once again, we argue by contradiction. Assume first that there exist two Diophantine quadruples with $a_{2} \leq 36 a_{1}^{3}$.

With the help of Propositions 8.2 and 8.6 we obtain

$$
\frac{\sqrt{a_{1} a_{2}}}{a_{2}-a_{1}}<\frac{\sqrt{2} a_{2}^{1 / 4}}{2 a_{2}^{1 / 2}-1}<0.7102 a_{2}^{-1 / 4}
$$

By Corollary 1.3 and Theorem 5.1 one has $c>35152 a_{1}^{2} a_{2}^{3}$ as well as $c / b^{2}>$ $208 a_{1}^{2} a_{2} \geq 13(4 / 3)^{4 / 3} a_{2}^{5 / 3}$, so that

$$
\varphi<\frac{\log \left(2.9778 \cdot 10^{18} a_{1}^{5 / 2} a_{2}^{11 / 2}\right) \log \left(40493.15 a_{1}^{2} a_{2}^{11 / 4}\right)}{\log \left(1827904 a_{1}^{2} a_{2}^{4}\right) \log (256.7072)}
$$

The expression in the right side is increasing with a_{1}, therefore

$$
13^{1 / 4} \cdot\left(\frac{4}{3}\right)^{1 / 3} a_{2}^{5 / 12}<\frac{8 \log \left(5.2641 \cdot 10^{17} a_{2}^{27 / 4}\right) \log \left(10123.2875 a_{2}^{15 / 4}\right)}{\log \left(456976 a_{2}^{5}\right) \log (256.7072)}
$$

that is

$$
a_{2}^{5 / 12}<\frac{3.49295 \log \left(422.065 a_{2}\right) \log \left(11.6974 a_{2}\right)}{\log \left(13.5512 a_{2}\right)}
$$

This inequality is false for $a_{2}>14301$. Hence, it remains to search for Diophantine 2-tuples $\left(a_{i}, b\right)(i=1,2)$ satisfying the conditions $4 a_{1}^{2}<a_{2} \leq 36 a_{1}^{3}$, $24^{3}<a_{2} \leq 14301$, and $13 a_{2}<b<a_{2}^{4 / 3}$.

Our current knowledge allows us to restrict the search to values $179712=$ $13 \cdot 24^{3}<b \leq 347127=\left\lfloor 14301^{4 / 3}\right\rfloor$. A short computation finds only three triples $\left(a_{1}, a_{2}, b\right)$ for which the associated equation (6.4) needs to be considered. As none of them has solutions in the required range, the assumption $36 a_{1}^{3} \geq a_{2}$ is false.

To obtain the other part of the conclusion, we suppose that $a_{2} \leq 300 a_{1}^{2}$. Then $c>4 \cdot 75^{-1} \cdot 13^{3} a_{2}^{4}, c / b^{2}>(52 / 75) a_{2}^{2}$, and $a_{1} \geq\left(24^{3} / 300\right)^{1 / 2}>6$, whence

$$
a_{2}^{1 / 2}<\frac{8.2596 \log \left(222.6345 a_{2}\right) \log \left(3.6989 a_{2}\right)}{\log \left(5.7143 a_{2}\right)}
$$

and hence $a_{2} \leq 14116$. The range where the hypothetical values for a_{2} sit has been explored as described in the previous paragraph and no suitable values have been found. Therefore, the inequality $a_{2} \leq 300 a_{1}^{2}$ is refuted.

Acknowledgements

The authors thank the referee for the careful reading and helpful comments. A. D. acknowledges support from the QuantiXLie Center of Excellence, a project cofinanced by the Croatian Government and European Union through
the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004) and the Croatian Science Foundation under the project no. IP-2018-01-1313.

References

[1] Arkin, J., Hoggatt, V.E., Strauss, E.G.: On Euler's solution of a problem of Diophantus. Fibonacci Quart. 17, 333-339 (1979)
[2] Baker, A., Davenport, H.: The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$. Quart. J. Math. Oxford Ser. (2) 20, 129-137 (1969)
[3] Bugeaud, Y., Dujella, A., Mignotte, M.: On the family of Diophantine triples $\left\{k-1, k+1,16 k^{3}-4 k\right\}$. Glasgow Math. J. 49, 333-344 (2007)
[4] Cipu, M.: Further remarks on Diophantine quintuples. Acta Arith. 168, 201219 (2015)
[5] Cipu, M., Dujella, A., Fujita, Y.: Diophantine triples with largest two elements in common. Period. Math. Hungar. 82, 56-68 (2021)
[6] Cipu, M., Fujita, Y.: Bounds for Diophantine quintuples. Glas. Math. Ser. III 50, 25-34 (2015)
[7] Cipu, M., Filipin, A., Fujita, Y.: Bounds for Diophantine quintuples II. Publ. Math. Debrecen 88, 59-78 (2016)
[8] Cipu, M., Filipin, A., Fujita, Y.: Diophantine pairs that induce certain Diophantine triples. J. Number Theory 200, 433-475 (2020)
[9] Cipu, M., Fujita, Y., Mignotte, M.: Two-parameter families of uniquely extendable Diophantine triples. Sci. China Math. 61, 421-438 (2018)
[10] Cipu, M., Fujita, Y., Miyazaki, T.: On the number of extensions of a Diophantine triple. Int. J. Number Theory 14, 899-917 (2018)
[11] Dujella, A.: An absolute bound for the size of Diophantine m-tuples. J. Number Theory 89, 126-150 (2001)
[12] Dujella, A.: There are only finitely many Diophantine quintuples. J. Reine Angew. Math. 566, 183-224 (2004)
[13] Dujella, A.: Diophantine m-tuples, https://web.math.pmf.unizg.hr/~duje/ ref.html
[14] Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49, (1998), 291-306 (1998)
[15] Filipin, A., Fujita, Y.: The number of Diophantine quintuples II, Publ. Math. Debrecen 82, 293-308 (2013)
[16] Filipin, A., Fujita, Y., Togbé, A.: The extendibility of Diophantine pairs I: The general case, Glas. Mat. Ser. III 49(69), 25-36 (2014)
[17] Filipin, A., Fujita, Y., Togbé, A.: The extendibility of Diophantine pairs II: examples, J. Number Theory 145, 604-631 (2014)
[18] Fujita, Y.: The extensibility of Diophantine pairs $\{k-1, k+1\}$, J. Number Theory 128, 322-353 (2009)
[19] Fujita, Y.: Any Diophantine quintuple contains a regular Diophantine quadruple, J. Number Theory 129, 1678-1697 (2009)
[20] Fujita, Y.: The number of irregular Diophantine quadruples for a fixed Diophantine pair or triple, Contemp. Math. 768, 105-118 (2021)
[21] Fujita, Y., Miyazaki, T.: The regularity of Diophantine quadruples, Trans. Amer. Math. Soc. 370, 3803-3831 (2018)
[22] Gibbs, P.E.: Computer Bulletin 17, 16 (1978)
[23] He, B., Togbé, A., Ziegler, V.: There is no Diophantine quintuple, Trans. Amer. Math. Soc. 371, 6665-6709 (2019)
[24] Jones, B.W.: A second variation on a problem of Diophantus and Davenport, Fibonacci Quart. 16 155-165 (1978)
[25] Lee, J.B, Park, J.: Some conditions on the form of third element from Diophantine pairs and its application, J. Korean Math. Soc. 55, 425-445 (2018)
[26] Matthews, K.: Solving the diophantine equation $a x^{2}-b y^{2}=c$, using the LMM method, http://www.numbertheory.org/php/aa.html
[27] The PARI Group: PARI/GP, version 2.9.2, Bordeaux, 2017, available from http://pari.math.u-bordeaux.fr/
[28] Rickert, J.H.: Simultaneous rational approximations and related Diophantine equations, Proc. Cambridge Philos. Soc. 113, 461-472 (1993)

Mihai Cipu
Simion Stoilow Institute of Mathematics of the Romanian Academy, Research unit nr. 7, P.O. Box 1-764, RO-014700 Bucharest, Romania
e-mail: Mihai.Cipu@imar.ro
Andrej Dujella
Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
e-mail: duje@math.hr
Yasutsugu Fujita
Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan
e-mail: fujita.yasutsugu@nihon-u.ac.jp

